首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shi J  Ebrik MA  Wyman CE 《Bioresource technology》2011,102(19):8930-8938
Dacotah switchgrass was pretreated with sulfuric acid concentrations of 0.5, 1.0, and 2.0 wt.% at 140, 160, and 180 °C and with 1 and 3 wt.% sulfur dioxide at 180 °C over a range of times. Sulfur dioxide loadings of 0%, 1%, 3%, 5%, and 10%wt.% of dry biomass were also tested at 180 °C for 10 min. Sugar yields were tracked for pretreatment and subsequent enzymatic hydrolysis to identify conditions for the highest total sugar yields. Pretreatment with 1 wt.% dilute sulfuric acid at 140 °C for 40 min followed by enzymatic hydrolysis with 48.6 mg enzyme/g initial glucan in raw biomass resulted in ~86% of theoretical yield for glucose and xylose combined. For sulfur dioxide pretreatment, the highest total sugar yield of about 87% occurred at 5% SO? for 10 min and 180 °C. However, xylose yields were higher at shorter times and glucose yields at longer times.  相似文献   

2.
A high pressure (200 bar) CO2–H2O process was developed for pretreating lignocellulosic biomass at high‐solid contents, while minimizing chemical inputs. Hardwood was pretreated at 20 and 40 (wt.%) solids. Switchgrass, corn stover, big bluestem, and mixed perennial grasses (a co‐culture of big bluestem and switchgrass) were pretreated at 40 (wt.%) solids. Operating temperatures ranged from 150 to 250°C, and residence times from 20 s to 60 min. At these conditions a biphasic mixture of an H2O‐rich liquid (hydrothermal) phase and a CO2‐rich supercritical phase coexist. Following pretreatment, samples were then enzymatically hydrolyzed. Total yields, defined as the fraction of the theoretical maximum, were determined for glucose, hemicellulose sugars, and two degradation products: furfural and 5‐hydroxymethylfurfural. Response surfaces of yield as a function of temperature and residence time were compared for different moisture contents and biomass species. Pretreatment at 170°C for 60 min gave glucose yields of 77%, 73%, and 68% for 20 and 40 (wt.%) solids mixed hardwood and mixed perennial grasses, respectively. Pretreatment at 160°C for 60 min gave glucan to glucose yields of 81% for switchgrass and 85% for corn stover. Biotechnol. Bioeng. 2010;107: 451–460. © 2010 Wiley Periodicals, Inc.  相似文献   

3.
Current research and development in cellulosic ethanol production has been focused mainly on agricultural residues and dedicated energy crops such as corn stover and switchgrass; however, woody biomass remains a very important feedstock for ethanol production. The precise composition of hemicellulose in the wood is strongly dependent on the plant species, therefore different types of enzymes are needed based on hemicellulose complexity and type of pretreatment. In general, hardwood species have much lower recalcitrance to enzymes than softwood. For hardwood, xylanases, beta‐xylosidases and xyloglucanases are the main hemicellulases involved in degradation of the hemicellulose backbone, while for softwood the effect of mannanases and beta‐mannosidases is more relevant. Furthermore, there are different key accessory enzymes involved in removing the hemicellulosic fraction and increasing accessibility of cellulases to the cellulose fibres improving the hydrolysis process. A diversity of enzymatic cocktails has been tested using from low to high densities of biomass (2–20% total solids) and a broad range of results has been obtained. The performance of recently developed commercial cocktails on hardwoods and softwoods will enable a further step for the commercialization of fuel ethanol from wood.  相似文献   

4.
Simultaneous saccharification and fermentation of lime-treated biomass   总被引:4,自引:0,他引:4  
Simultaneous saccharification and fermentation (SSF) was performed on lime-treated switchgrass and corn stover, and oxidatively lime-treated poplar wood to determine their compatibility with Saccharomyces cerevisiae. Cellulose-derived glucose was extensively utilized by the yeast during SSF. The ethanol yields from pretreated switchgrass, pretreated corn stover, and pretreated-and-washed poplar wood were 72%, 62% and 73% of theoretical, respectively, whereas those from -cellulose were 67 to 91% of theoretical. The lower ethanol yields from treated biomass resulted from lower cellulose digestibilities rather than inhibitors produced by the pretreatment. Oxidative lime pretreatment of poplar wood increased the ethanol yield by a factor of 5.6, from 13% (untreated) to 73% (pretreated-and-washed).  相似文献   

5.
Wan C  Li Y 《Bioresource technology》2011,102(16):7507-7512
Different types of feedstocks, including corn stover, wheat straw, soybean straw, switchgrass, and hardwood, were tested to evaluate the effectiveness of fungal pretreatment by Ceriporiopsis subvermispora. After 18-d pretreatment, corn stover, switchgrass, and hardwood were effectively delignified by the fungus through manganese peroxidase and laccase. Correspondingly, glucose yields during enzymatic hydrolysis reached 56.50%, 37.15%, and 24.21%, respectively, which were a 2 to 3-fold increase over those of the raw materials. A further 10-30% increase in glucose yields was observed when pretreatment time extended to 35 d. In contrast, cellulose digestibility of wheat straw and soybean straw was not significantly improved by fungal pretreatment. When external carbon sources and enzyme inducers were added during fungal pretreatment of wheat straw and soybean straw, only glucose and malt extract addition improved cellulose digestibility of wheat straw. The cellulose digestibility of soybean straw was not improved.  相似文献   

6.
Pine, eucalyptus, and switchgrass were evaluated for the production of fermentable sugars via ionic liquid and dilute acid pretreatments and subsequent enzymatic hydrolysis. The results show that among the three feedstocks, switchgrass has the highest sugar yields and faster hydrolysis rates for both pretreatment technologies by achieving 48 % (dilute acid) and 96 % (ionic liquid) sugar yields after 24 h. Of the two wood species, eucalyptus has a higher and faster sugar recovery after ionic liquid pretreatment than pine (93 vs. 62 % in 24 h) under 160 °C for 3 h with [C2mim][OAc]. Pretreatment of pine and eucalyptus is observed to be ineffective under 1.2 % dilute acid condition and 160 °C for 15 min, indicating that further enhancement of reaction temperature or acid concentration is necessary to increase the digestibility of pretreated materials. Raman spectroscopy data show that the extent of lignin depolymerization that occurs during pretreatment also varies for the three different feedstocks. Under similar hemicellulose removal conditions, lignin removal in ionic liquid pretreatment can help improve cellulose conversion. This finding may help explain the observed variation in the saccharification yields and kinetics. These results indicate that ionic liquid pretreatment not only improved saccharification over dilute acid for all three feedstocks but also better dealt with the differences among them, suggesting better tolerance to feedstock variability.  相似文献   

7.
The cellulase activity in cell-free broths from the thermophilic, ethanol-producing anaerobic bacterium Clostridium thermocellum is examined on both dilute-acid-pretreated mixed hardwood (90% maple, 10% birch) and Avicel. Experiments were conducted in vitro in order to distinguish properties of the cellulase from properties of the organism and to evaluate the effectiveness of C. thermocellum cellulase in the hydrolysis of a naturally occurring, lignin-containing substrate. The results obtained establish that essentially quantitative hydrolysis of cellulose from pretreated mixed hardwood is possible using this enzyme system. Pretreatment with 1% H(2)SO(4) and a 9-s residence time at 220, 210, 200, and 180 degrees C allowed yields after enzymatic hydrolysis (percentage of glucan solubilized/ glucan potentially solubilized) of 97.8, 86.1, 82.0, and 34.6%, respectively. Enzymatic hydrolysis of mixed hardwood with no pretreatment resulted in a yield of 10.1%. Hydrolysis yields of >95% were obtained from approximately 0.6 g/L mixed hardwood pretreated at 220 degrees C in 7 h at broth strengths of 60 and 80% (v/v) and in approximately 48 h with 33% broth. Hydrolysis of pretreated mixed hardwood is compared to hydrolysis of Avicel, a pure microcrystalline cellulose studied previously. The initial rate of Avicel hydrolysis saturates with respect to enzyme, whereas the initial rate of hydrolysis of pretreated wood is proportional to the amount of enzyme present. Initial hydrolysis rates for pretreated wood and Avicel at 0.6 g/L are greater for wood at low broth dilutions (1.25: 1 to 5 :1) by up to 2.7-fold and greater for Avicel at high broth dilutions (5 : 1 to 50 : 1) by up to 4.3-fold. Maximum rates of hydrolysis are achieved at <2 g substrate/L for both pretreated wood and Avicel. The substrate concentration at one-half the maximum observed rate for C. thermocellum broths is smaller for pretreated mixed hardwood than for Avicel and decreases with increasing broth dilution for both substrates. An initial activity per volume broth of approximately 11 mumol soluble glucose equivalent produced/L broth/min is observed for mixed hardwood pretreated at 220 degrees C and for Avicel at high broth dilutions; the initial activity per volume broth for Avicel is lower at low broth dilutions. The results indicate that pretreated wood is hydrolyzed at rates comparable to Avicel under many conditions and at rates significantly faster than Avicel under several conditions.  相似文献   

8.
Switchgrass and coastal bermudagrass are promising lignocellulosic feedstocks for bioethanol production. However, pretreatment of lignocelluloses is required to improve production of fermentable sugars from enzymatic hydrolysis. Microwave‐based alkali pretreatment of switchgrass and coastal bermudagrass was investigated in this study. Pretreatments were carried out by immersing the biomass in dilute alkali reagents and exposing the slurry to microwave radiation at 250 W for residence times ranging from 5 to 20 min. Simons' stain method was used to quantify changes in biomass porosity as a result of the pretreatment. Pretreatments were evaluated based on yields of total reducing sugars, glucose, and xylose. An evaluation of different alkalis identified sodium hydroxide as the most effective alkali reagent for microwave‐based pretreatment of switchgrass and coastal bermudagrass. 82% glucose and 63% xylose yields were achieved for switchgrass and 87% glucose and 59% xylose yields were achieved for coastal bermudagrass following enzymatic hydrolysis of biomass pretreated under optimal conditions. Dielectric properties for dilute sodium hydroxide solutions were measured and compared with solid losses, lignin reduction, and reducing sugar levels in hydrolyzates. Results indicate that dielectric loss tangent of alkali solutions is a potential indicator of the severity of microwave‐based pretreatments. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

9.
Supercritical CO2 (SC-CO2), a green solvent suitable for a mobile lignocellulosic biomass processor, was used to pretreat corn stover and switchgrass at various temperatures and pressures. The CO2 pressure was released as quickly as possible by opening a quick release valve during the pretreatment. The biomass was hydrolyzed after pretreatment using cellulase combined with β-glucosidase. The hydrolysate was analyzed for the amount of glucose released. Glucose yields from corn stover samples pretreated with SC-CO2 were higher than the untreated sample’s 12% glucose yield (12 g/100 g dry biomass) and the highest glucose yield of 30% was achieved with SC-CO2 pretreatment at 3500 psi and 150 °C for 60 min. The pretreatment method showed very limited improvement (14% vs. 12%) in glucose yield for switchgrass. X-ray diffraction results indicated no change in crystallinity of the SC-CO2 treated corn stover when compared to the untreated, while SEM images showed an increase in surface area.  相似文献   

10.
Ionic liquids (ILs) have emerged as attractive solvents for lignocellulosic biomass pretreatment in the production of biofuels and chemical feedstocks. However, the high cost of ILs is a key deterrent to their practical application. Here, we show that acetate based ILs are effective in dramatically reducing the recalcitrance of corn stover toward enzymatic polysaccharide hydrolysis even at loadings of biomass as high as 50% by weight. Under these conditions, the IL serves more as a pretreatment additive rather than a true solvent. Pretreatment of corn stover with 1‐ethyl‐3‐methylimidizolium acetate ([Emim] [OAc]) at 125 ± 5°C for 1 h resulted in a dramatic reduction of cellulose crystallinity (up to 52%) and extraction of lignin (up to 44%). Enzymatic hydrolysis of the IL‐treated biomass was performed with a common commercial cellulase/xylanase from Trichoderma reesei and a commercial β‐glucosidase, and resulted in fermentable sugar yields of ~80% for glucose and ~50% for xylose at corn stover loadings up to 33% (w/w) and 55% and 34% for glucose and xylose, respectively, at 50% (w/w) biomass loading. Similar results were observed for the IL‐facilitated pretreatment of switchgrass, poplar, and the highly recalcitrant hardwood, maple. At 4.8% (w/w) corn stover, [Emim][OAc] can be readily reused up to 10 times without removal of extracted components, such as lignin, with no effect on subsequent fermentable sugar yields. A significant reduction in the amount of IL combined with facile recycling has the potential to enable ILs to be used in large‐scale biomass pretreatment. Biotechnol. Bioeng. 2011;108: 2865–2875. © 2011 Wiley Periodicals, Inc.  相似文献   

11.
Cellulose is inherently resistant to breakdown, and the native crystalline structure (cellulose I) of cellulose is considered to be one of the major factors limiting its potential in terms of cost-competitive lignocellulosic biofuel production. Here we report the impact of ionic liquid pretreatment on the cellulose crystalline structure in different feedstocks, including microcrystalline cellulose (Avicel), switchgrass (Panicum virgatum), pine ( Pinus radiata ), and eucalyptus ( Eucalyptus globulus ), and its influence on cellulose hydrolysis kinetics of the resultant biomass. These feedstocks were pretreated using 1-ethyl-3-methyl imidazolium acetate ([C2mim][OAc]) at 120 and 160 °C for 1, 3, 6, and 12 h. The influence of the pretreatment conditions on the cellulose crystalline structure was analyzed by X-ray diffraction (XRD). On a larger length scale, the impact of ionic liquid pretreatment on the surface roughness of the biomass was determined by small-angle neutron scattering (SANS). Pretreatment resulted in a loss of native cellulose crystalline structure. However, the transformation processes were distinctly different for Avicel and for the biomass samples. For Avicel, a transformation to cellulose II occurred for all processing conditions. For the biomass samples, the data suggest that pretreatment for most conditions resulted in an expanded cellulose I lattice. For switchgrass, first evidence of cellulose II only occurred after 12 h of pretreatment at 120 °C. For eucalyptus, first evidence of cellulose II required more intense pretreatment (3 h at 160 °C). For pine, no clear evidence of cellulose II content was detected for the most intense pretreatment conditions of this study (12 h at 160 °C). Interestingly, the rate of enzymatic hydrolysis of Avicel was slightly lower for pretreatment at 160 °C compared with pretreatment at 120 °C. For the biomass samples, the hydrolysis rate was much greater for pretreatment at 160 °C compared with pretreatment at 120 °C. The result for Avicel can be explained by more complete conversion to cellulose II upon precipitation after pretreatment at 160 °C. By comparison, the result for the biomass samples suggests that another factor, likely lignin-carbohydrate complexes, also impacts the rate of cellulose hydrolysis in addition to cellulose crystallinity.  相似文献   

12.
Hydrolysis of four timber species (aspen, balsam fir, basswood, and red maple) and switchgrass was studied using dilute sulfuric acid at 50 g dry biomass/L under similar conditions previously described as acid pretreatment. The primary goal was to obtain detailed kinetic data of xylose formation and degradation from a match between a first order reaction model and the experimental data at various final reactor temperatures (160-190 degrees C), sulfuric acid concentrations (0.25-1.0% w/v), and particle sizes (28-10/20 mesh) in a glass-lined 1L well-mixed batch reactor. Reaction rates for the generation of xylose from hemicellulose and the generation of furfural from xylose were strongly dependent on both temperature and acid concentration. However, no effect was observed for the particle sizes studied. Oligomer sugars, representing incomplete products of hydrolysis, were observed early in the reaction period for all sugars (xylose, glucose, arabinose, mannose, and galactose), but were reduced to low concentrations at later times (higher hemicellulose conversions). Maximum yields for xylose ranged from 70% (balsam) to 94% (switchgrass), for glucose from 10.6% to 13.6%, and for other minor sugars from 8.6% to 58.9%. Xylose formation activation energies and the pre-exponential factors for the timber species and switchgrass were in a range of 49-180 kJ/mol and from 7.5 x 10(4) to 2.6 x 10(20)min(-1), respectively. In addition, for xylose degradation, the activation energies and the pre-exponential factors ranged from 130 to 170 kJ/mol and from 6.8 x 10(13) to 3.7 x 10(17)min(-1), respectively. There was a near linear dependence on acid concentration observed for xylose degradation. Our results suggest that mixtures of biomass species may be processed together and still achieve high yields for all species.  相似文献   

13.
Switchgrass for bioethanol and other value-added applications: a review   总被引:1,自引:0,他引:1  
Switchgrass is a promising feedstock for value-added applications due to its high productivity, potentially low requirements for agricultural inputs and positive environmental impacts. The objective of this paper is to review published research on the conversion of switchgrass into bioethanol and other value-added products. Environmental benefits associated with switchgrass include the potential for carbon sequestration, nutrient recovery from runoff, soil remediation and provision of habitats for grassland birds. Pretreatment of switchgrass is required to improve the yields of fermentable sugars. Based on the type of pretreatment, glucose yields range from 70% to 90% and xylose yields range from 70% to 100% after hydrolysis. Following pretreatment and hydrolysis, ethanol yields range from 72% to 92% of the theoretical maximum. Other value-added uses of switchgrass include gasification, bio-oil production, newsprint production and fiber reinforcement in thermoplastic composites. Future prospects for research include increased biomass yields, optimization of feedstock composition for bioenergy applications, and efficient pentose fermentation to improve ethanol yields.  相似文献   

14.
The supercritical carbon dioxide (SC-CO2) pretreatment of lignocellulose for enzymatic hydrolysis of cellulose was investigated. Aspen (hardwood) and southern yellow pine (softwood) with moisture contents in the range of 0-73% (w/w) were pretreated with SC-CO2 at 3100 and 4000 psi and at 112-165 degrees C for 10-60 min. Each pretreated lignocellulose was hydrolyzed with commercial cellulase to assess its enzymatic digestibility. Untreated aspen and southern yellow pine (SYP) gave final reducing sugar yields of 14.5 +/- 2.3 and 12.8 +/- 2.7% of theoretical maximum, respectively. When no moisture was present in lignocellulose to be pretreated, the final reducing sugar yield from hydrolysis of SC-CO2-pretreated lignocellulose was similar to that of untreated aspen. When the moisture content of lignocellulose was increased, particularly in aspen, significantly increased final sugar yields were obtained from enzymatic hydrolysis of SC-CO2-pretreated lignocellulose. When the moisture content of lignocellulose was 73% (w/w) before pretreatment, the sugar yields from the enzymatic hydrolysis of aspen and southern yellow pine pretreated with SC-CO2 at 3100 psi and 165 degrees C for 30 min were 84.7 +/- 2.6 and 27.3 +/- 3.8% of theoretical maximum, respectively. The SC-CO2 pretreatments of both aspen and SYP with moisture contents of 40, 57, and 73% (w/w) showed significantly higher final sugar yields compared to the thermal pretreatments without SC-CO2.  相似文献   

15.
In this study, tassels of Cave-in-Rock (upland) and Alamo (lowland) were removed at or near tassel emergence to explore its effects on biomass production and quality. Tassel-removed (TR) Cave-in-Rock and Alamo both exhibited a significant (P<0.05) increase in plant heights (not including tassel length), tiller number, and aboveground biomass dry weight (10% and 12%, 30% and 13%, 13% and 18%, respectively by variety) compared to a control (CK) treatment. Notably, total sugar yields of TR Cave-in-Rock and Alamo stems increased significantly (P<0.05 or 0.01) by 19% and 19%, 21% and 14%, 52% and 18%, respectively by variety, compared to those of control switchgrass under 3 treatments by direct enzymatic hydrolysis (DEH), enzymatic hydrolysis after 1% NaOH pretreatment (EHAL) and enzymatic hydrolysis after 1% H2SO4 pretreatment (EHAC). These differences were mainly due to significantly (P<0.05 or 0.01) higher cellulose content, lower cellulose crystallinity indexes (CrI) caused by higher arabinose (Ara) substitution in xylans, and lower S/G ratio in lignin. However, the increases of nitrogen (N) and sulphur (S) concentration negatively affects the combustion quality of switchgrass aboveground biomass. This work provides information for increasing biomass production and quality in switchgrass and also facilitates the inhibition of gene dispersal of switchgrass in China.  相似文献   

16.
Short‐term lime pretreatment uses lime and high‐pressure oxygen to significantly increase the digestibility of poplar wood. When the treated poplar wood was enzymatically hydrolyzed, glucan and xylan were converted to glucose and xylose, respectively. To calculate product yields from raw biomass, these sugars were expressed as equivalent glucan and xylan. To recommend pretreatment conditions, the single criterion was the maximum overall glucan and xylan yields using a cellulase loading of 15 FPU/g glucan in raw biomass. On this basis, the recommended conditions for short‐term lime pretreatment of poplar wood follow: (1) 2 h, 140°C, 21.7 bar absolute and (2) 2 h, 160°C, and 14.8 bar absolute. In these two cases, the reactivity was nearly identical, thus the selected condition depends on the economic trade off between pressure and temperature. Considering glucose and xylose and their oligomers produced during 72 h of enzymatic hydrolysis, the overall yields attained under these recommended conditions follow: (1) 95.5 g glucan/100 g of glucan in raw biomass and 73.1 g xylan/100 g xylan in raw biomass and (2) 94.2 g glucan/100 g glucan in raw biomass and 73.2 g xylan/100 g xylan in raw biomass. The yields improved by increasing the enzyme loading. An optimal enzyme cocktail was identified as 67% cellulase, 12% β‐glucosidase, and 24% xylanase (mass of protein basis) with cellulase activity of 15 FPU/g glucan in raw biomass and total enzyme loading of 51 mg protein/g glucan in raw biomass. Ball milling the lime‐treated poplar wood allowed for 100% conversion of glucan in 120 h with a cellulase loading of only 10 FPU/g glucan in raw biomass. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

17.
Pretreatment plays an important role in making the cellulose accessible for enzyme hydrolysis and subsequent conversion because it destroys more or less resistance and recalcitrance of biomass. Radio frequency (RF)-assisted dielectric heating was utilized in the alkaline pretreatment on agricultural residues (corn stover), herbaceous crops (switchgrass), hardwood (sweetgum) and softwood (loblolly pine). Pretreatment was performed at 90 °C with either RF or traditional water bath (WB) heating for 1 h after overnight soaking in NaOH solution (0.2 g NaOH/g Biomass). Pretreated materials were characterized by chemical compositional analysis, enzyme hydrolysis, scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The glucan yields of RF-heated four categories of hydrolysates were 89.6, 72.6, 21.7, and 9.9 %. Interestingly, RF heating raised glucan yield on switchgrass and sweetgum but not on corn stover or loblolly pine. The SEM images and FTIR spectra agreed with results of composition analysis and hydrolysis. GC–MS detected some compounds only from RF-heated switchgrass. These compounds were found by other researchers only in high-temperature (150–600 °C) and high-pressure pyrolysis processes.  相似文献   

18.
Fundamental understanding of biomass pretreatment and its influence on saccharification kinetics, total sugar yield, and inhibitor formation is essential to develop efficient next-generation biofuel strategies, capable of displacing fossil fuels at a commercial level. In this study, we investigated the effect of residence time and temperature during ionic liquid (IL) pretreatment of switchgrass using 1-ethyl-3-methyl imidazolium acetate. The primary metrics of pretreatment performance are biomass delignification, xylan and glucan depolymerization, porosity, surface area, cellulase kinetics, and sugar yields. Compositional analysis and quantification of process streams of saccharides and lignin demonstrate that delignification increases as a function of pretreatment temperature and is hypothesized to be correlated with the apparent glass transition temperature of lignin. IL pretreatment did not generate monosaccharides from hemicellulose. Compared to untreated switchgrass, Brunauer–Emmett–Teller surface area of pretreated switchgrass increased by a factor of ~30, with a corresponding increase in saccharification kinetics of a factor of ~40. There is an observed dependence of cellulase kinetics with delignification efficiency. Although complete biomass dissolution is observed after 3 h of IL pretreatment, the pattern of sugar release, saccharification kinetics, and total sugar yields are strongly correlated with temperature.  相似文献   

19.
Wan C  Li Y 《Bioresource technology》2011,102(20):9788-9793
Exhaustive hot water extraction (HWE) and liquid hot water (LHW) pretreatment were evaluated for their effects on degradation of biomass feedstocks (i.e., corn stover, wheat straw, and soybean straw) by Ceriporiopsis subvermispora. HWE (85 °C for 10 min) partially removed water soluble extractives and subsequently improved fungal degradation on wheat straw while it had little or no effect on the fungal degradation of corn stover and soybean straw. In contrast, LHW pretreatment at 170 °C for 3 min improved the fungal degradation of soybean straw; thus, lignin removal of 36.70% and glucose yield of 64.25% were obtained from the combined LHW and fungal pretreatment. However, corn stover, which was effectively degraded by fungal pretreatment alone, was less affected by this combined pretreatment. Our results indicated that a HWE or LHW pretreatment conducted under mild conditions worked synergistically with fungal degradation for some recalcitrant feedstocks.  相似文献   

20.
Bae YJ  Ryu C  Jeon JK  Park J  Suh DJ  Suh YW  Chang D  Park YK 《Bioresource technology》2011,102(3):3512-3520
The pyrolysis of two brown macroalgae (Undaria pinnatifida and Laminaria japonica) and one red macroalgae (Porphyra tenera) was investigated for the production of bio-oil within the temperature range of 300-600°C. Macroalgae differ from lignocellulosic land biomass in their constitutional compounds and high N, S and ash contents. The maximum production of bio-oil was achieved at 500°C, with yields between 37.5 and 47.4 wt.%. The main compounds in bio-oils vary between macroalgae and are greatly different from those of land biomass, especially in the presence of many nitrogen-containing compounds. Of the gaseous products, CO(2) was dominant, while C(1)-C(4) hydrocarbons gradually increasing at 400°C and above. The pretreatment of macroalgae by acid washing effectively reduced the ash content. The pyrolysis of macroalgae offers a new opportunity for feedstock production; however, the utilization of bio-oil as a fuel product needs further assessment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号