首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
The stress-activated mitogen-activated protein kinase (MAPK) pathway is widely used by eukaryotic organisms as a central conduit via which cellular responses to the environment effect growth and differentiation. The basidiomycetous human fungal pathogen Cryptococcus neoformans uniquely uses the stress-activated Pbs2-Hog1 MAPK system to govern a plethora of cellular events, including stress responses, drug sensitivity, sexual reproduction, and virulence. Here, we characterized a fungal "two-component" system that controls these fundamental cellular functions via the Pbs2-Hog1 MAPK cascade. A typical response regulator, Ssk1, modulated all Hog1-dependent phenotypes by controlling Hog1 phosphorylation, indicating that Ssk1 is the major upstream signaling component of the Pbs2-Hog1 pathway. A second response regulator, Skn7, governs sensitivity to Na+ ions and the antifungal agent fludioxonil, negatively controls melanin production, and functions independently of Hog1 regulation. To control these response regulators, C. neoformans uses multiple sensor kinases, including two-component-like (Tco) 1 and Tco2. Tco1 and Tco2 play shared and distinct roles in stress responses and drug sensitivity through the Hog1 MAPK system. Furthermore, each sensor kinase mediates unique cellular functions for virulence and morphological differentiation. Our findings highlight unique adaptations of this global two-component MAPK signaling cascade in a ubiquitous human fungal pathogen.  相似文献   

7.
8.
9.
ASC/PYCARD is a common adaptor for a diverse set of inflammasomes that activate caspase-1, most prominently the NLR-based inflammasome. Mounting evidence indicates that ASC and these NLRs also elicit non-overlapping functions, but the molecular basis for this difference is unclear. To address this, we performed microarray and network analysis of ASC shRNA knockdown cells. In pathogen-infected cells, an ASC-dependent interactome is centered on the mitogen-activated protein kinase (MAPK) ERK and on multiple chemokines. ASC did not affect the expression of MAPK but affected its phosphorylation by pathogens and Toll-like receptor agonists via suppression of the dual-specificity phosphatase, DUSP10/MKP5. Chemokine induction, DUSP function, and MAPK phosphorylation were independent of caspase-1 and IL-1β. MAPK activation by pathogen was abrogated in Asc(-/-) but not Nlrp3(-/-), Nlrc4(-/-), or Casp1(-/-) macrophages. These results demonstrate a function for ASC that is distinct from the inflammasome in modulating MAPK activity and chemokine expression and further identify DUSP10 as a novel ASC target.  相似文献   

10.
11.
Mitogen-activated protein kinase (MAPK) pathways are activated by a plethora of stimuli. The literature is filled with papers describing the activation of different MAPKs by almost any stimulus or insult imaginable to cells. In this review, we use signal transduction wiring diagrams to illustrate putative upstream regulators for the MAPK kinase kinases, MEKK1, 2, and 3. Targeted gene disruption of MEKK1, 2, or 3 defined phenotypes for each MEKK associated with loss of specific MAPK regulation. Genetic analysis of MEKK function clearly defines specific components of the wiring diagram that require MEKK1, 2, or 3 for physiological responses. We propose that signal transduction network wiring diagrams are valuable tools for hypothesis building and filtering physiologically relevant phenotypic responses from less connected protein relations in the regulation of MAPK pathways.  相似文献   

12.
13.
Lye YM  Chan M  Sim TS 《FEBS letters》2006,580(26):6083-6092
The canonical mitogen-activated protein kinase (MAPK) signal cascade was previously suggested to be atypical in the malaria parasite. This raises queries on the existence of alternative mediators of plasmodial MAPK pathways. This study describes, Pfnek3, a malarial protein kinase belonging to the NIMA (Never in Mitosis, Aspergillus) family. Endogenous Pfnek3 is expressed during late asexual to gametocyte stages and lacks some classical protein kinase sequence motifs. Moreover, Pfnek3 is phylogenetically distant from mammalian NIMA-kinases. Recombinant Pfnek3 was able to phosphorylate and stimulate a malarial MAPK (Pfmap2). Contrastingly, this was not observed with two other kinases, Pfmap1 and human MAPK1, suggesting that the Pfnek3-Pfmap2 interaction may be specific for Pfmap2 regulation. In summary, our data reveal a malarial NIMA-kinase with the potential to regulate a MAPK. Possessing biochemical properties divergent from classical mammalian NIMA-kinases, Pfnek3 could potentially be an attractive target for parasite-selective anti-malarials.  相似文献   

14.
Regulation of the osmoregulatory HOG MAPK cascade in yeast   总被引:16,自引:0,他引:16  
The budding yeast Saccharomyces cerevisiae has at least five signal pathways containing a MAP kinase (MAPK) cascade. The high osmolarity glycerol (HOG) MAPK pathway is essential for yeast survival in high osmolarity environment. This mini-review surveys recent developments in regulation of the HOG pathway with specific emphasis on the roles of protein phosphatases and protein subcellular localization. The Hog1 MAPK in the HOG pathway is negatively regulated jointly by the protein tyrosine phosphatases Ptp2/Ptp3 and the type 2 protein phosphatases Ptc1/Ptc2/Ptc3. Specificities of these phosphatases are determined by docking interactions as well as their cellular localizations. The subcellular localizations of the osmosensors (Sln1 and Sho1), kinases (Pbs2, Hog1), and phosphatases in the HOG pathway are intricately regulated to achieve their specific functions.  相似文献   

15.
16.
17.
Progesterone stimulates G2-arrested Xenopus oocytes to synthesize Mos, a MAPK kinase kinase required for the coordinated activation of cdc2 and the G2/Meiosis I (MI) transition. Mos leads to activation of MAPK, Rsk, and the inhibition of the cdc2 inhibitor Myt1. Previous work identified CK2 beta as a Mos-interacting protein, and suggested that CK2 beta acts as a negative regulator by setting a threshold above which newly made Mos must accumulate to activate MAPK. However, it had not been demonstrated that CK2 beta directly inhibits Mos. We report here that Mos (52-115) is required for CK2 beta binding and can serve as a portable binding domain. To test whether CK2 beta acts at the level of Mos or on a downstream component, we took advantage of previous work that showed injection of Mos arrests rapidly dividing embryonic cells. We find that coinjection of CK2 beta and Mos into embryonic cells inhibits the ability of Mos to arrest cell division. In contrast, CK2 beta does not inhibit the mitotic arrest induced by injection of active Rsk. These results argue that CK2 beta directly binds and inhibits Mos rather than a downstream component, and support that CK2 beta functions as a molecular buffer that prevents premature MAPK activation and oocyte maturation.  相似文献   

18.
Summary: The mitogen-activated protein kinases (MAPKs) regulate diverse cellular programs by relaying extracellular signals to intracellular responses. In mammals, there are more than a dozen MAPK enzymes that coordinately regulate cell proliferation, differentiation, motility, and survival. The best known are the conventional MAPKs, which include the extracellular signal-regulated kinases 1 and 2 (ERK1/2), c-Jun amino-terminal kinases 1 to 3 (JNK1 to -3), p38 (α, β, γ, and δ), and ERK5 families. There are additional, atypical MAPK enzymes, including ERK3/4, ERK7/8, and Nemo-like kinase (NLK), which have distinct regulation and functions. Together, the MAPKs regulate a large number of substrates, including members of a family of protein Ser/Thr kinases termed MAPK-activated protein kinases (MAPKAPKs). The MAPKAPKs are related enzymes that respond to extracellular stimulation through direct MAPK-dependent activation loop phosphorylation and kinase activation. There are five MAPKAPK subfamilies: the p90 ribosomal S6 kinase (RSK), the mitogen- and stress-activated kinase (MSK), the MAPK-interacting kinase (MNK), the MAPK-activated protein kinase 2/3 (MK2/3), and MK5 (also known as p38-regulated/activated protein kinase [PRAK]). These enzymes have diverse biological functions, including regulation of nucleosome and gene expression, mRNA stability and translation, and cell proliferation and survival. Here we review the mechanisms of MAPKAPK activation by the different MAPKs and discuss their physiological roles based on established substrates and recent discoveries.  相似文献   

19.
c-Jun NH2-terminal protein kinase (JNK) is a mitogen-activated protein kinase (MAPK) involved in the regulation of numerous physiological processes during development and in response to stress. Its activity is increased upon phosphorylation by the MAPK kinases, MKK4 and MKK7. Similar to the early embryonic death of mice caused by the targeted deletion of the jnk genes, mice lacking mkk4 or mkk7 die before birth. The inability of MKK4 and MKK7 to compensate for each other's functions in vivo is consistent with their synergistic effect in mediating JNK activation. However, the phenotypic analysis of the mutant mouse embryos indicates that MKK4 and MKK7 have specific roles that may be due to their selective regulation by extracellular stimuli and their distinct tissue distribution. MKK4 and MKK7 also have different biochemical properties. For example, whereas MKK4 can activate p38 MAPK, MKK7 functions as a specific activator of JNK. Here we summarize the studies that have shed light on the mechanism of activation of MKK4 and MKK7 and on their physiological functions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号