首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Radical ion pairs generated by photoinduced electron transfer may undergo return electron transfer (RET) in pairs of singlet or triplet multiplicity. RET efficiencies are determined by the free energy of RET and the topologies of the potential surfaces of parent molecule, radical ion and triplet state. If radical ion geometries are different from the corresponding triplet states, RET occurs either with cleavage ("dissociative" RET; 1,2-diphenylcyclopropane radical cations) or formation of C-C bonds ("associative" RET; norbornadiene radical cation). Radical ions of some strained ring compounds spontaneously undergo ring-opening; RET to such species form ring-opened triplets without major geometry changes. CIDNP spectroscopy offers unique insights into triplet RET.  相似文献   

2.
Photoinduced electron transfer processes between fullerenes (C60) and four phenothiazine derivatives (PTZs) in the absence and presence of hexylviologen dication (HV2+) have been studied by the transient absorption method in the visible and near-IR regions. Electron-transfer takes place from PTZs to the triplet states of fullerenes (3C60*) giving the radical anion of fullerenes (C60.-) and the radical cations of PTZs (PTZ.+). The rate constants and efficiencies of electron transfer are quite high, because of the high electron-donor abilities of PTZs as elucidated by their low oxidation potentials. On addition of HV2+ to the C60 and PTZ systems, the electron-mediating process occurs from C60.- to HV2+, yielding the viologen radical cation (HV.+). In the presence of a sacrificial donor, HV.+ persisted for a long time.  相似文献   

3.
EPR characteristics of transient paramagnetic states photoinduced in isolated reaction centers of Rhodobacter sphaeroides R26 with intact electron transfer have been studied. It was demonstrated that the detected weak triplet state EPR signal belongs to the primary donor molecule and is populated via the conventional mechanism of radical pair S-T0 mixing. The distortion of the spectral shape of this signal is explained by the triplet quantum yield anisotropy brought about by the short lifetime of precursor radical pairs. The angular dependence of the anisotropy was evaluated. It was shown that the spectral shape of the triplet state of photosystem II reaction center observed in the case of singly-reduced primary quinone acceptor can also be described by the anisotropic quantum yield of the triplet, with practically the same angular dependence. These properties confirm the conclusions on the mechanism of photoinduced electron transfer in photosystem II, made in previous publications. The peculiarities in the functioning of photosystem II reaction centers are probably determined by strict limitations on the triplet state generation.  相似文献   

4.
EPR characteristics of transient paramagnetic states photoinduced in isolated reaction centers of Rhodobacter sphaeroides R26 with intact electron transfer have been studied. It was demonstrated that the detected weak triplet state EPR signal belongs to the primary donor molecule and is populated via the conventional mechanism of radical pair S-T0 mixing. The distortion of the spectral shape of this signal is explained by the triplet quantum yield anisotropy brought about by the short lifetime of precursor radical pairs. The angular dependence of the anisotropy was evaluated. It was shown that the spectral shape of the triplet state of photosystem II reaction center observed in the case of singly-reduced primary quinone acceptor can also be described by the anisotropic quantum yield of the triplet, with practically the same angular dependence. These properties confirm the conclusions on the mechanism of photoinduced electron transfer in photosystem II, made in previous publications. The peculiarities in the functioning of photosystem II reaction centers are probably determined by strict limitations on the triplet state generation.  相似文献   

5.
Photoinduced electron transfer generates radical pairs which recombine with 10(-9)10(-8)s by electron back-transfer to either singlet or triplet products. The product distribution determined by the spin motion of the unpaired electrons in the radical pairs is affected by external magnetic fields. The analysis of the magnetic field effect furnishes new information about electron transfer processes. Light-induced electron transfer in polar solvents and in the bacterial photosynthetic reaction center are discussed as examples.  相似文献   

6.
光合系统反应中心普遍存在电荷复合反应形成三线态分子的过程,并通过所形成的三线态β-胡萝卜素将剩余的能量经无辐射通道耗散给环境,实现光合系统的光保护功能.这一过程在人工合成系统中十分罕见,见诸报道的仅有少数由给体-受体组成的超分子体系.首次报道应用染料敏化TiO2胶体颗粒的人工太阳能电池反应,模拟光合系统三线态分子的形成过程,成功地观测到了视黄酸自由基正离子与TiO2表面束缚电子复合而形成的三线态视黄酸分子,并对其光谱和动力学过程进行了纳秒时间分辨光谱表征.  相似文献   

7.
Nanosecond laser flash photolysis and pulse radiolysis were used to generate and characterize the triplet state and cation radical of C-phycocyanin (C-PC) from Spirulina platensis. The transient absorption spectra of C-PC were measured from direct excitation and acetone sensitization in aqueous solution at room temperature by KrF (248 nm) laser flash photolysis. Laser-induced transient species have been characterized by the method of acetone sensitization and one-electron oxidation. In nitrous oxide-saturated phosphate buffer saline (pH = 7.0) of C-PC, the produced intermediates are assigned to the excited triplet state and the radical cation. Using acetone as photosensitizer, the C-PC excited triplet states produced via triplet-triplet energy transfer and the C-PC radical cation from electron transfer reaction were further confirmed. Furthermore, the corresponding kinetic parameters were determined. To our knowledge, the transient absorption spectra of C-PC have been reported for the first time.  相似文献   

8.
9.
Triplet energies play a considerable role in optical spectroscopy, and can be determined from phosphorescence or the quenching thereof. Their role in spin chemistry may not be as obvious, but the triplet state has always had an important function or utility, namely of reaction intermediates such as radical pairs, their precursors, of carbenes, and of the final products. In situ NMR spectroscopy represents a useful tool to explore certain properties of the triplet state, especially in cases with no phosphorescence. The 'phase' of CIDNP resonances, i.e., emission or enhanced absorption, reflects the spin selectivity of electron transfer reactions. In radical ion pairs the spin selectivity is determined by the relation between the change of the standard free enthalpy DeltaG degrees during the electron back transfer and the triplet energies (E(T)) of the products. If triplet recombination is energetically feasible (DeltaG degrees > E(T)), it is typically the more efficient process in agreement with the Marcus theory.  相似文献   

10.
Electron paramagnetic resonance (EPR) has been used to investigate the cation and triplet states of Rhodobacter capsulatus reaction centers (RCs) containing amino acid substitutions affecting the primary donor, monomeric bacteriochlorophylls (Bchls), and the photoactive bacteriopheophytin (Bphe). The broadened line width of the cation radical in HisM200----Leu and HisM200----Phe reaction centers, whose primary donor consists of a Bchl-Bphe heterodimer, indicates a highly asymmetric distribution of the unpaired electron over the heterodimer. A T0 polarized triplet state with reduced yield is observed in heterodimer-containing RCs. The zero field splitting parameters indicate that this triplet essentially resides on the Bchl half of the heterodimer. The cation and triplet states of reaction centers containing HisM200----Gln, HisL173----Gln, GluL104----Gln, or GluL104----Leu substitutions are similar to those observed in wild type. Oligonucleotide-mediated mutagenesis has been used to change the histidine residues that are positioned near the central Mg2+ ions of the reaction center monomeric bacteriochlorophylls. Reaction centers containing serine substitutions at M180 and L153 or a threonine substitution at L153 have unaltered pigment compositions and are photochemically active. The cation and triplet states of HisL153----Leu reaction centers are similar to those observed in wild type. Triplet energy transfer to carotenoid is not observed at 100 K in HisM180----Arg chromatophores. These results have important implications for the structural requirements of tetrapyrrole binding and for our understanding of the mechanisms of primary electron transfer in the reaction center.  相似文献   

11.
The mechanism of C-H bond activation of ethane was catalyzed by palladium halide cations (PdX+ (X = F, Cl, Br, H, and CH3)), which was investigated using density functional theory (DFT) at B3LYP level. The reaction mechanism was taken into account in triplet and singlet spin state potential energy surfaces. For PdF+, PdCl+, and PdBr+, the high spin states were the ground states, whereas the ground states were the low spin states in PdH+ and PdCH3+. The reaction of PdF+, PdCl+, and PdBr+ with ethane occurred via a typical “two-state reactivity” mechanism. In contrast, for PdH+ and PdCH3+, the overall reaction performed on the ground state PESs in a spin-conserving manner. The crossing points between two potential energy surfaces were observed and effectively decreased the activation barrier in PdX+/C2H6 (X = F, Cl, and Br). The minimum energy crossing points (MECP) were obtained used the algorithm in Harvey method. The natural valence electron configuration calculations were analyzed by natural bond orbital. The distribution and contribution of the front molecular orbital of the initial complexes could be further understand by the density of states. The feature of the bonding evolution in the main pathways was studied using topological analysis including localized orbital locator and atoms in molecules.  相似文献   

12.
The photosynthetic charge separation in bacterial reaction centers occurs predominantly along one of two nearly symmetric branches of cofactors. Low-temperature EPR spectra of the triplet states of the chlorophyll and carotenoid pigments in the reaction center of Rhodobacter sphaeroides R-26.1, 2.4.1 and two double-mutants GD(M203)/AW(M260) and LH(M214)/AW(M260) have been recorded at 34 GHz to investigate the relative activities of the "A" and "B" branches. The triplet states are found to derive from radical pair and intersystem crossing mechanisms, and the rates of formation are anisotropic. The former mechanism is operative for Rb. sphaeroides R-26.1, 2.4.1, and mutant GD(M203)/AW(M260) and indicates that A-branch charge separation proceeds at temperatures down to 10 K. The latter mechanism, derived from the spin polarization and operative for mutant LH(M214)/AW(M260), indicates that no long-lived radical pairs are formed upon direct excitation of the primary donor and that virtually no charge separation at the B-branch occurs at low temperatures. When the temperature is raised above 30 K, B-branch charge separation is observed, which is at most 1% of A-branch charge separation. B-branch radical pair formation can be induced at 10 K with low yield by direct excitation of the bacteriopheophytin of the B-branch at 590 nm. The formation of a carotenoid triplet state is observed. The rate of formation depends on the orientation of the reaction center in the magnetic field and is caused by a magnetic field dependence of the oscillation frequency by which the singlet and triplet radical pair precursor states interchange. Combination of these findings with literature data provides strong evidence that the thermally activated transfer step on the B-branch occurs between the primary donor, P865, and the accessory bacteriochlorophyll, whereas this step is barrierless down to 10 K along the A-branch.  相似文献   

13.
We model the dynamics of energy transfer and primary charge separation in isolated photosystem II (PSII) reaction centers. Different exciton models with specific site energies of the six core pigments and two peripheral chlorophylls (Chls) in combination with different charge transfer schemes have been compared using a simultaneous fit of the absorption, linear dichroism, circular dichroism, steady-state fluorescence, transient absorption upon different excitation wavelengths, and time-resolved fluorescence. To obtain a quantitative fit of the data we use the modified Redfield theory, with the experimental spectral density including coupling to low-frequency phonons and 48 high-frequency vibrations. The best fit has been obtained with a model implying that the final charge separation occurs via an intermediate state with charge separation within the special pair (RP(1)). This state is weakly dipole-allowed, due to mixing with the exciton states, and can be populated directly or via 100-fs energy transfer from the core-pigments. The RP(1) and next two radical pairs with the electron transfer to the accessory Chl (RP(2)) and to the pheophytin (RP(3)) are characterized by increased electron-phonon coupling and energetic disorder. In the RP(3) state, the hole is delocalized within the special pair, with a predominant localization at the inactive-branch Chl. The intrinsic time constants of electron transfer between the three radical pairs vary from subpicoseconds to several picoseconds (depending on the realization of the disorder). The equilibration between RP(1) and RP(2) is reached within 5 ps at room temperature. During the 5-100-ps period the equilibrated core pigments and radical pairs RP(1) and RP(2) are slowly populated from peripheral chlorophylls and depopulated due to the formation of the third radical pair, RP(3). The effective time constant of the RP(3) formation is 7.5 ps. The calculated dynamics of the pheophytin absorption at 545 nm displays an instantaneous bleach (30% of the total amplitude) followed by a slow increase of the bleaching amplitude with time constants of 15 and 12 ps for blue (662 nm) and red (695 nm) excitation, respectively.  相似文献   

14.
15.
The one-electron reduction potentials of the radical cations of five dietary carotenoids (β-carotene, canthaxanthin, zeaxanthin, astaxanthin and lycopene) in aqueous micellar environments have been obtained from a pulse radiolysis study of electron transfer between the carotenoids and tryptophan radical cations as a function of pH, and lie in the range of 980–1060 mV. These values are consistent with our observation that the carotenoid radical cations oxidise tyrosine and cysteine. The decays of the carotenoid radical cations in the absence of added reactants suggest a distribution of exponential lifetimes. The radicals persist for up to about 1 s, depending on the medium.  相似文献   

16.
Pan J  Lin W  Wang W  Han Z  Lu C  Yao S  Lin N  Zhu D 《Biophysical chemistry》2001,89(2-3):193-199
By use of pulse radiolysis techniques, the radical cations of purine nucleotides have been successfully produced by the SO4- ion oxidation. Time-resolved spectroscopic evidence is provided that the one-electron-oxidized radicals of dAMP and dGMP can be efficiently repaired by aromatic amino acids (including tyrosine and tryptophan) via electron transfer reaction. As a model peptide, Arg-Tyr-AcOH was also investigated with regard to its interaction with deprotonated purine radical cations. The rate constants of the electron transfer reactions were determined to be (1 approximately 5) x 10(8) dm(3) mol(-1) s(-1). These results suggest that the aromatic amino acids in DNA-associated proteins may play some role in electron transfer reactions through DNA.  相似文献   

17.
A photochemical model study of benzophenone triplet ((3)BP) with the MAO-B substrate 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine [MPTP (1)] and two of it's derivatives, 1-cyclopropyl-4-phenyl-1,2,3,6-tetrahydropyridine (2) and (±)-[trans-2-phenylcyclopropyl-4-phenyl-1,2,3,6-tetrahydropyridine (3) were performed. Literature precedent and calculations reported herein suggest that the barrier to ring opening for aminyl radical cations derived from N-cyclopropyl derivatives of tertiary amines (such as MPTP) will be low. The LFP results reported herein demonstrate that pathways for the reaction of (3)BP with 1, 2, and 3 are very similar. In each instance, disappearance of (3)BP is accompanied solely by appearance of bands corresponding to the diphenylhydroxylmethyl radical and neutral radical derived from MPTP and it's two derivatives 2 and 3. These results suggest that the reaction between benzophenone triplet and tertiary aliphatic amines proceed via a simple hydrogen atom transfer reaction. Additionally these model examinations provide evidence that oxidations of N-cyclopropyl derivatives of MPTP catalyzed by MAO-B may not be consistent with a pure SET pathway.  相似文献   

18.
The radical cations of 1-butyl-trans-2,3-diphenyl aziridine (1), 1-butyl-2-phenyl aziridine (2), 1,2-diphenyl aziridine (3) and 1-(p-methoxyphenyl)-2-phenyl aziridine (4) were generated upon laser flash photolysis in aqueous and aqueous acetonitrile solutions by direct photoionisation as indicated by the broad absorption band of the solvated electron above 550 nm as well.  相似文献   

19.
A triplet spin system (S=1) is detected by low-temperature electron paramagnetic resonance (EPR) spectroscopy in samples of diol dehydrase and the functional adenosylcobalamin (AdoCbl) analogue 5'-deoxy-3',4'-anhydroadenosylcobalamin (anAdoCbl). Different spectra are observed in the presence and absence of the substrate (R,S)-1,2-propanediol. In both cases, the spectra include a prominent half-field transition (DeltaM(S) = 2) that is a hallmark of strongly coupled triplet spin systems. The appearance of 59Co hyperfine splitting in the EPR signals and the positions (g values) of the signals in the spectra show that half of the triplet spin is contributed by the low-spin Co2+ of cob(II)alamin. Line width effects from isotopic labeling (13C and 2H) in the 5'-deoxy-3',4'-anhydroribosyl ring demonstrate that the other half of the spin triplet is from an allylic 5'-deoxy-3',4'-anhydroadenosyl (anhydroadenosyl) radical. The zero-field splitting (ZFS) tensors describing the magnetic dipole-dipole interactions of the component spins of the triplets have rhombic symmetry because of electron spin delocalization within the organic radical component and the proximity of the radical to the low-spin Co2+. The dipole-dipole interaction was modeled as a summation of point-dipole interactions involving the spin-bearing orbitals of the anhydroadenosyl radical and cob(II)alamin. Geometries which are consistent with the ZFS tensors in the presence and absence of the substrate position the 5'-carbon of the anhydroadenosyl radical 3.5 and 4.1 A from Co2+, respectively. Homolytic cleavage of the cobalt-carbon bond of the analogue in the absence of the substrate indicates that, in diol dehydrase, binding of the coenzyme to the protein weakens the bond prior to binding of the substrate.  相似文献   

20.
A key step in the photosynthetic reactions in photosystem II of green plants is the transfer of an electron from the singlet-excited chlorophyll molecule called P680 to a nearby pheophytin molecule. The free energy difference of this primary charge separation reaction is determined in isolated photosystem II reaction center complexes as a function of temperature by measuring the absolute quantum yield of P680 triplet formation and the time-integrated fluorescence emission yield. The total triplet yield is found to be 0.83 +/- 0.05 at 4 K, and it decreases upon raising the temperature to 0.30 at 200 K. It is suggested that the observed triplet states predominantly arise from P680 but to a minor extent also from antenna chlorophyll present in the photosystem II reaction center. No carotenoid triplet states could be detected, demonstrating that the contamination of the preparation with CP47 complexes is less than 1/100 reaction centers. The fluorescence yield is 0.07 +/- 0.02 at 10 K, and it decreases upon raising the temperature to reach a value of 0.05-0.06 at 60-70 K, increases upon raising the temperature to 0.07 at approximately 165 K and decreases again upon further raising the temperature. The complex dependence of fluorescence quantum yield on temperature is explained by assuming the presence of one or more pigments in the photosystem II reaction center that are energetically degenerate with the primary electron donor P680 and below 60-70 K trap part of the excitation energy, and by temperature-dependent excited state decay above 165 K. A four-compartment model is presented that describes the observed triplet and fluorescence quantum yields at all temperatures and includes pigments that are degenerate with P680, temperature-dependent excited state decay and activated upward energy transfer rates. The eigenvalues of the model are in accordance with the lifetimes observed in fluorescence and absorption difference measurements by several workers. The model suggests that the free energy difference between singlet-excited P680 and the radical pair state P680+l- is temperature independent, and that a distribution of free energy differences represented by at least three values of about 20, 40, and 80 meV, is needed to get an appropriate fit of the data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号