首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adjuvant arthritis (AA) is an autoimmune disease inducible in rats involving T cell reactivity to the mycobacterial 65-kDa heat shock protein (HSP65). HSP65-specific T cells cross-reactive with the mammalian 60-kDa heat shock protein (HSP60) are thought to participate in the modulation of AA. In this work we studied the effects on AA of DNA vaccination using constructs coding for HSP65 (pHSP65) or human HSP60 (pHSP60). We found that both constructs could inhibit AA, but that pHSP60 was more effective than pHSP65. The immune effects associated with specific DNA-induced suppression of AA were complex and included enhanced T cell proliferation to a variety of disease-associated Ags. Effective vaccination with HSP60 or HSP65 DNA led paradoxically to up-regulation of IFN-gamma secretion to HSP60 and, concomitantly, to down-regulation of IFN-gamma secretion to the P180-188 epitope of HSP65. There were also variable changes in the profiles of IL-10 secretion to different Ags. However, vaccination with pHSP60 or pHSP65 enhanced the production of TGFbeta1 to both HSP60 and HSP65 epitopes. Our results support a regulatory role for HSP60 autoreactivity in AA and demonstrate that this control mechanism can be activated by DNA vaccination with both HSP60 or HSP65.  相似文献   

2.
Functional overload (FO) is a powerful inducer of muscle hypertrophy and both oxidative and mechanical stress in muscle fibers. Heat shock protein 25 (HSP25) may protect against both of these stressors, and its expression can be regulated by changes in muscle loading and activation. The primary purpose of the present study was to test the hypothesis that chronic FO increases HSP25 expression and phosphorylation (pHSP25) in hypertrophying rat hindlimb muscle. HSP25 and pHSP25 levels were quantified in soluble and insoluble fractions of the soleus and plantaris to determine whether 3 or 7 days of FO increase translocation of HSP25 and/or pHSP25 to the insoluble fraction. p38 protein and phosphorylation (p-p38) was measured to determine its association with changes in pHSP25. HSP25 mRNA showed time-dependent increases in both the soleus and plantaris with FO. Three or seven days of FO increased HSP25 and pHSP25 in the soluble fraction in both muscles, with a greater response in the plantaris. In the insoluble fraction, HSP25 was increased after 3 or 7 days in both muscles, whereas pHSP25 was only increased in the 7-day plantaris. p38 and p-p38 increased in the plantaris at both time points. In the soleus, p-p38 only increased after 7 days. These results show that FO is associated with changes in HSP25 expression and phosphorylation and suggest its role in the remodeling that occurs during muscle hypertrophy. Increases in HSP25 in the insoluble fraction suggest that it may help to stabilize actin and/or other cytoskeletal proteins during the stress of muscle remodeling.  相似文献   

3.
Early events in response to abrupt increases in activation and loading with muscle functional overload (FO) are associated with increased damage and inflammation. Heat shock protein 25 (HSP25) may protect against these stressors, and its expression can be regulated by muscle loading and activation. The purpose of this study was to investigate the responses of HSP25, phosphorylated HSP25 (pHSP25), and tumor necrosis factor-alpha (TNF-alpha) during FO of the slow soleus and fast plantaris. We compared the HSP25 mRNA, HSP25 protein, pHSP25, and TNF-alpha responses in the soleus and plantaris after 0.5, 1, 2, 3, and 7 days of FO. HSP25 and pHSP25 were quantified in soluble and insoluble fractions. HSP25 mRNA increased immediately in both muscles and decreased with continued FO. However, HSP25 mRNA levels were consistently higher in the muscles of FO than control rats. In the soluble fraction, HSP25 increased in the plantaris after 2-7 days of FO with the greatest response at 3 and 7 days. The pHSP25 response to FO was greater in the plantaris than soleus at all points in the soluble fraction and at 0.5 days in the insoluble fraction. TNF-alpha levels in the plantaris, but not soleus, were higher than control at 0.5-2 days of FO. This may have contributed to the greater FO response in pHSP25 in the plantaris than soleus as TNF-alpha increased pHSP25 in C2C12 myotubes. These results suggest that the initial responses of pHSP25 and TNF-alpha to mechanical stress and inflammation associated with FO are greater in a fast than slow extensor muscle.  相似文献   

4.
5.
Tumor-derived heat shock protein70-peptide complexes (HSP70.PC-Tu) have shown great promise in tumor immunotherapy due to numerous advantages. However, large-scale phase III clinical trials showed that the limited immunogenicity remained to be enhanced. In previous research, we demonstrated that heat shock protein 70-peptide complexes (HSP70.PC-Fc) derived from dendritic cell (DC)-tumor fusions exhibit enhanced immunogenicity compared with HSP70.PCs from tumor cells. However, the DCs used in our previous research were obtained from healthy donors and not from the patient population. In order to promote the clinical application of these complexes, HSP70.PC-Fc was prepared from patient-derived DC fused directly with patient-derived tumor cells in the current study. Our results showed that compared with HSP70.PC-Tu, HSP70.PC-Fc elicited much more powerful immune responses against the tumor from which the HSP70 was derived, including enhanced T cell activation, and CTL responses that were shown to be antigen specific and HLA restricted. Our results further indicated that the enhanced immunogenicity is related to the activation of CD4+ T cells and increased association with other heat shock proteins, such as HSP90. Therefore, the current study confirms the enhanced immunogenicity of HSP70.PC derived from DC-tumor fusions and may provide direct evidence promoting their future clinical use.  相似文献   

6.
Mammalian Heat Shock Proteins (HSP), have potent immune-stimulatory properties due to the natural capability to associate with polypeptides and bind receptors on antigen presenting cells. The present study was aimed to explore whether plant HSP, and in particular HSP70, share similar properties. We wanted in particular to evaluate if HSP70 extracted in association to naturally bound polypeptides from plant tissues expressing a recombinant “reporter” antigen, carry antigen-derived polypeptides and can be used to activate antigen-specific immune responses. This application of HSP70 has been very poorly investigated so far. The analysis started by structurally modeling the plant protein and defining the conditions that ensure maximal expression levels and optimal recovery from plant tissues. Afterwards, HSP70 was purified from Nicotiana benthamiana leaves transiently expressing a heterologous “reporter” protein. The purification was carried out taking care to avoid the release from HSP70 of the polypeptides chaperoned within plant cells. The evaluation of antibody titers in mice sera subsequent to the subcutaneous delivery of the purified HSP70 demonstrated that it is highly effective in priming humoral immune responses specific to the plant expressed “reporter” protein. Overall results indicated that plant-derived HSP70 shares structural and functional properties with the mammalian homologue. This study paves the way to further investigations targeted at determining the properties of HSP70 extracted from plants expressing foreign recombinant antigens as a readily available immunological carrier for the efficient delivery of polypeptides derived from these antigens.  相似文献   

7.
Recent studies have initiated a paradigm shift in the understanding of the function of heat shock proteins (HSP). It is now clear that HSP can and do exit mammalian cells, interact with cells of the immune system, and exert immunoregulatory effects. We recently demonstrated that exogenously added HSP70 possesses potent cytokine activity, with the ability to bind with high affinity to the plasma membrane, elicit a rapid intracellular Ca(2+) flux, activate NF-kappaB, and up-regulate the expression of pro-inflammatory cytokines in human monocytes. Here for the first time, we report that HSP70-induced proinflammatory cytokine production is mediated via the MyD88/IRAK/NF-kappaB signal transduction pathway and that HSP70 utilizes both TLR2 (receptor for Gram-positive bacteria) and TLR4 (receptor for Gram-negative bacteria) to transduce its proinflammatory signal in a CD14-dependent fashion. These studies now pave the way for the development of highly effective pharmacological or molecular tools that will either up-regulate or suppress HSP70-induced functions in conditions where HSP70 effects are desirable (cancer) or disorders where HSP70 effects are undesirable (arthritis and arteriosclerosis).  相似文献   

8.
The HSP90 (heat shock protein 90), SGT1 (suppressor of G-two allele ofSkp1), and RAR1 (required forMla12 resistance) proteins in plants form a molecular chaperone complex which is involved in diverse biological signaling including development and disease resistance. The three components of this complex interact via specific protein binding motifs and recruit client proteins to initiate a specific signaling cascade in response to cellular or environmental cues. Although the functions of this chaperone complex during development/growth have not been well characterized, the HSP90 chaperone and SGT1 and RAR1 co-chaperones have been demonstrated to be essential signaling components of plant immune responses. These three proteins also play important roles in activation of the mammalian Nod genes, which possess a structurally conserved plant resistance (R) protein motif, NB-LRR (nucleotide binding site-leucine rich repeat). In this review, we summarize the structures and functions of these molecular chaperones, and discuss their putative modes of action in plant immune responses.  相似文献   

9.
We have developed a molecular chaperone-based tumor vaccine that reverses the immune tolerance of cancer cells. Heat shock protein (HSP) 70 extracted from fusions of dendritic (DC) and tumor cells (HSP70.PC-F) possess superior properties such as stimulation of DC maturation and T cell proliferation over its counterpart from tumor cells. More importantly, immunization of mice with HSP70.PC-F resulted in a T cell-mediated immune response including significant increase of CD8 T cells and induction of the effector and memory T cells that was able to break T cell unresponsiveness to a nonmutated tumor Ag and provide protection of mice against challenge with tumor cells. By contrast, the immune response to vaccination with HSP70-PC derived from tumor cells is muted against such nonmutated tumor Ag. HSP70.PC-F complexes differed from those derived from tumor cells in a number of key manners, most notably, enhanced association with immunologic peptides. In addition, the molecular chaperone HSP90 was found to be associated with HSP70.PC-F as indicated by coimmunoprecipitation, suggesting ability to carry an increased repertoire of antigenic peptides by the two chaperones. Significantly, activation of DC by HSP70.PC-F was dependent on the presence of an intact MyD88 gene, suggesting a role for TLR signaling in DC activation and T cell stimulation. These experiments indicate that HSP70-peptide complexes (PC) derived from DC-tumor fusion cells have increased their immunogenicity and therefore constitute an improved formulation of chaperone protein-based tumor vaccine.  相似文献   

10.
A 70 kDa heat shock protein (HSP70) has been reported previously to be strongly expressed in virulent Toxoplasma gondii strains taken from immunocompetent mice but it is poorly expressed by virulent parasites in mice immunocompromised by treatment with cortisone acetate or by virulent parasites cultured in vitro. Immune factors such as interferon-γ, tumour necrosis factor and reactive nitrogen intermediates derived from nitric oxide are known to be important inducers of HSP70 production and are also known to be produced during the immune response to acute T. gondii infection. The ability of these immune factors to induce T. gondii HSP70 production was tested by analysing HSP70 production in tachyzoites of the virulent RH strain of T. gondii recovered from mice deficient in: (1) T cells (nude mice); (2) T and B cells (SCID mice); (3) interferon-γ receptors (interferon-γ receptor knockout mice); and (4) tumour necrosis factor receptors (tumour necrosis factor receptor knockout mice). Parasites from nude and SCID mice produced as much HSP70 as immunocompetent mice. Likewise, T. gondii tachyzoites from mice lacking receptors for interferon-γ or tumour necrosis factor produced HSP70 in quantities similar to wild-type mice. The ability to produce reactive nitrogen intermediates in response to T. gondii infection, as detected by elevated levels of nitrate and nitrite in sera, was normal in tumour necrosis factor receptor knockout mice but was completely lacking in interferon-γ receptor knockout mice, indicating that reactive nitrogen intermediates are also not responsible for induction of parasite HSP70. Thus, immune factors that induce HSP70 production in mammalian cells do not appear to play primary roles in inducing HSP70 production by T. gondii.  相似文献   

11.
MAGE-3, a member of melanoma antigen (MAGE) gene family, is recognized as an ideal candidate for tumor vaccine because it is expressed in a significant proportion of tumors of various histological types and can induce antigen-specific immune response in vivo. There is now substantial evidence that heat shock proteins (HSPs) isolated from cancer cells and virus-infected cells can be used as vaccines to produce cancer-specific or virus-specific immunity. In this research, we investigated whether M. tuberculosis HSP70 can be used as vehicle to elicit immune response to its accompanying MAGE-3 protein. A recombinant protein expression vector was constructed that permitted the production of fusion protein linking amino acids 195–314 of MAGE-3 to the C terminus of HSP70. We found that HSP70-MAGE-3 fusion protein can elicit stronger cellular and humoral immune responses against MAGE-3 expressing murine tumor than those elicited by MAGE-3 protein in vivo, which resulted in potent antitumor immunity against MAGE-3-expressing tumors. Covalent linkage of HSP70 to MAGE-3 was necessary to elicit immune response to MAGE-3. These results indicate that linkage of HSP70 to MAGE-3 enhanced immune responses to MAGE-3 in vivo and HSP70 can be exploited to enhance the cellular and humoral immune responses against any attached tumor-specific antigens.  相似文献   

12.
One essential immunoregulatory function of heat shock protein (HSP) is activation of the innate immune system. We investigated the activation of human monocytes and monocyte-derived dendritic cells (DC) by recombinant human HSP60, human inducible HSP72, and preparations of human gp96 and HSP70 under stringent conditions, in the absence of serum and with highly purified monocytes. HSP60 induced human DC maturation and activated human DC to secrete proinflammatory cytokines. HSP72 induced DC maturation to a lesser extent, but activated human monocytes and immature DC as efficiently as HSP60 to release proinflammatory cytokines. The independence of the effects of HSP60 and HSP72 from endotoxin or another copurifying bacterial component was shown by the resistance of these effects to polymyxin B, their sensitivity to heat treatment, the inactivity of endotoxin controls at concentrations up to 100-fold above the endotoxin contents of the HSP, and the inactivity of a recombinant control protein. Preparations of HSP70, which consisted mainly of the constitutively expressed HSP73, induced only marginal cytokine release from monocytes. The gp96 preparations did not have significant effects on human monocytes and monocyte-derived DC, indicating that these human APC populations were not susceptible to gp96 signaling under the stringent conditions applied in this study. The biological activities of gp96 and HSP70 preparations were confirmed by their peptide binding activity. These findings show that HSP can differ considerably in the capacity to activate monocyte-derived APC under certain conditions and underline the potential of HSP60 and HSP72 as activation signals for the innate immune system.  相似文献   

13.
Yamashita M  Hirayoshi K  Nagata K 《Gene》2004,336(2):207-218
A shift from 28 to 37 degrees C in the incubation temperature of a culture of the platyfish fibroblast cell line, EHS cells (platyfish fibroblast cell line), induced a set of stress proteins. A two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) analysis showed that the cells expressed three genetically distinct forms of heat-shock protein 70 (HSP70) family proteins: heat-inducible forms of HSP70, the constitutively expressed heat-shock cognate protein 70 (HSC70) and its phosphorylated isoform, and the glucose-regulated protein 78 (GRP78). Three different clones encoding two major isoforms of heat-inducible HSP70, platyfish HSP70-1 and HSP70-2, and of the HSC70 were isolated from a platyfish cDNA library. We compared the deduced amino acid sequences of the platyfish HSP70 and HSC70 proteins with those of other vertebrates. Phylogenetic analysis showed that vertebrate HSP70 could be classified into four cluster groups: (a) fish HSP70, with two isoforms of heat-inducible HSP70 in fish, fish HSP70-1 and HSP70-2; (b) the mammalian testis-specific HSP70-related protein HST70; (c) the mammalian heat-inducible HSP70B'; and (d) the mammalian major histocompatibility complex (MHC)-linked HSP70, including the MHC-linked heat-inducible HSP70 and the testis-specific HSP70-related protein. These findings suggest that vertebrate HSP70 was derived from a single ancestral HSP70 gene during vertebrate evolution and that multiple copies of heat-inducible HSP70 were probably evolved during genetic divergence in fish and higher vertebrates.  相似文献   

14.
HSP70i and other stress proteins have been used in anti-tumor vaccines. This begs the question whether HSP70i plays a unique role in immune activation. We vaccinated inducible HSP70i (Hsp70-1) knockout mice and wild-type animals with optimized TRP-1, a highly immunogenic melanosomal target molecule. We were unable to induce robust and lasting depigmentation in the Hsp70-1 knockout mice, and in vivo cytolytic assays revealed a lack of cytotoxic T-lymphocyte activity. Absence of T-cell infiltration to the skin and maintenance of hair follicle melanocytes were observed. By contrast, depigmentation proceeded without interruption in mice lacking a tissue-specific constitutive isoform of HSP70 (Hsp70-2) vaccinated with TRP-2. Next, we demonstrated that HSP70i was necessary and sufficient to accelerate depigmentation in vitiligo-prone Pmel-1 mice, accompanied by lasting phenotypic changes in dendritic cell subpopulations. In summary, these studies assign a unique function to HSP70i in vitiligo and identify HSP70i as a targetable entity for treatment.  相似文献   

15.
Heat shock protein (HSP)70 can be released from tumor cells and stimulate a potent antitumor immune response. However, HSP70 does not contain a consensus secretory signal and thus cannot traverse the plasma membrane by conventional mechanisms. We have observed HSP70 release from intact human prostate carcinoma cell lines (PC-3 and LNCaP) by a mechanism independent of de novo HSP70 synthesis or cell death. This pathway is similar to one used by the leaderless protein IL-1beta. Our studies show that HSP70 release involves transit though an endolysosomal compartment and is inhibited by lysosomotropic compounds. In addition, the rate of HSP70 secretion correlates well with the appearance of the lysosomal marker LAMP1 on the cell surface, further suggesting the role for endolysosomes. The entry of HSP70 into this secretory compartment appears to involve the ABC family transporter proteins and ABC transporter inhibitor glibenclamide antagonizes secretion. Although the cell signals involved in triggering stress induced HSP70 release though this lysosomal pathway are largely unknown, our experiments suggest a regulatory role for extracellular ATP. These mechanisms appear to be shared by IL-1beta secretion. Following release, we observed the binding of extracellular HSP70 to the cell surface of the prostate carcinoma cells. These findings suggest that secreted HSP70 can take part in paracrine or autocrine interactions with adjacent cell surfaces. Our experiments therefore suggest a mechanism for HSP70 secretion and binding to the surface of other cells that may be involved in recognition of the tumor cells by the immune system.  相似文献   

16.
DNA vaccines consisted of tumor-associated antigen (TAA) are well suited for immunotherapy against tumor. The construct can contain TAA fused to an appropriate molecule (biologic adjuvant) to improve the efficacy of anti-tumor immune response. Heat shock protein 70 (HSP70) has been shown to be an excellent candidate, capable of cross-priming TAA by antigen presenting cells leading to a robust T-cell response. However, the relationship between strong T-cell responses and tumor rejection is not always mutually exclusive, for which TAA loss or activation of suppressive mechanisms may occur. HSP70 fused to downstream of Her2/neu as DNA vaccine has been shown to be efficient against Her2-expressing tumors. In this study, we examined if N-terminally fusion of Her2/neu to HSP70 could also improve efficiency of Her2/neu DNA vaccine. Therefore, mice with an established Her2/neu expressing tumor were immunized with DNA vaccine consisting of extracellular and trans-membrane domain (EC+TM) of rat Her2/neu alone or N-terminally fused to HSP70 and immune response was evaluated. Administration of rat Her2/neu led to partial control of tumor progression. Surprisingly, fusion of HSP70 to N-terminal of rat Her2/neu led to tumor progression. Our result proposes that fusion direction of biologic adjuvant is an important consideration when Her2/neu is used.  相似文献   

17.
We recently elucidated a novel function for the 70-kDa heat shock protein (HSP70) as a chaperone and a cytokine, a chaperokine in human monocytes. Here we show that peptide-bearing and peptide-negative HSP70 preparations isolated from EMT6 mammary adenocarcinoma cells (EMT6-HSP70) act as chaperokines when admixed with murine splenocytes. EMT6-HSP70 bound with high affinity to the surface of splenocytes recovered from naive BALB/c mice. The [Ca2+]i inhibitor BAPTA dose dependently inhibited HSP70- but not LPS-induced NF-kappaB activity and subsequent augmentation of proinflammatory cytokine TNF-alpha, IL-1beta, and IL-6 production. Taken together, these results suggest that presence of peptide in the HSP70 preparation is not required for spontaneous activation of cells of the innate immune system.  相似文献   

18.
19.
Inducible heat shock protein70 (HSP70) is one of the most important HSPs for maintenance of cell integrity during normal cellular growth as well as pathophysiological conditions. Apoptosis signal-regulating kinase (ASK) 1, a mammalian MAPKKK, activates the JNK and p38 pathways. Here we report a novel function of HSP70 in regulating TNF-α-induced cell apoptosis. Our study demonstrated that HSP70 physically interacted with ASK1 and promoted the ubiquitin-dependent proteasomal degradation of ASK1. CHIP (carboxyl terminus of the HSC70-interacting protein) which acted as a co-chaperone of HSP70 cooperated with HSP70 in regulating ASK1. We also found that TNF-α stimulated HSP70/CHIP/ASK1 association and through cooperating with CHIP, HSP70 inhibits TNF-α-induced cell apoptosis both in over-expression and RNAi conditions. Structural analysis indicated that C-terminal domain of HSP70 was necessary for ASK1 degradation, and N- terminal domain of ASK1 was essential for its binding to HSP70. All these findings indicated that HSP70 and CHIP association is important for HSP70 in interacting with ASK1. Through forming the complex of HSP70/CHIP/ASK1, HSP70 promotes ASK1 proteasomal degradation and prevents TNF-α-induced cell apoptosis.  相似文献   

20.
Extracellular heat shock protein 70 (HSP70) is recognized by receptors on the plasma membrane, such as Toll-like receptor 4 (TLR4), TLR2, CD14, and CD40. This leads to activation of nuclear factor-kappa B (NF-κB), release of pro-inflammatory cytokines, enhancement of the phagocytic activity of innate immune cells, and stimulation of antigen-specific responses. However, the specific characteristics of HSP70 binding are still unknown, and all HSP70 receptors have not yet been described. Putative models for HSP70 complexation to the receptor for advanced glycation endproducts (RAGEs), considering both ADP- and ATP-bound states of HSP70, were obtained through molecular docking and interaction energy calculations. This interaction was detected and visualized by a proximity fluorescence-based assay in A549 cells and further analyzed by normal mode analyses of the docking complexes. The interacting energy of the complexes showed that the most favored docking situation occurs between HSP70 ATP-bound and RAGE in its monomeric state. The fluorescence proximity assay presented a higher number of detected spots in the HSP70 ATP treatment, corroborating with the computational result. Normal-mode analyses showed no conformational deformability in the interacting interface of the complexes. Results were compared with previous findings in which oxidized HSP70 was shown to be responsible for the differential modulation of macrophage activation, which could result from a signaling pathway triggered by RAGE binding. Our data provide important insights into the characteristics of HSP70 binding and receptor interactions, as well as putative models with conserved residues on the interface area, which could be useful for future site-directed mutagenesis studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号