首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mitochondrial tricarboxylate carrier (TCC) plays an important role in lipogenesis being TCC-responsible for the efflux from the mitochondria to the cytosol of acetyl-CoA, the primer for fatty acid synthesis. In this study, we investigated the effects of two high-fat diets with different fatty acid composition on the hepatic TCC activity. Rats were fed for 3 weeks on a basal diet supplemented with 15% of either coconut oil (CO), abundant in medium-chain saturated fatty acids, or fish oil (FO), rich in n-3 polyunsaturated fatty acids. Mitochondrial fatty acid composition was differently influenced by the dietary treatments, while no appreciable change in phospholipid composition and cholesterol level was observed. Compared with CO, the TCC activity was markedly decreased in liver mitochondria from FO-fed rats; kinetic analysis of the carrier revealed a decrease of the Vmax, with no change of the Km. No difference in the Arrhenius plot between the two groups was observed. Interestingly, the carrier protein level and the corresponding mRNA abundance decreased following FO treatment. These data indicate that FO administration markedly decreased the TCC activity as compared with CO. This effect is most likely due to a reduced gene expression of the carrier protein.  相似文献   

2.
Krill oil (KO) is a dietary source of n-3 polyunsaturated fatty acids, mainly represented by eicosapentaenoic acid and docosahexaenoic acid bound to phospholipids. The supplementation of a high-fat diet with 2.5% KO efficiently prevented triglyceride and cholesterol accumulation in liver of treated rats. This effect was accompanied by a parallel reduction of the plasma levels of triglycerides and glucose and by the prevention of a plasma insulin increase. The investigation of the molecular mechanisms of KO action in high-fat fed animals revealed a strong decrease in the activities of the mitochondrial citrate carrier and of the cytosolic acetyl-CoA carboxylase and fatty acid synthetase, which are both involved in hepatic de novo lipogenesis. In these animals a significant increase in the activity of carnitine palmitoyl-transferase I and in the levels of carnitine was also observed, suggesting a concomitant stimulation of hepatic fatty acid oxidation. The KO supplemented animals also retained an efficient mitochondrial oxidative phosphorylation, most probably as a consequence of a KO-induced arrest of the uncoupling effects of a high-fat diet. Lastly, the KO supplementation prevented an increase in body weight, as well as oxidative damage of lipids and proteins, which is often found in high-fat fed animals.  相似文献   

3.
We investigated the effects of dietary fat energy restriction and fish oil intake on glucose and lipid metabolism in female KK mice with high-fat (HF) diet-induced obesity. Mice were fed a lard/safflower oil (LSO50) diet consisting of 50 energy% (en%) lard/safflower oil as the fat source for 12 weeks. Then, the mice were fed various fat energy restriction (25 en% fat) diets — LSO, FO2.5, FO12.5 or FO25 — containing 0, 2.5, 12.5, or 25 en% fish oil, respectively, for 9 weeks. Conversion from a HF diet to each fat energy restriction diet significantly decreased final body weights and visceral and subcutaneous fat mass in all fat energy restriction groups, regardless of fish oil contents. Hepatic triglyceride and cholesterol levels markedly decreased in the FO12.5 and FO25 groups, but not in the LSO group. Although plasma insulin levels did not differ among groups, the blood glucose areas under the curve in the oral glucose tolerance test were significantly lower in the FO12.5 and FO25 groups. Real-time polymerase chain reaction analysis showed fatty acid synthase mRNA levels significantly decreased in the FO25 group, and stearoyl-CoA desaturase 1 mRNA levels markedly decreased in the FO12.5 and FO25 groups. These results demonstrate that body weight gains were suppressed by dietary fat energy restriction even in KK mice with HF diet-induced obesity. We also suggested that the combination of fat energy restriction and fish oil feeding decreased fat droplets and ameliorated hepatic hypertrophy and insulin resistance with suppression of de novo lipogenesis in these mice.  相似文献   

4.
An ethanol extract of fucoxanthin-rich seaweed was examined for its effectiveness as a nutraceutical for body fat-lowering agent and for an antiobese effect based on mode of actions in C57BL/6J mice. Animals were randomized to receive a semi-purified high-fat diet (20% dietary fat, 10% corn oil and 10% lard) supplemented with 0.2% conjugated linoleic acid (CLA) as the positive control, 1.43% or 5.72% fucoxanthin-rich seaweed ethanol extract (Fx-SEE), equivalent to 0.05% or 0.2% dietary fucoxanthin for six weeks. Results showed that supplementation with both doses of Fx-SEE significantly reduced body and abdominal white adipose tissue (WAT) weights, plasma and hepatic triglyceride (TG), and/or cholesterol concentrations compared to the high-fat control group. Activities of adipocytic fatty acid (FA) synthesis, hepatic FA and TG synthesis, and cholesterol–regulating enzyme were also lowered by Fx-SEE supplement. Concentrations of plasma high-density lipoprotein-cholesterol, fecal TG and cholesterol, as well as FA oxidation enzyme activity and UCP1 mRNA expression in epididymal WAT were significantly higher in the Fx-SEE groups than in the high-fat control group. CLA treatment reduced the body weight gain and plasma TG concentration. Overall, these results indicate that Fx-SEE affects the plasma and hepatic lipid profile, fecal lipids and body fat mass, and alters hepatic cholesterol metabolism, FA synthesis and lipid absorption.  相似文献   

5.
6.
7.
The purpose of the study was to investigate the effect of flaxseed oil (FO), rich in alpha-linolenic acid (ALA) (18:3 n-3) on growth parameters and lipid metabolism of rats fed with high fat diet. High fat diet (HFD) resulted in significant alterations in hepatic lipids, increase in body weight gain and negative effect on lipoprotein metabolism. FO supplementation significantly lowered the increase in body weight gain, liver weight, plasma cholesterol, triglycerides, phospholipids, free fatty acids, high-density lipoprotein (HDL), low-density lipoprotein-cholesterol (LDL-C), very low-density lipoprotein (VLDL), LDL/HDL and TC/HDL ratio in HFD fed rats. FO significantly reduced the hepatic and plasma lipid levels indicating its hypolipidemic activity. On the other hand, oral administration of FO exhibited lower plasma lipoprotein profile as compared to HFD rats. Hepatic protection by FO is further substantiated by the normal liver histological findings in HFD fed rats. These data suggest that FO participate in the normal regulation of plasma lipid concentration and cholesterol metabolism in liver. No adverse effect of FO on growth parameters and plasma lipids in rats fed with fat-free diet. The results of the present study demonstrate that FO may be developed as a useful therapy for hyperlipidemia through reducing hepatic lipids, thereby proving its hypolipidemic activity.  相似文献   

8.
Male Fischer 344 rats implanted with a methylcholanthrene-induced sarcoma (MCS), along with normal (or control) animals, were fed diets containing either 10% com oil (CO) or 2% CO + 8% fish oil (FO), designated as diets CO and FO, respectively, in a study designed to determine the effect of dietary FO on serum lipids (in the presence or absence of a tumor) and the growth and fatty acid composition of the MCS. For both diets, MCS-bearing rats had significantly (p < 0.05) higher serum levels of triglycerides, cholesterol, phospholipids, and total lipids than controls. For both controls and tumor-bearers, serum levels of all these lipids were, with the exception of cholesterol for the tumorbearers, significantly lower in rats receiving the FO diet than for the corresponding groups receiving the CO diet. Relative to rats fed the CO diet, those fed the FO diet had significantly higher serum levels of some fatty acids (e.g., 20:5n-3) but significantly lower levels of others (e.g., 18:2n-6), regardless of tumor status. For the tumor-bearers, differences in the levels of fatty acids in MCS tissue reflected differences in the fatty acid composition of total serum lipids. Sarcoma growth was unaffected by diet. Thus, feeding dietary FO resulted in changes in the lipid status of both control and tumor-bearing rats. Since sarcoma growth was unaffected by diet, the reduction in the severity of MCS-induced hyperlipidemia by FO appears to be due to an effect of the oil per se.  相似文献   

9.
We examined the effects of fish oil (FO) on high-cholesterol diet-induced hepatic lipid accumulation and oxidative stress. Female C57BL/6J mice were fed diets consisting of safflower oil (SO), 1 en% FO (1FO), 2 en% FO (2FO), or 20 en% FO (20FO) with or without 2 weight% (wt%) cholesterol (SO/CH, 1FO/CH, 2FO/CH, and 20FO/CH groups, respectively) for 8 weeks. The hepatic triacylglyceride levels were significantly lower in the 2FO/CH and 20FO/CH groups than in the SO/CH group. The hepatic mRNAs of fatty acid oxidation-related genes were upregulated and the fatty acid synthesis-related genes were downregulated by the FO feeding. Adverse effects were not observed in the plasma levels of indicators of oxidative stress in response to the consumption of FO up to 20 en%. These results suggest that FO consumption in the range of 2–20 en% prevents hepatic lipid accumulation, thus improving lipid metabolism without causing oxidative stress.  相似文献   

10.
Reduction of stearoyl CoA desaturase (SCD) activity has been shown to induce resistance to diet-induced obesity in mice. In the present study, SCD was inhibited by feeding sterculic oil (SO) to male Golden Syrian Hamsters fed high-fat diets with or without added dietary cholesterol. In the absence of cholesterol, SO had little impact on adipose tissue mass or plasma lipoprotein concentrations. When cholesterol was included in the diet, inhibition of SCD resulted in reduced body weight, adipose tissue mass, and feed efficiency. These animals also exhibited a marked hypercholesterolemia, with an accumulation of free-cholesterol-rich particles within the LDL density range, and reduced hepatic cholesterol esterification. This was accompanied by a 20-fold increase in plasma alanine aminotransferase, which was suggestive of significant hepatic damage. Hepatic acetyl CoA carboxylase and fatty acid synthase mRNA concentrations were reduced by feeding cholesterol and SO, whereas lipoprotein lipase and SCD mRNA were increased. These changes were associated with decreased hepatic sterol regulatory element binding protein 1a and 1c mRNA concentrations. Thus, inhibition of SCD activity in the cholesterol-fed hamster results in a reduction in overall body weight and adipose tissue deposition. However, this also causes marked hypercholesterolemia and potential liver damage.  相似文献   

11.
Non-alcoholic fatty liver disease (NAFLD), the hepatic manifestation of the metabolic syndrome, can progress to steatohepatitis (NASH) and advanced liver disease. Mechanisms that underlie this progression remain poorly understood, partly due to lack of good animal models that resemble human NASH. We previously showed that several metabolic syndrome features that develop in LDL receptor-deficient (LDLR-/-) mice fed a diabetogenic diet are worsened by dietary cholesterol. To test whether dietary cholesterol can alter the hepatic phenotype in the metabolic syndrome, we fed LDLR-/- mice a high-fat, high-carbohydrate diabetogenic diet (DD) without or with added cholesterol (DDC). Both groups of mice developed obesity and insulin resistance. Hyperinsulinemia, dyslipidemia, hepatic triglyceride, and alanine aminotransferase (ALT) elevations were greater with DDC. Livers of DD-fed mice showed histological changes resembling NAFLD, including steatosis and modest fibrotic changes; however, DDC-fed animals developed micro- and macrovesicular steatosis, inflammatory cell foci, and fibrosis resembling human NASH. Dietary cholesterol also exacerbated hepatic macrophage infiltration, apoptosis, and oxidative stress. Thus, LDLR-/- mice fed diabetogenic diets may be useful models for studying human NASH. Dietary cholesterol appears to confer a second "hit" that results in a distinct hepatic phenotype characterized by increased inflammation and oxidative stress.  相似文献   

12.
Peroxisome proliferator-activated receptors (PPARs) are important in the regulation of lipid and glucose metabolism. Recent studies have shown that PPARα-activation by WY 14,643 regulates the metabolism of amino acids. We investigated the effect of PPAR activation on plasma amino acid levels using two PPARα activators with different ligand binding properties, tetradecylthioacetic acid (TTA) and fish oil, where the pan-PPAR agonist TTA is a more potent ligand than omega-3 polyunsaturated fatty acids. In addition, plasma L-carnitine esters were investigated to reflect cellular fatty acid catabolism. Male Wistar rats (Rattus norvegicus) were fed a high-fat (25% w/w) diet including TTA (0.375%, w/w), fish oil (10%, w/w) or a combination of both. The rats were fed for 50 weeks, and although TTA and fish oil had hypotriglyceridemic effects in these animals, only TTA lowered the body weight gain compared to high fat control animals. Distinct dietary effects of fish oil and TTA were observed on plasma amino acid composition. Administration of TTA led to increased plasma levels of the majority of amino acids, except arginine and lysine, which were reduced. Fish oil however, increased plasma levels of only a few amino acids, and the combination showed an intermediate or TTA-dominated effect. On the other hand, TTA and fish oil additively reduced plasma levels of the L-carnitine precursor γ-butyrobetaine, as well as the carnitine esters acetylcarnitine, propionylcarnitine, valeryl/isovalerylcarnitine, and octanoylcarnitine. These data suggest that while both fish oil and TTA affect lipid metabolism, strong PPARα activation is required to obtain effects on amino acid plasma levels. TTA and fish oil may influence amino acid metabolism through different metabolic mechanisms.  相似文献   

13.
Rats were fed a low-fat diet containing 2% safflower oil or 20% fat diets containing either safflower oil rich in linoleic acid, borage oil containing 25% gamma (gamma)-linolenic acid or enzymatically prepared gamma-linolenic acid enriched borage oil containing 47% gamma-linolenic acid for 14 days. Energy intake and growth of animals were the same among groups. A high safflower oil diet compared with a low-fat diet caused significant increases in both epididymal and perirenal white adipose tissue weights. However, high-fat diets rich in gamma-linolenic acid failed to do so. Compared with a low-fat diet, all the high-fat diets increased mRNA levels of uncoupling protein 1 and lipoprotein lipase in brown adipose tissue. The extents of the increase were greater with high-fat diets rich in gamma-linolenic acid. Various high-fat diets, compared with a low-fat diet, decreased glucose transporter 4 mRNA in white adipose tissue to the same levels. The amount and types of dietary fat did not affect the leptin mRNA level in epididymal white adipose tissue. However, a high safflower oil diet, but not high-fat diets rich in gamma-linolenic acid relative to a low-fat diet, increased perirenal white adipose tissue leptin mRNA levels. All high-fat diets, relative to a low-fat diet, increased the hepatic mitochondrial fatty acid oxidation rate and fatty acid oxidation enzyme mRNA abundances to the same levels. High-fat diets also increased these parameters in the peroxisomal pathway, and the increases were greater with high-fat diets rich in gamma-linolenic acid. The physiological activity in increasing brown adipose tissue gene expression and peroxisomal fatty acid oxidation was similar between the two types of borage oil differing in gamma-linolenic acid content. It was suggested that dietary gamma-linolenic acid attenuates body fat accumulation through the increase in gene expressions of uncoupling protein 1 in brown adipose tissue. An increase in hepatic peroxisomal fatty acid oxidation may also contribute to the physiological activity of gamma-linolenic acid in decreasing body fat mass.  相似文献   

14.
Rats were fed diets that differed in fatty acid composition or in the proportion of energy derived from fat to determine if alteration of dietary fat intake influences the structural lipid composition of liver plasma membrane and the expression of an associated hormone-receptor-mediated function. Weanling rats were fed 9% (w/w) or 20% (w/w) low-erucic acid rape-seed oil or 9% (w/w) soya-bean oil for 24 days. Plasma membranes were isolated and the effect of diet fat on the fatty acid composition of phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol and sphingomyelin was determined. Diet fat significantly altered total saturated and (omega-9) and (omega-6)-unsaturated fatty acid composition in addition to the (omega-6)- to (omega-3)-unsaturated fatty acid ratio in these polar lipids. Feeding the high-fat diet increased the (omega-6)- to (omega-3)-unsaturated fatty acid ratio and the (omega-9)-unsaturated fatty acid content in all lipids except sphingomyelin. Assay of glucagon-stimulated adenylate cyclase activity at both high and low glucagon concentrations indicated that high-fat intake also decreased cyclic AMP formation. In a second experiment the fat intake was held constant (40% of energy) and oleic acid was substituted for linoleic acid by blending high- and low-linoleic acid-type safflower oils. This experiment established that a dose-response relationship exists between dietary intake of fatty acid and the fatty acid composition of plasma-membrane phospholipids. Specific diet-induced transitions in membrane phospholipid fatty acid composition were paralleled by changes in glucagon-stimulated adenylate cyclase activity. This study suggests that transitions in dietary fat intake can alter a hormone-receptor-mediated enzyme function in vivo by changing the surrounding lipid environment.  相似文献   

15.
The effects were examined of the dietary level of fat on the activity of inducible nitric oxide synthase (iNOS) in the liver of rats. In experiment 1, rats were fed on a diet containing 5% or 20% beef tallow or safflower oil for 32 d. The animals were given a subcutaneous injection of the carcinogen, 1,2-dimethylhydrazine (DMH), on d 4. The activity of hepatic iNOS was significantly elevated by the high-fat diet, but was unaffected by the dietary source of the fat examined. In experiment 2, rats were fed on a 5% or 20% beef tallow diet for 11 d or 32 d with or without the DMH treatment. Feeding the high-fat diet and DMH treatment caused higher activity of hepatic iNOS. In experiment 3, the high-fat diet elevated hepatic iNOS activity and the amount of its protein in the lipopolysaccharide-treated rats. The results suggest that hepatic NO production is enhanced by a high-fat diet.  相似文献   

16.
17.
18.
We have investigated the effects of a 3-thia fatty acid (TTA) and of temperature on the fatty acid (FA) metabolism of Atlantic salmon (Salmo salar). One experiment investigated the activity of the peroxisomal beta-oxidation enzyme, acyl-CoA oxidase (ACO), and the incorporation of TTA into phospholipid (PL) molecular species. Salmon hepatocytes in culture were incubated either without TTA (control(spades)) or with 0.8 mM TTA (TTA(spades)) in a short term (48 h) temperature study at 5 degrees C and at 12 degrees C. TTA was incorporated into the four PL classes studied: phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI) and phosphatidylserine (PS). TTA was preferentially esterified with 18:1, 16:1, 20:4 and 22:6 in the PLs. Hepatocytes incubated with TTA had higher ACO activity at 5 degrees C than at 12 degrees C. In a second experiment salmon were fed a diet based on fish meal-fish oil without any TTA added (control) or a fish meal-fish oil diet supplemented with 0.6% TTA for 8 weeks at 12 degrees C and 20 weeks at 5 degrees C. At the end of the feeding trial, hepatocytes from fish acclimated to high or low temperatures were isolated from both dietary groups and incubated with either [1-(14)C]18:1 n-9 or [1-(14)C]20:4 n-3 at 5 degrees C or 12 degrees C. Radiolabelled 18:1 n-9 was mainly esterified into neutral lipids (NL), whereas [1-(14)C]20:4 n-3 was mainly esterified into PL at both temperatures. The rate of elongation of [1-(14)C]18:1 n-9 to 20:1 n-9 was twice as high in hepatocytes from fish fed the control diet than it was in hepatocytes from fish fed the TTA diet, at both temperatures. The amount of [1-(14)C]20:4 n-3 converted to 22:6 n-3 was approximately the same in hepatocytes from the two dietary groups, but there was a tendency to higher production of 22:6 n-3 at the lower temperature. Oxidation of [1-(14)C]18:1 n-9 to acid soluble products (ASP) and CO(2) was approximately 10-fold greater in hepatocytes kept at 5 degrees C than in those kept at 12 degrees C and the main oxidation products formed were acetate, oxaloacetate and malate.  相似文献   

19.
20.
Hypertension is associated with greater than normal lipoperoxidation and an imbalance in antioxidant status, suggesting that oxidative stress is important in the pathogenesis of this disease. Although many studies have examined the effect of antioxidants in the diet on hypertensión and other disorders, less attention has been given to the evaluation of the role of specific dietary lipids in modulating endogenous antioxidant enzyme status. Previously, we have described that liver antioxidant enzyme activities may be modulated by consumption of different oils in normotensive rats. The purpose of the present study was to examine the effects of feeding different lipidic diets (olive oil, OO, high-oleic-acid sunflower oil, HOSO, and fish oil, FO) on liver antioxidant enzyme activities of spontaneously hypertensive rats (SHR). Plasma and liver lipid composition was also studied. Total triacylglycerol concentration increases in plasma and liver of animals fed on the HOSO and OO diets and decreases in those fed on the FO diet, relative to rats fed the control diet. The animals fed on the oil-enriched diet show similar hepatic cholesterol and phospholipid contents, which are higher than the control group. Consumption of the FO diet results in a decrease in the total cholesterol and phospholipid concentration in plasma, compared with the high-oleic-acid diets. In liver, the FO group show higher levels of polyunsaturated fatty acids (PUFA) of the (n-3) series, in relation to the animals fed on the diets enriched in oleic acid. Livers of FO-fed rats, compared with those of OO- and HOSO-fed rats showed: (i) significantly higher activities of catalase, glutathione peroxidase and Cu/Zn superoxide dismutase; (ii) no differences in the NADPH-cytochrome c reductase activity. The HOSO diet had a similar effect on liver antioxidant enzyme activities as the OO diet. In conclusion, it appears that changes in the liver fatty acid composition due mainly to n-3 lipids may enhance the efficiency of the antioxidant defence system and may yield a benefit in the hypertension status. The two monounsaturated fatty acids oils studied (OO and HOSO), with the same high content of oleic acid, but different content of natural antioxidants, had similar effects on the antioxidant enzyme activities studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号