首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
胰岛素刺激骨胳肌产生磷脂酰肌醇3, 4, 5三磷酸(PI(3,4,5)P3), 它是促进葡萄糖转运子4(GLUT4)与细胞膜融合的必要条件. 向肌肉细胞内导入PI(3,4,5)P3可以模拟胰岛素刺激GLUT4与细胞膜融合的作用, 但不足以增加细胞摄取葡萄糖的量. 本研究目的是探讨PI(3,4,5)P3与胰岛素作用不同的机制. 在骨骼肌细胞株(L6-GLUT4myc)中, 应用免疫反应方法检测细胞膜片上与特异性抗体反应的GLUT4的胞浆区羧基末端表位和胞外区myc表位的可用性; 使用不能渗透到细胞内的甘露糖-生物素衍生物Bio-LC-ATB-BMPA, 结合亲和光化学标记法检测GLUT4胞外区的活性位点. 相对于基础组, 100 nmol/L胰岛素和10 mmol/L PI(3,4,5)P3分别使与myc结合的抗体量增加1.64倍和1.58倍. 胰岛素还使细胞膜上GLUT4的光化学标记量和细胞膜片上与羧基末端表位结合的抗体量分别增加了2.47倍和2.04倍, 而PI(3,4,5)P3则无此作用. 在胰岛素作用下, 细胞膜片上与羧基末端表位结合的抗体量大于与myc表位结合的抗体量(分别为2.04和1.64倍). 结果表明: (i) 尽管PI(3,4,5)P3能使GLUT4与细胞膜融合, 但不能使GLUT4胞外区的活性位点暴露; (ii) GLUT4胞外区活性位点的可用性与胞浆区羧基末端的可用性相关; (iii) 除了能刺激GLUT4与细胞膜融合, 胰岛素还使封闭GLUT4羧基末端的蛋白脱离. 推论胞浆内某种蛋白封闭羧基末端, 同样阻止甘露糖-生物素衍生物对GLUT4活性位点的标记, 并可能妨碍GLUT4转运葡萄糖.  相似文献   

2.
葡萄糖转运子4 转位信号转导通路的研究进展   总被引:2,自引:0,他引:2       下载免费PDF全文
葡萄糖是大部分细胞主要能量来源,它进入细胞的过程在生命的维持中无疑成为一个重要的步骤。而葡萄糖进入细胞是依赖于这些细胞上的葡萄糖转运子和相应的对其进行调节的因子。葡萄糖转运子4(GLUT4)在糖进入细胞维持血糖平衡中起了重要的作用。近年有关GLUT4的研究文献很多,但却总给人不系统的感觉。本文对GLUT4转位的胰岛素依赖和非胰岛素依赖的信号途径以及其远端过程及机制作一综述,同时分析了GLUT4转位的信号途径的研究中存在的问题和将来研究的方向。  相似文献   

3.
目的:研究量子点标记活细胞内GLUT4蛋白的方法,用于长时程观察活细胞内GLUT4的转运过程。方法:使用在GLUT4蛋白膜外区构建了myc位点的L6-GLUT4myc细胞系,用胰岛素刺激L6细胞内的GLUT4myc转运到细胞膜上,通过抗体抗原反应先后将一抗9E10和偶联二抗IgG的量子点与特异性位点结合。结果:通过量子点标记固定细胞内GLUT4的实验,证明了标记方法的特异性和灵敏性。量子点能够标记细胞膜表面的GLUT4蛋白并伴随GLUT4的胞吞进入细胞。适当调整实验温度,用量子点标记细胞膜上的GLUT4并且在实验过程结束后将标记了量子点的GLUT4保持在细胞膜表面,能够观察活细胞内GLUT4蛋白内化和胞内循环的过程。结论:发展了量子点标记活细胞内GLUT4的方法,为进一步研究活细胞内GLUT4的转运过程打下了基础。  相似文献   

4.
L6 skeletal muscle myoblasts stably overexpressing glucose transporter GLUT1 or GLUT4 with exofa- cial myc-epitope tags were characterized for their response to insulin. In clonally selected cultures, 2-deoxyglucose uptake into L6-GLUT1myc myoblasts and myotubes was linear within the time of study. In L6-GLUT1myc and L6-GLUT4myc myoblasts, 100 nmol/L insulin treatment increased the GLUT1 content of the plasma membrane by 1.58±0.01 fold and the GLUT4 content 1.96±0.11 fold, as well as the 2-deoxyglucose uptake 1.53±0.09 and 1.86±0.17 fold respectively, all by a wortmannin-inhibitable manner. The phosphorylation of Akt in these two cell lines was increased by insulin. L6-GLUT1myc myoblasts showed a dose-dependent stimulation of glucose uptake by insulin, with unaltered sensitiv- ity and maximal responsiveness compared with wild type cells. By contrast, the improved insulin re- sponsiveness and sensitivity of glucose uptake were observed in L6-GLUT4myc myoblasts. Earlier studies indicated that forskolin might affect insulin-stimulated GLUT4 translocation. A 65% decrease of insulin-stimulated 2-deoxyglucose uptake in GLUT4myc cells was not due to an effect on GLUT4 mobi- lization to the plasma membrane, but instead on direct inhibition of GLUT4. Forskolin and dipyridamole are more potent inhibitors of GLUT4 than GLUT1. Alternatively, pentobarbital inhibits GLUT1 more than GLUT4. The use of these inhibitors confirmed that the overexpressed GLUT1 or GLUT4 are the major functional glucose transporters in unstimulated and insulin-stimulated L6 myoblasts. Therefore, L6-GLUT1myc and L6-GLUT4myc cells provide a platform to screen compounds that may have differ- ential effects on GLUT isoform activity or may influence GLUT isoform mobilization to the cell surface of muscle cells.  相似文献   

5.
葡萄糖转运蛋白4(glucose transporter 4,GLUT4)参与胰岛素敏感的脂肪细胞和肌肉细胞中的葡萄糖转运,对机体葡萄糖代谢至关重要。磷脂酰肌醇作为各种蛋白质的定位信号,参与调控细胞生长和新陈代谢,在胰岛素信号转导过程中起着关键作用。在过去的几十年里,关于磷脂酰肌醇信号调控GLUT4囊泡转运方面已有了很大的进展。该文总结了磷脂酰肌醇在GLUT4囊泡转运中的调控作用。  相似文献   

6.
在脂肪和骨骼肌细胞中,胰岛素可迅速刺激葡萄糖转运,即通常所说的GLUT4转运。 GLUT4转运是指Rabs与GTP结合时,促进囊泡与微管和微丝蛋白结合,并通过锚定和融合作用使GLUT4囊泡与目标膜结构融合。多数 Rab 家族成员广泛表达于各种组织细胞中,且在细胞内定位十分广泛,几乎存在于真核细胞所有的膜相关的细胞器的胞浆侧。 Rab 蛋白作为囊泡运输的分子开关,通过调节运输小泡的停泊和融合,在囊泡的形成、转运、粘附、锚定、融合等过程中起着重要的作用。 Rab蛋白受到多种上游调节蛋白的调节,同时调控着下游的多种效应蛋白,构成了复杂的调控网络:任何一个环节改变都可能会导致蛋白质转运的异常,进而引发疾病。本文系统阐述了Rab蛋白在葡萄糖转运过程中的作用及该领域的最新进展。  相似文献   

7.
葡萄糖转运蛋白4(GLUT4)与胰岛素抵抗有着紧密联系,抑制自噬能减缓胰岛素抵抗.为了探讨自噬对胰岛素抵抗方面的作用,现以GLUT4囊泡为动力学模型,通过全内反射荧光显微镜实时观测3T3-L1成熟脂肪细胞中GLUT4囊泡的运动,并采用高斯拟合及相应的搜索算法,从TIRFM时间序列中提取运动轨迹、速度等信息进行统计分析.结果显示:自噬对GLUT4的运动具有一定的影响.抑制自噬后,GLUT4囊泡运动的胰岛素响应程度增强,长距离运动囊泡增多,平均运动速度加快.  相似文献   

8.
GLUT4在胰岛素作用下的转运上膜是血糖调控的一个关键途径.其中包含了两个重要的过程-胰岛素信号转导以及GLUT4转运途径.在这两个过程中新的特异分子的发现以及它们功能特点的研究是发展有效的药物治疗糖尿病的关键因素.本文主要从GLUT4在胞内的循环途径,胰岛素调节的GLUT4的转运以及转运中的调控蛋白三个方面着手,综述了GLUT4的转运调控研究进展.  相似文献   

9.
葡萄糖通过血脑屏障从血液中进入脑组织必须依赖葡萄糖转运蛋白(glucose transporter,GLUT)的帮助.GLUT1是血脑屏障上最主要的GLUT,也是脑毛细血管壁内皮细胞的分子标记.动物研究显示在急性脑缺血后脑内的GLUT1表达增加.检测了7例慢性微血管缺血性脑血管病变(ischemic cerebrovascular diseases,ICVD)的尸检脑组织中的GLUT1水平,并与11例同龄对照组比较.结果发现GLUT1水平在ICVD组中降低.其降低可能是由于低氧诱导因子-1α(hypoxia-induciblefactor-1α,HIF-1α)的下调所致.但是,在ICVD脑组织中的GLUT1水平降低不伴随有蛋白质O-GlcNAc糖基化水平的下降.上述结果为探讨脑缺血病变的机理提供了新线索.  相似文献   

10.
胰岛素反应性的葡萄糖转运蛋白4(glucose transporter 4,GLUT4)在葡萄糖的摄取和代谢过程中发挥着重要作用。GLUT4蛋白表达水平直接影响机体葡萄糖的利用。肌细胞增强因子2(myocyte enhancer factor 2,MEF2)、过氧化物酶体增殖物激活受体(peroxisome proliferator activated receptors,PPARs)、CCAAT增强子结合蛋白α(CCAAT enhancer binding protein α,C/EBP-α)、固醇类反应元件结合蛋白1c(sterol response element binding protein 1c,SREBP-1c)等转录因子可以上调或下调Glut4基因转录。激素、代谢以及一些病理状态可以通过改变转录因子的量或活性影响Glut4。本文综述了在Glut4基因表达中发挥作用的转录因子,以及在特定的生理或病生理状态下Glut4基因表达调控的机制。  相似文献   

11.
葡萄糖转运蛋白4(GLUT4)。主要分布于骨胳肌,心肌及脂肪组织中,当胰岛素与细胞膜受体结合后。产生一系列信号,促进GLUT4从胞内易位至细胞膜,GLUT4通过自身构象改变。将葡萄糖摄入细胞内,从而协助维持血糖的稳定,这些具体信号正在被广泛深入的研究。现在发现至少有两条独立的信号传导途径。一条是经典的PI3K途径。另一条是新近发现的Cb1/CAP途径。深入了解这些信号传导途径。对于揭示2型糖尿病的发病机制有重要的意义。  相似文献   

12.
目的观察肿瘤坏死因子α(TNFα)对正常昆明小鼠骨骼肌和肝脏葡萄糖摄取的影响。方法80只昆明小鼠随机分为高剂量连续注射组(TH组,n=20)、TNFα低剂量连续注射组(TL组,n=20)、TNFα高剂量一次注射组(T1组,n=20)和正常对照组(C组,n=20),以3H标记的2脱氧葡萄糖(2-DG)为示踪剂,观察各组非胰岛素刺激(基础)和胰岛素刺激的离体骨骼肌和肝脏葡萄糖摄取量的变化。结果1)正常昆明小鼠肝脏基础葡萄糖摄取量明显高于骨骼肌葡萄糖摄取量(P<0.01),肝脏胰岛素刺激的葡萄糖摄取量变化值明显低于骨骼肌葡萄糖摄取量变化值(P<0.01)。2)TH组和TL组骨骼肌和肝脏基础葡萄糖摄取量均明显高于C组(P<0.01),且TH组明显高于TL组(P<0.01)。3)TH组和TL组骨骼肌和肝脏胰岛素刺激的葡萄糖摄取量均明显低于C组(P<0.01),且TH组明显低于TL组(P<0.01)。4)T1组骨骼肌和肝脏无论基础还是胰岛素刺激的葡萄糖摄取量均与C组差异无显著性(P>0.05)。结论1)正常动物肝脏和骨骼肌葡萄糖摄取方式不同,骨骼肌葡萄糖摄取受胰岛素调控比肝脏强。2)TNFα抑制组织胰岛素刺激的葡萄糖摄取,但促进组织基础葡萄糖摄取。3)TNFα对组织葡萄糖摄取的影响,呈剂量和时间依赖性。  相似文献   

13.
近年研究表明,作为构成胞膜窖(Caveolae)主要的组分之一,窖蛋白-1(caveolin-1,Cav-1)除了在细胞胆固醇平衡、信号转导和整合以及细胞生长等过程中起重要作用外,还参与细胞营养改变的神经元代谢调节过程。本文旨在探讨Cav-1和葡萄糖转运蛋白4(glucose transporter 4,GLUT4)在神经细胞内营养环境改变时的功能变化和关系。采用Western blot和激光共聚焦法观察了两种蛋白在PC12细胞葡萄糖剥夺(glucose deprivation,GD)前后的表达水平与分布,发现GD 6 h后能诱导PC12细胞内Cav-1和GLUT4蛋白表达水平增加,CCK检测和流式细胞术结果显示细胞活力下降、细胞内钙离子浓度([Ca2+]i)升高、线粒体膜电位(mitochondrial membrane potential,MMP)下降。采用si RNA技术敲低Cav-1基因后,GD组PC12细胞死亡率和[Ca2+]i进一步升高,MMP进一步下降;Cav-1敲低细胞系和甲基化β环化糊精(methylated-β-Cyclodextrin,M-β-CD)法处理实验组中,Cav-1和GLUT4蛋白表达均下降。此外还发现,GD可促进GLUT4从细胞质转位到细胞膜。结果提示,Cav-1可能通过调节GLUT4在GD情况下发挥神经保护作用。  相似文献   

14.
Li DL  Han H 《中国应用生理学杂志》2008,24(3):353-355,I0003
目的:观察新生大鼠缺氧缺血后脑内葡萄糖转运蛋白1( GLUT1)和葡萄糖转运蛋白3 (GLUT3)的表达情况以及孕酮对其的影响.方法:新生SD大鼠40只,随机分成4组:正常组、假手术组、缺氧缺血组和孕酮组.建立新生鼠缺氧缺血性脑病模型,免疫组化方法检测新生大鼠海马部位GLUT1及GLUT3的表达.结果:正常组和假手术组新生大鼠海马可见少量GLUT1和GLUT3 的表达,两组间无显著差异( P>0.05);缺氧缺血组GLUT1和GLUT3表达均明显高于假手术组(P<0.05);孕酮组GLUT的表达不仅明显高于假手术组(P<0.01),而且明显高于缺氧缺血组(P<0.05).结论:孕酮通过上调GLUT1和GLUT3的表达以维持脑组织的能量供给,增强神经元对缺氧缺血的耐受性.  相似文献   

15.
GLUT4在胰岛素调控葡萄糖转运中作用   总被引:1,自引:0,他引:1  
机体的血糖平衡调节主要依赖于胰岛素,其中一个重要的机制是胰岛素通过调控GLUT4的囊泡运转来调节脂肪细胞和肌细胞对葡萄糖的摄取。由胰岛素受体介导的一系列磷酸化过程能调节一些关键的GLUT4转运相关蛋白质的活性,这些蛋白质包括小GTP酶、拴系复合体和囊泡融合体。而这些蛋白质又反过来通过内膜系统调节GLUT4储存囊泡的生成、滞留,并调控这些囊泡的靶向出胞方式。了解这些过程有助于解释2型糖尿病中胰岛素耐受的机制,并可能为糖尿病提供新的靶向治疗方法。  相似文献   

16.
目的:建立稳定表达EGFP标记的葡萄糖转运蛋白4的CHO细胞系,为研究GLUT4在CHO细胞中的转运调节机制奠定基础。方法:采用分子克隆方法构建GLUT4-EGFP的融合蛋白,在FLP-in的CHO细胞系中表达,潮霉素筛选后得到稳定的细胞系。结果:通过共聚焦显微镜的检测,证明了此稳定细胞系的阳性率达到了99%。定位研究表明大部分GLUT4以囊泡形式分布在CHO细胞胞浆内,但是质膜上也有少量的GLUT4。结论:建立了一个稳定表达GLUT4-EGFP的CHO细胞系,为进一步研究GLUT4的转运提供了一个很好的细胞模型。  相似文献   

17.
目的:探讨达格列净对2型糖尿病大鼠肾脏葡萄糖转运蛋白2(GLUT2)和葡萄糖转运蛋白4(GLUT4)基因表达的影响。方法:使用高脂饲料和一次性注射40 mg/kg链脲佐菌素(STZ)建立2型糖尿病大鼠模型,造模大鼠以空腹血糖(FBG)含量≥16.7 mmol/L时视为造模成功。造模成功后随机分为模型组(B组,生理盐水)、达格列净低剂量组(C组,0.75 mg/kg)、达格列净中剂量组(D组,1.5 mg/kg)、达格列净高剂量组(E组,3.0 mg/kg),每组6只;另选取6只健康的SD大鼠作为正常对照组(A组,生理盐水)。各组均为灌胃给药,每天1次,连续7周。灌胃给药7周后测定大鼠的体重以及血清FBG、糖化血红蛋白(HbA1c)、血尿素氮(BUN)、血肌酐(Scr)的变化;采用酶联免疫吸附测定血清及肾组织丙二醛(MDA)、超氧化物歧化酶(SOD)和谷胱甘肽过氧化物酶(GSH-Px);采用HE观察肾脏病理学变化;采用Western blot检测肾脏组织中GLUT2、GLUT4蛋白表达;RT-qPCR检测肾脏组织中GLUT2、GLUT4 mRNA相对表达量。结果: 与A组比较,各组大鼠的体重及SOD、GSH-PX水平明显降低(P< 0.05),FBG、HbA1c、BUN、Scr、MDA水平明显升高(P<0.05),肾脏病理损伤严重,肾组织GLUT2、GLUT4 mRNA相对表达量和蛋白表达均明显降低(P均<0.05)。与B组比较,C组、D组和E组大鼠的体重、SOD、GSH-PX水平和肾组织GLUT2、GLUT4 mRNA相对表达量明显升高(P<0.05),FBG、HbA1c、BUN、Scr、MDA水平明显降低(P< 0.05);D组和E组肾脏病理损伤明显减轻,肾组织GLUT2、GLUT4蛋白表达均明显升高(P均<0.05)。结论:达格列净可缓解2型糖尿病模型大鼠的病情,并上调肾脏GLUT2及GLUT4基因的表达。  相似文献   

18.
动物脂肪和肌肉组织中葡萄糖的摄取是通过受胰岛素调控的GLUT4储存囊泡的运输实现的.Sec1p的同源物Munc18c被认为是通过控制SNARE复合物的装配来使GLUT4囊泡锚定到质膜上的重要物质.我们发现Munc18c的缺失没有影响GLUT4的转运上膜,也没有影响Syntaxin4在细胞膜上的定位.在缺少Munc18c和功能性Syntaxin2的时候,GLUT4的转运可能和Munc18b有关.在3T3-L1脂肪细胞中与Syntaxin4具有强烈相互作用的是Munc18c而不是Munc18a和Munc18b.然而,当缺少Munc18c时,Munc18a和Munc18b与Syntaxin4体现出较弱的相互作用.因此,Syntaxin4可能在胰岛素刺激GLUT4转运过程中起到重要的作用,且与SM蛋白的相互作用是有代偿性的.  相似文献   

19.
Yu S  Fan M  Zhao T  Ding AS  Wang FZ 《生理学报》2002,54(6):508-512
本文用培养新生大鼠海马神经元观察了氯化钴对葡萄糖转运活性的影响及其在神经元抗缺氧中的作用。结果表明,用CoCl2处理的培养海马神经元,24h后其2-脱氧-D-[1-^3H]葡萄糖摄取率和葡萄糖转运体GLUT1和GLUT3mRNA表达明显高于对照组,并且其在缺氧6或8h后的损伤也明显减轻,氯化钴对神经元缺氧损伤的保护作用被葡萄糖转运体抑制剂细胞松弛素B大部分消除,结果提示,氯化钴能够增强神经元GLUT1和GLUT3mRNA的表达和葡萄糖转运活性,CoCl2的这一作用可能是其增强神经元抗缺氧的重要机制。  相似文献   

20.
葡萄糖是真核生物体内的重要能源物质。葡萄糖转运蛋白(GLUT1)是细胞获取葡萄糖的最基本需求。GLUT1功能的缺失会造成严重的疾病,尤其是可能造成永久的脑部损伤,包括早发型惊厥,智力缺陷等。此外,肿瘤细胞对于葡萄糖的大量需求也使得GLUT1可以作为肿瘤诊断的分子标记。因此,研究葡萄糖转运蛋白对于研发糖代谢障碍药物以及诊断肿瘤均有重要意义。本实验运用分子动力学模拟的方法,在NAnoscale Molecular Dynamics(NAMD)中使用Chemistry at HARvard Macromolecular Mechanics(CHARMM)力场,构建了GLUT1结合葡萄糖和未结合葡萄糖的膜系统,并分别进行了20 ns时长的分子动力学模拟。运用Visual Merchandising(VMD)和自写脚本对这一轨迹进行分析,探究葡萄糖转运蛋白转运葡萄糖的分子机理。结果表明,20 nano-seconds(ns)的模拟时长能够使这样两个体系构象达到稳定,并且从平均结构和通道直径来看,去除葡萄糖能够使得GLUT1的结构发生翻转,由向胞内释放葡萄糖变为从胞外摄取葡萄糖的构象。同时结合模式的分析表明葡萄糖主要依靠与Gln283和Gln282形成的3个较强的氢键。最后我们通过氢键跟踪分析,发现Asn288和Thr295在这种面向胞外的口袋张开过程中发挥了重要作用。这一结论对研发针对关键氨基酸的葡萄糖代谢药物有指导作用,并且可以为癌症诊断提供一定的理论基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号