首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A new aliphatic amidase gene (ami), having a less than 77% level of similarity with the nearest homologs, was identified in the Rhodococcus erythropolis TA37 strain, which is able to hydrolyze a wide range of amides. The amidase gene was cloned within a 3.7 kb chromosomal locus, which also contains putative acetyl-CoA ligase and ABC-type transporter genes. The structure of this locus in the R. erythropolis TA37 strain differs from the structure of loci in other Rhodococcus strains. The amidase gene is expressed in Escherichia coli cells. It was demonstrated that amidase (generated in the recombinant strain) efficiently hydrolyzes acetamide (aliphatic amide) and does not use 4′-nitroacetanilide (N-substituted amide) as a substrate. Insertional inactivation of the amidase gene in the R. erythropolis TA37 strain results in a considerable decrease (by at least 6–7 times) in basal amidase activity, indicating functional amidase activity in the R. erythropolis TA37 strain.  相似文献   

2.
The gene for new Rhodococcus erythropolis TA37 acylamidase, which possesses unique substrate specificity, has been cloned and expressed in E. coli. Substrates for this enzyme are not only simple amides, such as acetamide and propionamide, but also N-substituted amides, such as 4′-nitroacetanilide. The 1431-bp gene was expressed in E. coli BL21 (DE3) cells on pET16b plasmid under the control of a promoter of the ? 10 gene from the T7 phage. The molecular mass of recombinant acylamidase in E. coli was 55 kDa, which corresponded to that of native acylamidase from Rhodococcus erythropolis TA37. Recombinant acylamidase was able to hydrolize N-substituted amides. A search of a nucleotide database and multiple alignment revealed that acylamidase belonged to the Amidase protein family PF01425, but its nucleotide and amino acid sequences differed significantly from those of the described amidases.  相似文献   

3.
利用基因挖掘在数据库中发现一种来自Staphylococcus aureus N315的潜在DERA(SaDERA),将其基因密码子优化后实现了在大肠杆菌中的表达,重组酶经纯化后研究了其催化性质。结果表明:构建的工程菌具有较高的可溶表达量(占总蛋白的70%),通过简单的一步纯化即可得到电泳纯的酶;SaDERA是一种同源二聚体的酶(5.7×104),其最适反应条件是pH 7.7和45℃;SaDERA具有良好的碱耐受性,在pH 11.0、25℃的条件下温浴24 h后仍有93%的残余活力;SaDERA具有良好的乙醛耐受性,在0.3 mol/L乙醛浓度、25℃下,30 min内保持了70%以上的残余活力;乙醛连续自缩合产物被纯化并鉴定,所得产品为两次缩合产物。  相似文献   

4.
A new deoC gene encoding deoxyribose 5-phosphate aldolase (DERA) was identified in Yersinia sp. EA015 isolated from soil. The DERA gene had an open reading frame (ORF) of 672 base pairs encoding 223 amino acids to yield a protein of molecular mass 24.8 kDa. The amino acid sequence was 94% identical to that of DERA from Yersinia intermedia ATCC 29909. DERA was over-expressed in Escherichia coli and purified using Ni–NTA affinity chromatography. The specific activity was 137 μmol/min/mg. The Michaelis constant (km value) of DERA was 9.1 mM. DERA was optimally active at pH 6.0 and 50 °C. DERA was tolerant to a high concentration (300 mM) of acetaldehyde.  相似文献   

5.
Rhodococcus erythropolis strain Y2, isolated from soil by enrichment culture using 1-chlorobutane, was able to utilize a range of halogenated aliphatic compounds as sole sources of carbon and energy. The ability to utilize 1-chlorobutane was conferred by a single halidohydrolase-type haloalkane dehalogenase. The presence of the single enzyme in cell-free extracts was demonstrated by activity strain polyacrylamide gel electrophoresis. The purified enzyme was a monomeric protein with a relative molecular mass of 34 kDa and demonstrated activity against a broad range of haloalkanes, haloalcohols and haloethers. The highest activity was found towards alpha, omega disubstituted chloro- and bromo- C2-C6 alkanes and 4-chlorobutanol. The Km value of the enzyme for 1-chlorobutane was 0.26 mM. A comparison of the R. erythropolis Y2 haloalkane halidohydrolase with other haloalkane dehalogenases is discussed on the basis of biochemical properties and N-terminal amino acid sequence data.  相似文献   

6.
7.
【目的】探讨红串红球菌中一种醇脱氢酶的性质及其对酮酯类及酮类底物的催化能力。【方法】从红串红球菌(Rhodococcus erythropolis ATCC 4277)中获取一段长度为1047 bp的醇脱氢酶(adh)基因,插入载体pET-22b(+)后,在大肠杆菌中进行重组表达。15℃的低温下用自诱导培养基诱导24 h,以苯乙酮为底物测定醇脱氢酶酶活。【结果】测得该诱导条件下重组菌体细胞破碎上清中醇脱氢酶酶活力为2.6 U/mg。经温度、pH耐受性等分析,发现该酶最适pH在6.0-6.5之间,耐受温度可以达到60℃,并且在该温度下保持5 h后,酶活也能保留80%。对于β酮酯类底物的催化反应,以对乙酰乙酸乙酯的催化能力最高。用4-氯乙酰乙酸乙酯(COBE)为底物进行全细胞水相催化反应,经手性液相色谱分析,发现在催化产物以R型4-氯-3羟基丁酸乙酯(CHBE)为主。【结论】该酶在酮酯类的底物转化方面有良好的开发潜力及应用前景。  相似文献   

8.
The gene for an enantioselective amidase was cloned from Rhodococcus erythropolis MP50, which utilizes various aromatic nitriles via a nitrile hydratase/amidase system as nitrogen sources. The gene encoded a protein of 525 amino acids which corresponded to a protein with a molecular mass of 55.5 kDa. The deduced complete amino acid sequence showed homology to other enantioselective amidases from different bacterial genera. The nucleotide sequence approximately 2.5 kb upstream and downstream of the amidase gene was determined, but no indications for a structural coupling of the amidase gene with the genes for a nitrile hydratase were found. The amidase gene was carried by an approximately 40-kb circular plasmid in R. erythropolis MP50. The amidase was heterologously expressed in Escherichia coli and shown to hydrolyze 2-phenylpropionamide, alpha-chlorophenylacetamide, and alpha-methoxyphenylacetamide with high enantioselectivity; mandeloamide and 2-methyl-3-phenylpropionamide were also converted, but only with reduced enantioselectivity. The recombinant E. coli strain which synthesized the amidase gene was shown to grow with organic amides as nitrogen sources. A comparison of the amidase activities observed with whole cells or cell extracts of the recombinant E. coli strain suggested that the transport of the amides into the cells becomes the rate-limiting step for amide hydrolysis in recombinant E. coli strains.  相似文献   

9.
The gene for an enantioselective amidase was cloned from Rhodococcus erythropolis MP50, which utilizes various aromatic nitriles via a nitrile hydratase/amidase system as nitrogen sources. The gene encoded a protein of 525 amino acids which corresponded to a protein with a molecular mass of 55.5 kDa. The deduced complete amino acid sequence showed homology to other enantioselective amidases from different bacterial genera. The nucleotide sequence approximately 2.5 kb upstream and downstream of the amidase gene was determined, but no indications for a structural coupling of the amidase gene with the genes for a nitrile hydratase were found. The amidase gene was carried by an approximately 40-kb circular plasmid in R. erythropolis MP50. The amidase was heterologously expressed in Escherichia coli and shown to hydrolyze 2-phenylpropionamide, α-chlorophenylacetamide, and α-methoxyphenylacetamide with high enantioselectivity; mandeloamide and 2-methyl-3-phenylpropionamide were also converted, but only with reduced enantioselectivity. The recombinant E. coli strain which synthesized the amidase gene was shown to grow with organic amides as nitrogen sources. A comparison of the amidase activities observed with whole cells or cell extracts of the recombinant E. coli strain suggested that the transport of the amides into the cells becomes the rate-limiting step for amide hydrolysis in recombinant E. coli strains.  相似文献   

10.
A codon-optimized 2-deoxyribose-5-phosphate aldolase (DERA) gene was newly synthesized and expressed in Escherichia coli to investigate its biochemical properties and applications in synthesis of statin intermediates. The expressed DERA was purified and characterized using 2-deoxyribose-5-phosphate as the substrate. The specific activity of recombinant DERA was 1.8 U/mg. The optimum pH and temperature for DERA activity were pH 7.0 and 35 °C, respectively. The recombinant DERA was stable at pH 4.0–7.0 and at temperatures below 50 °C. The enzyme activity was inhibited by 1 mM of Ni2+, Ba2+ and Fe2+. The apparent K m and V max values of purified enzyme for 2-deoxyribose-5-phosphate were 0.038 mM and 2.9 μmol min?1 mg?1, for 2-deoxyribose were 0.033 mM and 2.59 μmol min?1 mg?1, respectively, which revealed that the enzyme had similar catalytic efficiency towards phosphorylated and non-phosphorylated substrates. To synthesize statin intermediates, the bioconversion process for production of (3R, 5S)-6-chloro-2,4,6-trideoxyhexose from chloroacetaldehyde and acetaldehyde by the recombinant DERA was developed and a conversion of 94.4 % was achieved. This recombinant DERA could be a potential candidate for application in production of (3R, 5S)-6-chloro-2,4,6-trideoxyhexose.  相似文献   

11.
Amidase was a crucial enzyme responsible for the conversion of acrylamide to acrylic acid in Rhodococcus erythropolis. Its coding gene ami was amplified by PCR using the genomic DNA of R. erythropolis as template. Subsequently, it was ligated to expression plasmids and transformed in Escherichia coli and Bacillus subtilis. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis revealed that both recombinant E. coli BL21 (DE3) and B. subtilis generated amidase of 56 kDa. The expression mass and enzyme activity suggested that B. subtilis was more suitable as a host when ami gene was under the control of a powerful promoter. To further study the expression effect of different promoters in B. subtilis, five distinct promoters (sacB, amyE, p43, degQ, aprE) and their native signal peptide genes were employed to separately construct five different vectors harboring ami gene. Of the five novel vectors, the amyE promoter along with its native signal peptide gene was most effective. The maximum specific activity of amidase at pH 7.0 and 37 °C was about 8.7 U/mg and the conversion efficiency could approximately reach 90% within 6 h. This result indicated the expression difference of distinct promoters, which provided the basis for the forthcoming research.  相似文献   

12.
A total of 33 mutant strains of Salmonella typhimurium deficient in deoxyribose 5-phosphate activity have been isolated and characterized as missense or nonsense. Three-factor transductional analyses of the mutants were used to construct a fine structure map of the deoC gene, which codes for a peptide of 28,500 molecular weight. An unusual clustering of the missense mutants was observed, where 75% of all the missense mutants mapped in an area which corresponds to 19% of the total gene length. It is suggested that this area of the protein is particularly sensitive to amino acid replacements but that other areas of the protein are reasonably tolerant of such changes. Nonsense mutations are found scattered throughout the gene. This is expected since the carboxyl-terminal tyrosine is essential for enzymatic activity.  相似文献   

13.
Phenol hydroxylase that catalyzes the conversion of phenol to catechol in Rhodococcus erythropolis UPV-1 was identified as a two-component flavin-dependent monooxygenase. The two proteins are encoded by the genes pheA1 and pheA2, located very closely in the genome. The sequenced pheA1 gene was composed of 1,629 bp encoding a protein of 542 amino acids, whereas the pheA2 gene consisted of 570 bp encoding a protein of 189 amino acids. The deduced amino acid sequences of both genes showed high homology with several two-component aromatic hydroxylases. The genes were cloned separately in cells of Escherichia coli M15 as hexahistidine-tagged proteins, and the recombinant proteins His6PheA1 and His6PheA2 were purified and its catalytic activity characterized. His6PheA1 exists as a homotetramer of four identical subunits of 62 kDa that has no phenol hydroxylase activity on its own. His6PheA2 is a homodimeric flavin reductase, consisting of two identical subunits of 22 kDa, that uses NAD(P)H in order to reduce flavin adenine dinucleotide (FAD), according to a random sequential kinetic mechanism. The reductase activity was strongly inhibited by thiol-blocking reagents. The hydroxylation of phenol in vitro requires the presence of both His6PheA1 and His6PheA2 components, in addition to NADH and FAD, but the physical interaction between the proteins is not necessary for the reaction.  相似文献   

14.
Organic solvent extracts of whole cells of the gram-positive bacterium Rhodococcus erythropolis contain a channel-forming protein. It was identified by lipid bilayer experiments and purified to homogeneity by preparative sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE). The pure protein had a rather low molecular mass of about 8.4 kDa, as judged by SDS-PAGE. SDS-resistant oligomers with a molecular mass of 67 kDa were also observed, suggesting that the channel is formed by a protein oligomer. The monomer was subjected to partial protein sequencing, and 45 amino acids were resolved. According to the partial sequence, the sequence has no significant homology to known protein sequences. To check whether the channel was indeed localized in the cell wall, the cell wall fraction was separated from the cytoplasmic membrane by sucrose step gradient centrifugation. The highest channel-forming activity was found in the cell wall fraction. The purified protein formed large ion-permeable channels in lipid bilayer membranes with a single-channel conductance of 6.0 nS in 1 M KCl. Zero-current membrane potential measurements with different salts suggested that the channel of R. erythropolis was highly cation selective because of negative charges localized at the channel mouth. The correction of single-channel conductance data for negatively charged point charges and the Renkin correction factor suggested that the diameter of the cell wall channel is about 2.0 nm. The channel-forming properties of the cell wall channel of R. erythropolis were compared with those of other members of the mycolata. These channels have common features because they form large, water-filled channels that contain net point charges.  相似文献   

15.
Abstract

The demand to repair areas contaminated with hydrocarbon products has led to the development of new technologies for the treatment of contaminants in an unconventional method, that is, no physical or chemical methods are used. Biosurfactants are amphiphilic biomolecules produced by microorganisms that can be used in environments contaminated by petroleum products due to their unexceptionable tensile properties. Petroleum degrading strain Rhodococcus erythropolis HX-2 was found to be an effective producer of biosurfactants. The resulting biosurfactant (named NK) exhibits high physicochemical properties in terms of surface activity. It is capable of reducing surface tension from 54.99 to 28.89?mN/m and critical micelle concentration (CMC) is 100?mg/L. NK was found to be a substitute for chemically synthesized surfactants because of its higher solubilization efficiency for petroleum and polycyclic aromatic hydrocarbons, superior to SDS, Tween 80, Triton X-100 and Rhamnolipid (a wide used biosurfactant). In addition, it exhibits favorable emulsion stability over a wide range of pH (3–10), temperature (20–100?°C) and salinity ranges (5–20?g/L). It was found that the addition of biosurfactant can improve the efficiency of petroleum degradation, therefore it has potential applications in bioremediation.
  • Highlights
  • Rhodococcus erythropolis HX-2 is an effective petroleum degrading strain.

  • HX-2 is a potential source of biosurfactant production.

  • The biosurfactant NK reduces surface tension and exhibits high emulsification activity.

  • The biosurfactant NK is effective over a wide range of temperatures, pH and salinity.

  • The biosurfactant NK shows high solubilization efficiency for petroleum as well as polycyclic aromatic hydrocarbons.

  相似文献   

16.

2-Deoxy-d-ribose-5-phosphate aldolase (DERA) is a class I aldolase that offers access to several building blocks for organic synthesis. It catalyzes the stereoselective C–C bond formation between acetaldehyde and numerous other aldehydes. However, the practical application of DERA as a biocatalyst is limited by its poor tolerance towards industrially relevant concentrations of aldehydes, in particular acetaldehyde. Therefore, the development of proper experimental conditions, including protein engineering and/or immobilization on appropriate supports, is required. The present review is aimed to provide a brief overview of DERA, its history, and progress made in understanding the functioning of the enzyme. Furthermore, the current understanding regarding aldehyde resistance of DERA and the various optimizations carried out to modify this property are discussed.

  相似文献   

17.
To develop a transposable element-based system for mutagenesis in Rhodococcus, we used the sacB gene from Bacillus subtilis to isolate a novel transposable element, IS1676, from R. erythropolis SQ1. This 1693 bp insertion sequence is bounded by imperfect (10 out of 13 bp) inverted repeats and it creates 4 bp direct repeats upon insertion. Comparison of multiple insertion sites reveals a preference for the sequence 5′-(C/T)TA(A/G)-3′ in the target site. IS1676 contains a single, large (1446 bp) open reading frame with coding potential for a protein of 482 amino acids. IS1676 may be similar to an ancestral transposable element that gave rise to repetitive sequences identified in clinical isolates of Mycobacteriumkansasii. Derivatives of IS1676 should be useful for analysis of Rhodococcus strains, for which few other genetic tools are currently available. Received: 1 April 1999 / Received revision: 6 July 1999 / Accepted: 1 August 1999  相似文献   

18.
Genes encoding 2-deoxy-d-ribose-5-phosphate aldolase (DERA) homologues from two hyperthermophiles, the archaeon Pyrobaculum aerophilum and the bacterium Thermotoga maritima, were expressed individually in Escherichia coli, after which the structures and activities of the enzymes produced were characterized and compared with those of E. coli DERA. To our surprise, the two hyperthermophilic DERAs showed much greater catalysis of sequential aldol condensation using three acetaldehydes as substrates than the E. coli enzyme, even at a low temperature (25 degrees C), although both enzymes showed much less 2-deoxy-d-ribose-5-phosphate synthetic activity. Both the enzymes were highly resistant to high concentrations of acetaldehyde and retained about 50% of their initial activities after a 20-h exposure to 300 mM acetaldehyde at 25 degrees C, whereas the E. coli DERA was almost completely inactivated after a 2-h exposure under the same conditions. The structure of the P. aerophilum DERA was determined by X-ray crystallography to a resolution of 2.0 A. The main chain coordinate of the P. aerophilum enzyme monomer was quite similar to those of the T. maritima and E. coli enzymes, whose crystal structures have already been solved. However, the quaternary structure of the hyperthermophilic enzymes was totally different from that of the E. coli DERA. The areas of the subunit-subunit interface in the dimer of the hyperthermophilic enzymes are much larger than that of the E. coli enzyme. This promotes the formation of the unique dimeric structure and strengthens the hydrophobic intersubunit interactions. These structural features are considered responsible for the extremely high stability of the hyperthermophilic DERAs.  相似文献   

19.
20.
Ratnikova  M. S.  Titok  M. A. 《Microbiology》2020,89(4):435-442
Microbiology - The application of restriction analysis of amplification products of the genes rpoC and alkB, encoding the synthesis of the DNA-dependent RNA polymerase β'-subunit and...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号