首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hepatic fibrogenesis occurs as a wound-healing process after many forms of chronic liver injury. Hepatic fibrosis ultimately leads to cirrhosis if not treated effectively. During liver injury, quiescent hepatic stellate cells (HSC), the most relevant cell type, become active and proliferative. Oxidative stress is a major and critical factor for HSC activation. Activation of peroxisome proliferator-activated receptor-gamma (PPAR-gamma) inhibits the proliferation of nonadipocytes. The level of PPAR-gamma is dramatically diminished along with activation of HSC. Curcumin, the yellow pigment in curry, is a potent antioxidant. The aims of this study were to evaluate the effect of curcumin on HSC proliferation and to begin elucidating underlying mechanisms. It was hypothesized that curcumin might inhibit the proliferation of activated HSC by inducing PPAR-gamma gene expression and reviving PPAR-gamma activation. Our results indicated that curcumin significantly inhibited the proliferation of activated HSC and induced apoptosis in vitro. We demonstrated, for the first time, that curcumin dramatically induced the gene expression of PPAR-gamma and activated PPAR-gamma in activated HSC. Blocking its trans-activating activity by a PPAR-gamma antagonist markedly abrogated the effects of curcumin on inhibition of cell proliferation. Our results provide a novel insight into mechanisms underlying the inhibition of activated HSC growth by curcumin. The characteristics of curcumin, including antioxidant potential, reduction of activated HSC growth, and no adverse health effects, make it a potential antifibrotic candidate for prevention and treatment of hepatic fibrosis.  相似文献   

2.
On liver injury, quiescent hepatic stellate cells (HSC), the most relevant cell type for hepatic fibrogenesis, become active, characterized by enhanced cell growth and overproduction of extracellular matrix (ECM). Oxidative stress facilitates HSC activation and the pathogenesis of hepatic fibrosis. Glutathione (GSH) is the most important intracellular antioxidant. We previously showed that curcumin, the yellow pigment in curry from turmeric, significantly inhibited HSC activation. The aim of this study is to elucidate the underlying mechanisms. It is hypothesized that curcumin might inhibit HSC activation mainly by its antioxidant capacity. Results from this study demonstrate that curcumin dose and time dependently attenuates oxidative stress in passaged HSC demonstrated by scavenging reactive oxygen species and reducing lipid peroxidation. Curcumin elevates the level of cellular GSH and induces de novo synthesis of GSH in HSC by stimulating the activity and gene expression of glutamate-cysteine ligase (GCL), a key rate-limiting enzyme in GSH synthesis. Depletion of cellular GSH by the inhibition of GCL activity using L-buthionine sulfoximine evidently eliminates the inhibitory effects of curcumin on HSC activation. Taken together, our results demonstrate, for the first time, that the antioxidant property of curcumin mainly results from increasing the level of cellular GSH by inducing the activity and gene expression of GCL in activated HSC in vitro. De novo synthesis of GSH is a prerequisite for curcumin to inhibit HSC activation. These results provide novel insights into the mechanisms of curcumin as an antifibrogenic candidate in the prevention and treatment of hepatic fibrosis.  相似文献   

3.
4.
5.
The activated hepatic stellate cell (HSC) is central to liver fibrosis as the major source of collagens I and III and the tissue inhibitors of metalloproteinase-1 (TIMP-1). During spontaneous recovery from liver fibrosis, there is a decrease of TIMP expression, an increase in collagenase activity, and increased apoptosis of HSC, highlighting a potential role for TIMP-1 in HSC survival. In this report, we use tissue culture and in vivo models to demonstrate that TIMP-1 directly inhibits HSC apoptosis. TIMP-1 demonstrated a consistent, significant, and dose-dependent antiapoptotic effect for HSC activated in tissue culture and stimulated to undergo apoptosis by serum deprivation, cycloheximide exposure, and nerve growth factor stimulation. A nonfunctional mutated TIMP-1 (T2G mutant) in which all other domains are conserved did not inhibit apoptosis, indicating that inhibition of apoptosis was mediated through MMP inhibition. Synthetic MMP inhibitors also inhibited HSC apoptosis. Studies of experimental liver cirrhosis demonstrated that persistent expression of TIMP-1 mRNA determined by PCR correlated with persistence of activated HSC quantified by alpha smooth muscle actin staining, while in fibrosis, loss of activated HSC correlated with a reduction in TIMP-1 mRNA. We conclude that TIMP-1 inhibits apoptosis of activated HSC via MMP inhibition.  相似文献   

6.
MicroRNAs (miRNAs), small noncoding RNAs modulating messenger RNA (mRNA) and protein expression, have emerged as key regulatory molecules in chronic liver diseases, whose end stage is hepatic fibrosis, a major global health burden. Pharmacological strategies for prevention or treatment of hepatic fibrosis are still limited, what makes it necessary to establish a better understanding of the molecular mechanisms underlying its pathogenesis. In this context, we have recently shown that cyclooxygenase-2 (COX-2) expression in hepatocytes restricts activation of hepatic stellate cells (HSCs), a pivotal event in the initiation and progression of hepatic fibrosis. Here, we evaluated the role of COX-2 in the regulation of a specific set of miRNAs on a mouse model of CCl4 and bile duct ligation (BDL)-induced liver fibrosis. Our results provide evidence that COX-2 represses miR-23a-5p and miR-28-5p expression in HSC. The decrease of miR-23a-5p and miR-28-5p expression promotes protection against fibrosis by decreasing the levels of pro-fibrogenic markers α-SMA and COL1A1 and increasing apoptosis of HSC. Moreover, we demonstrate that serum levels of miR-28-5p are decreased in patients with chronic liver disease. These results suggest a protective effect exerted by COX-2-derived prostanoids in the process of hepatofibrogenesis.  相似文献   

7.
Activation of hepatic stellate cells (HSC), the major effectors of hepatic fibrogenesis, is coupled with sequential alterations in gene expression, including an increase in receptors for transforming growth factor-beta (TGF-beta) and a dramatic reduction in the peroxisome proliferator-activated receptor-gamma (PPAR-gamma). The relationship between them remains obscure. We previously demonstrated that curcumin induced gene expression of PPAR-gamma in activated HSC, leading to reducing cell proliferation, inducing apoptosis and suppressing expression of extracellular matrix genes. The underlying molecular mechanisms are largely unknown. We recently observed that stimulation of PPAR-gamma activation suppressed gene expression of TGF-beta receptors in activated HSC, leading to the interruption of TGF-beta signaling. This observation supported our assumption of an antagonistic relationship between PPAR-gamma activation and TGF-beta signaling in HSC. In this study, we further hypothesize that TGF-beta signaling might negatively regulate gene expression of PPAR-gamma in activated HSC. The present report demonstrates that exogenous TGF-beta1 inhibits gene expression of PPAR-gamma in activated HSC, which is eliminated by the pretreatment with curcumin likely by interrupting TGF-beta signaling. Transfection assays further indicate that blocking TGF-beta signaling by dominant negative type II TGF-beta receptor increases the promoter activity of PPAR-gamma gene. Promoter deletion assays, site-directed mutageneses, and gel shift assays localize two Smad binding elements (SBEs) in the PPAR-gamma gene promoter, acting as curcumin response elements and negatively regulating the promoter activity in passaged HSC. The Smad3/4 protein complex specifically binds to the SBEs. Overexpression of Smad4 dose dependently eliminates the inhibitory effects of curcumin on the PPAR-gamma gene promoter and TGF-beta signaling. Taken together, these results demonstrate that the interruption of TGF-beta signaling by curcumin induces gene expression of PPAR-gamma in activated HSC in vitro. Our studies provide novel insights into the molecular mechanisms of curcumin in the induction of PPAR-gamma gene expression and in the inhibition of HSC activation.  相似文献   

8.
He Y  Huang C  Sun X  Long XR  Lv XW  Li J 《Cellular signalling》2012,24(10):1923-1930
Activation of hepatic stellate cells (HSC) plays a pivotal role in the development of hepatic fibrosis. Transforming growth factor-β1 (TGF-β1) is considered to be the main stimuli factor responsible for the activation of HSC. MicroRNAs (miRNAs) have recently been shown to regulate cell proliferation, differentiation, and apoptosis. The involvement of miRNAs and their roles in TGF-β1-induced HSC activation remains largely unknown. Our study found that the expression of miR-146a was downregulated in HSC in response to TGF-β1 stimulation in dose-dependent manner by one-step real-time quantitative PCR. Moreover, we sought to examine whether miR-146a became dysregulated in CCl(4)-induced hepatic fibrosis in rats. Our study revealed that miR-146a was downregulated in liver fibrotic tissues. In addition, The HSC transfected with miR-146a mimics exhibited attendated TGF-β1-induced α-smooth muscle actin (α-SMA) expression compared with the control. Furthermore, overexpression of miR-146a suppressed TGF-β-induced HSC proliferation, and increased HSC apoptosis. Bioinformatics analyses predict that SMAD4 is the potential target of miR-146a. MiR-146a overexpression in TGF-β1-treated HSC did not decrease target mRNA levels, but significantly reduced target protein expression. These results suggested that miR-146a may function as a novel regulator to modulate HSC activation during TGF-β1 induction by targeting SMAD4.  相似文献   

9.
10.
Activation of hepatic stellate cells (HSCs) is a pivotal event in the pathogenesis of liver fibrosis. Pharmacological induction of HSC apoptosis could be a promising strategy for fibrosis regression. Natural product tetramethylpyrazine (TMP) exhibits potent antifibrotic activities in vivo. However, the molecular mechanisms remain to be defined. The present study aimed at investigating the anti-proliferative and pro-apoptotic effects of TMP on HSCs and elucidating the underlying mechanisms. Our results demonstrated that TMP had no apparent cytotoxic effects on hepatocytes, but significantly inhibited HSC proliferation and induced cell cycle arrest at the G0/G1 checkpoint. These effects were associated with TMP regulation of cyclin D1, p21, p27 and p53. Furthermore, we found that TMP disrupted mitochondrial functions and led to activation of caspase cascades in HSCs. Mechanistic investigations revealed that TMP selectively blocked the extracellular signal-regulated kinase (ERK) signaling and activated p53, which was required for TMP induction of caspase-dependent mitochondrial apoptosis in HSCs. Autodock simulations predicted that TMP could directly bind to ERK2 with two hydrogen bonds and low energy score, indicating that ERK2 could be a direct target molecule for TMP within HSCs. Moreover, TMP altered expression of some marker proteins relevant to HSC activation. These data collectively revealed that TMP modulation of ERK/p53 signaling led to mitochondrial-mediated and caspase-dependent apoptosis in HSCs in vitro. These studies provided mechanistic insights into the antifibrotic properties of TMP that may be exploited as a potential option for hepatic fibrosis.  相似文献   

11.
Hepatic stellate cell (HSC) activation is a pivotal event in the initiation and progression of hepatic fibrosis since it mediates transforming growth factor beta 1 (TGF-β1)-driven extracellular matrix (ECM) deposition. MicroRNAs (miRNAs), small non-coding RNAs modulating messenger RNA (mRNA) and protein expression, have emerged as key factors to regulate cell proliferation, differentiation, and apoptosis. Although the function of miR-200a has been discussed in many cancers and fibrotic diseases, its role in hepatic fibrosis is still poorly understood. The aim of this study is to investigate whether miR-200a could attenuate hepatic fibrosis partly through Wnt/β-catenin and TGF-β-dependant mechanisms. Our study found that the expression of endogenous miR-200a was decreased in vitro in TGF-β1-induced HSC activation as well as in vivo in CCl4-induced rat liver fibrosis. Overexpression of miR-200a significantly inhibited α-SMA activity and further affected the proliferation of TGF-β1-dependent activation of HSC. In addition, we identified β-catenin and TGF-β2 as two functional downstream targets for miR-200a. Interestingly, miR-200a specifically suppressed β-catenin in the protein level, whereas miR-200a-mediated suppression of TGF-β2 was shown on both mRNA and protein levels. Our results revealed the critical regulatory role of miR-200a in HSC activation and implied miR-200a as a potential candidate for therapy by deregulation of Wnt/β-catenin and TGFβ signaling pathways, at least in part, via decreasing the expression of β-catenin and TGF-β2.  相似文献   

12.
Activin A, a member of the transforming growth factor-beta superfamily, is constitutively expressed in hepatocytes and regulates liver mass through tonic inhibition of hepatocyte DNA synthesis. Follistatin is the main biological inhibitor of activin bioactivity. These molecules may be involved in hepatic fibrogenesis, although defined roles remain unclear. We studied activin and follistatin gene and protein expression in cultured rat hepatic stellate cells (HSCs) and in rats given CCl4 for 8 wk and examined the effect of follistatin administration on the development of hepatic fibrosis. In activated HSCs, activin mRNA was upregulated with high expression levels, whereas follistatin mRNA expression was unchanged from baseline. Activin A expression in normal lobular hepatocytes redistributed to periseptal hepatocytes and smooth muscle actin-positive HSCs in the fibrotic liver. A 32% reduction in fibrosis, maximal at week 4, occurred in CCl4-exposed rats treated with follistatin. Hepatocyte apoptosis decreased by 87% and was maximal at week 4 during follistatin treatment. In conclusion, activin is produced by activated HSCs in vitro and in vivo. Absence of simultaneous upregulation of follistatin gene expression in HSCs suggests that HSC-derived activin is biologically active and unopposed by follistatin. Our in vivo and in vitro results demonstrate that activin-mediated events contribute to hepatic fibrogenesis and that follistatin attenuates early events in fibrogenesis by constraining HSC proliferation and inhibiting hepatocyte apoptosis.  相似文献   

13.
BackgroundLiquiritigenin (LQ), an aglycone of liquiritin in licorice, has demonstrated antioxidant, anti-inflammatory and anti-tumor activities. Previously, LQ was found to inhibit liver fibrosis progression.PurposePhosphatase and tensin homolog (PTEN) has been reported to act as a negative regulator of hepatic stellate cell (HSC) activation. However, the roles of PTEN in the effects of LQ on liver fibrosis have not been identified to date.MethodsThe effects of LQ on liver fibrosis in carbon tetrachloride (CCl4) mice as well as primary HSCs were examined. Moreover, the roles of PTEN and microRNA-181b (miR-181b) in the effects of LQ on liver fibrosis were examined.ResultsLQ markedly ameliorated CCl4-induced liver fibrosis, with a reduction in collagen deposition as well as α-SMA level. Moreover, LQ induced an increase in PTEN and effectively inhibited HSC activation including cell proliferation, α-SMA and collagen expression, which was similar with curcumin (a positive control). Notably, loss of PTEN blocked down the effects of LQ on HSC activation. PTEN was confirmed as a target of miR-181b and miR-181b-mediated PTEN was involved in the effects of LQ on liver fibrosis. LQ led to a significant reduction in miR-181b expression. LQ-inhibited HSC activation could be restored by over-expression of miR-181b. Further studies demonstrated that LQ down-regulated miR-181b level via Sp1. Collectively, we demonstrate that LQ inhibits liver fibrosis, at least in part, via regulation of miR-181b and PTEN.ConclusionLQ down-regulates miR-181b level, leading to the restoration of PTEN expression, which contributes to the suppression of HSC activation. LQ may be a potential candidate drug against liver fibrosis.  相似文献   

14.
The liver is a target for toxic chemicals such as cadmium (Cd). When the liver is damaged, hepatic stellate cells (HSC) are activated and transformed into myofibroblast-like cells, which are responsible for liver fibrosis. Curcuma longa has been reported to exert a hepato-protective effect under various pathological conditions. We investigated the effects of C. longa administration on HSC activation in response to Cd induced hepatotoxicity. Forty adult male albino rats were divided into: group 1 (control), group 2 (Cd treated), group 3 (C. longa treated) and group 4 (Cd and C. longa treated). After 6 weeks, liver specimens were prepared for light and electron microscopy examination of histological changes and immunohistochemical localization of alpha smooth muscle actin (αSMA) as a specific marker for activated HSC. Activated HSC with a positive αSMA immune reaction were not detected in groups 1 and 3. Large numbers of activated HSC with αSMA immune reactions were observed in group 2 in addition to Cd induced hepatotoxic changes including excess collagen deposition in thickened portal triads, interlobular septa with hepatic lobulation, inflammatory cell infiltration, a significant increase in Kupffer cells and degenerated hepatocytes. In group 4, we observed a significant decrease in HSC that expressed αSMA with amelioration of the hepatotoxic changes. C. longa administration decreased HSC activation and ameliorated hepatotoxic changes caused by Cd in adult rats.  相似文献   

15.
Reactive oxygen species (ROS) play a key role in chronic liver injury and fibrosis. Homologs of NADPH oxidases (NOXs) are major sources of ROS, but the exact role of the individual homologs in liver disease is unknown. Our goal was to determine the role of NOX4 in liver fibrosis induced by bile duct ligation (BDL) with the aid of the pharmacological inhibitor GKT137831, and genetic deletion of NOX4 in mice. GKT137831 was either applied for the full term of BDL (preventive arm) or started at 10 day postoperatively (therapeutic arm). Primary hepatic stellate cells (HSC) from control mice with and without BDL were analyzed and the effect of NOX4 inhibition on HSC activation was also studied. FasL or TNFα/actinomycin D-induced apoptosis was studied in wild-type and NOX4(-/-) hepatocytes. NOX4 was upregulated by a TGF-β/Smad3-dependent mechanism in HSC. Downregulation of NOX4 decreased ROS production and the activation of NOX4(-/-) HSC was attenuated. NOX4(-/-) hepatocytes were more resistant to FasL or TNFα/actinomycin D-induced apoptosis. Similarly, after pharmacological NOX4 inhibition, ROS production, the expression of fibrogenic markers, and hepatocyte apoptosis were reduced. NOX4 was expressed in human livers with stage 2-3 autoimmune hepatitis. Fibrosis was attenuated by the genetic deletion of NOX4. BDL mice gavaged with GKT137831 in the preventive or the therapeutic arm displayed less ROS production, significantly attenuated fibrosis, and decreased hepatocyte apoptosis. In conclusion, NOX4 plays a key role in liver fibrosis. GKT137831 is a potent inhibitor of fibrosis and hepatocyte apoptosis; therefore, it is a promising therapeutic agent for future translational studies.  相似文献   

16.
Liver fibrosis is a chronic inflammatory process characterized by the accumulation of extracellular matrix (ECM), which contributes to cirrhosis and hepatocellular carcinoma. Increasing evidence suggests that the activation of hepatic stellate cells (HSCs) under an inflammatory state leads to the secretion of collagens, which can cause cirrhosis. In this study, we analysed data from the Gene Expression Omnibus (GEO) databases to identify differentially expressed genes (DEGs) between quiescent and fibrotic HSCs. We found that Microfibril Associated Protein 2 (MFAP2) was elevated in carbon tetrachloride (CCl4)-induced liver fibrosis and Transforming Growth Factor-Beta 1 (TGF-β1)-activated HSCs. Knockdown of MFAP2 inhibited HSC proliferation and partially attenuated TGF-β-stimulated fibrogenesis markers. Bioinformatics analysis revealed that Fibrillin-1 (FBN1) was correlated with MFAP2, and the expression of FBN1 was significantly upregulated after MFAP2 overexpression. Silencing MFAP2 partially attenuated the activation of HSCs by inhibiting HSC proliferation and decreasing collagen deposits. In vitro results showed that the inhibition of MFAP2 alleviated hepatic fibrosis by inhibiting the activation and inducing the apoptosis of active HSCs in a CCl4-induced mouse model. In conclusion, our results suggest that MFAP2 is a potential target for the clinical treatment of liver fibrosis.  相似文献   

17.
18.
Wang  Xinghe  Muhammad  Ishfaq  Sun  Xiaoqi  Han  Meiyu  Hamid  Sattar  Zhang  Xiuying 《Molecular biology reports》2018,45(5):881-891

It is well documented that liver is the primary target organ of aflatoxin B1 (AFB1) and curcumin proved to be effective against AFB1-induced liver injury. In the present study, we investigated the preventive effects of curcumin against AFB1-induced apoptosis through the molecular regulation of p53, caspase-3, Bax, caspase-9, Bcl-2 and cytochrome-C associated with mitochondrial pathway. Liver antioxidant levels were measured. The hallmarks of apoptosis were analysed by methyl green-pyronin-Y staining, transmission electron microscopy, RT-PCR and western blot. Results revealed that dietary curcumin ameliorated AFB1-induced oxidative stress in a dose-dependent manner. Methyl green-pyronin-Y staining and transmission electron microscopy showed that AFB1 induced apoptosis and caused abnormal changes in liver cells morphology such as condensation of chromatin material, reduces cell volume and damaged mitochondria. Moreover, mRNA and protein expression results manifested that apoptosis associated genes showed up-regulation in AFB1 fed group. However, the supplementation of dietary curcumin (dose-dependently) alleviated the increased expression of the apoptosis associated genes at mRNA and protein level, and restored the hepatocytes normal morphology. The study provides an insight and a better understanding of the preventive mechanism of curcumin against AFB1-induced apoptosis in hepatocytes and provide scientific basis for the therapeutic uses of curcumin.

  相似文献   

19.
20.
Activation and migration of resident stellate cells (HSCs) within the hepatic space of Disse play an important role in hepatic fibrosis, which accounts for the increased numbers of activated HSCs in areas of inflammation during hepatic fibrosis. Currently, microRNAs have been found to play essential roles in HSC differentiation, proliferation, apoptosis, fat accumulation and collagen production. However, little is known about microRNA mediated HSC activation and migration. In this study, the miRNA expression profiles of quiescent HSCs, partially activated HSCs and fully activated HSCs were compared in pairs. Gene ontology (GO) and GO-Map network analysis indicated that the activation of HSCs was regulated by microRNAs. Among them miR-335 was confirmed to be significantly reduced during HSC activation by qRT-PCR, and restoring expression of miR-335 inhibited HSC migration and reduced α-SMA and collagen type I. Previous study revealed that tenascin-C (TNC), an extracellular matrix glycoprotein involved in cell migration, might be a target of miR-335. Therefore, we further studied the TNC expression in miR-335 over-expressed HSCs. Our data showed that exogenous TNC could enhance HSC migration in vitro and miR-335 restoration resulted in a significant inhibition of TNC expression. These results demonstrated that miR-335 restoration inhibited HSC migration, at least in part, via downregulating the TNC expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号