首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Whereas other organisms utilize type I or type II synthases to make fatty acids, trypanosomatid parasites such as Trypanosoma brucei are unique in their use of a microsomal elongase pathway (ELO) for de novo fatty acid synthesis (FAS). Because of the unusual lipid metabolism of the trypanosome, it was important to study a second FAS pathway predicted by the genome to be a type II synthase. We localized this pathway to the mitochondrion, and RNA interference (RNAi) or genomic deletion of acyl carrier protein (ACP) and beta-ketoacyl-ACP synthase indicated that this pathway is likely essential for bloodstream and procyclic life cycle stages of the parasite. In vitro assays show that the largest major fatty acid product of the pathway is C16, whereas the ELO pathway, utilizing ELOs 1, 2, and 3, synthesizes up to C18. To demonstrate mitochondrial FAS in vivo, we radio-labeled fatty acids in cultured procyclic parasites with [(14)C]pyruvate or [(14)C]threonine, either of which is catabolized to [(14)C]acetyl-CoA in the mitochondrion. Although some of the [(14)C]acetyl-CoA may be utilized by the ELO pathway, a striking reduction in radiolabeled fatty acids following ACP RNAi confirmed that it is also consumed by mitochondrial FAS. ACP depletion by RNAi or gene knockout also reduces lipoic acid levels and drastically decreases protein lipoylation. Thus, octanoate (C8), the precursor for lipoic acid synthesis, must also be a product of mitochondrial FAS. Trypanosomes employ two FAS systems: the unconventional ELO pathway that synthesizes bulk fatty acids and a mitochondrial pathway that synthesizes specialized fatty acids that are likely utilized intramitochondrially.  相似文献   

2.
The activity of fatty acid synthetase (FAS) from Vibrio sp. strain ABE-1 required the presence of acyl carrier protein and was completely inhibited by thiolactomycin, an inhibitor specific for a type II FAS. These observations indicate that this enzyme is a type II FAS. Analysis by gas-liquid chromotography of the reaction products synthesized in vitro from [2-14C]malonyl-CoA by the partially purified FAS revealed, in addition to 16-and 18-carbon fatty acids which are normal constituents of this bacterium, the presence of fatty acids with very long chains. These fatty acids were identified as saturated and mono-unsaturated fatty acids with 20 up to as many as 30 carbon atoms. The longest fatty acids normally found in this bacterium contain 18-carbon atoms. These results suggest that the FAS from Vibrio sp. strain ABE-1 has potentially the ability to synthesize fatty acids with very long chains.Abbreviations ACP acyl carrier protein - FAME fatty acid methyl ester - FAS fatty acid synthetase - FID flame ionization detection - GLC gas-liquid chromatography - TLC thin-layer chromatography - In designations of fatty acids, such as 16:0, 16:1, etc the colon separates the number that denotes the number of carbon atoms and the number that denotes the number of double bonds, respectively, in the molecule - 16:0-CoA CoA ester of 16:0  相似文献   

3.
When individual enzyme activities of the fatty acid synthetase (FAS) system were assayed in extracts from five different plant tissues, acetyl-CoA:acyl carrier protein (ACP) transacylase and beta-ketoacyl-ACP synthetases I and II had consistently low specific activities in comparison with the other enzymes of the system. However, two of these extracts synthesized significant levels of medium chain fatty acids (rather than C16 and C18 acid) from [14C]malonyl-CoA; these extracts had elevated levels of acetyl-CoA:ACP transacylase. To explore the role of the acetyl transacylase more carefully, this enzyme was purified some 180-fold from spinach leaf extracts. Varying concentrations of the transacylase were then added either to spinach leaf extracts or to a completely reconstituted FAS system consisting of highly purified enzymes. The results suggested that: (a) acetyl-CoA:ACP transacylase was the enzyme catalyzing the rate-limiting step in the plant FAS system; (b) increasing concentration of this enzyme markedly increased the levels of the medium chain fatty acids, whereas increase of the other enzymes of the FAS system led to increased levels of stearic acid synthesis; and (c) beta-ketoacyl-ACP synthetase I was not involved in the rate-limiting step. It is suggested that modulation of the activity of acetyl-CoA:ACP transacylase may have important implications in the type of fatty acid synthesized, as well as the amount of fatty acids formed.  相似文献   

4.
Incubation of stroma preparations from spinach chloroplasts with low concentrations of cerulenin (10 muM) resulted in severe inhibition of fatty acid synthesis but stimulated the release of medium-chain acids in very high proportions (60-70%). Preincubation of these preparations with cerulenin in the absence of substrate exerted no additional effect on subsequent fatty acid synthesis (as measured by incorporation of [14C]acetate into fatty acids) or the pattern of radioactive acids obtained. Acyl-protein, acyl-CoA, free fatty acids and lipids were resolved from each other and analysed for their distribution of 14C-labelled fatty acids. Acyl-protein derived from cerulenin-treated preparations was the only fraction which contained short- and medium-chain acids (C6--C12). The other fractions from both control and cerulenin-treated groups consisted exclusively of C16 and C18 acids. Acyl-protein was purified by gel filtration chromatography and was characterized as acyl-acyl carrier protein.  相似文献   

5.
Substrate specificity of condensing enzymes is a predominant factor determining the nature of fatty acyl chains synthesized by type II fatty acid synthase (FAS) enzyme complexes composed of discrete enzymes. The gene (mtKAS) encoding the condensing enzyme, beta-ketoacyl-[acyl carrier protein] (ACP) synthase (KAS), constituent of the mitochondrial FAS was cloned from Arabidopsis thaliana, and its product was purified and characterized. The mtKAS cDNA complemented the KAS II defect in the E. coli CY244 strain mutated in both fabB and fabF encoding KAS I and KAS II, respectively, demonstrating its ability to catalyze the condensation reaction in fatty acid synthesis. In vitro assays using extracts of CY244 containing all E. coli FAS components, except that KAS I and II were replaced by mtKAS, gave C(4)-C(18) fatty acids exhibiting a bimodal distribution with peaks at C(8) and C(14)-C(16). Previously observed bimodal distributions obtained using mitochondrial extracts appear attributable to the mtKAS enzyme in the extracts. Although the mtKAS sequence is most similar to that of bacterial KAS IIs, sensitivity of mtKAS to the antibiotic cerulenin resembles that of E. coli KAS I. In the first or priming condensation reaction of de novo fatty acid synthesis, purified His-tagged mtKAS efficiently utilized malonyl-ACP, but not acetyl-CoA as primer substrate. Intracellular targeting using green fluorescent protein, Western blot, and deletion analyses identified an N-terminal signal conveying mtKAS into mitochondria. Thus, mtKAS with its broad chain length specificity accomplishes all condensation steps in mitochondrial fatty acid synthesis, whereas in plastids three KAS enzymes are required.  相似文献   

6.
1. Mitochondrial and microsomal fractions of rat epididymal adipose tissue incorporated [1-(14)C]acetyl-CoA equally well into various fatty acids by a chain-elongation mechanism. C(18) and C(20) fatty acids were the two major products, and comprised about 80% of the total fatty acids synthesized in both particles. 2. When incubated in air, mitochondria synthesized stearic acid, octadecenoic acid and eicosamonoenoic acid in almost equal amounts (about 20% each), whereas in microsomal fractions, the synthesis of octadecenoic acid was more than fivefold the stearic acid formation. In both fractions, major components of synthesized monoenoic fatty acids were the Delta(11:12) isomers. Hexadecenoic acid and octadecenoic acid from whole adipose tissue contained approx. 11 and 14% of the Delta(11:12) isomer respectively. 3. When mitochondria or microsomal fractions were incubated in nitrogen, there was increased synthesis of stearic acid and palmitic acid and less of C(16) and C(18) monoenoic acids; synthesis of C(20) acids remained predominantly of the monoenoic acids. Determination of the position of the double bond in the monoenoic acids supported the view that the synthesis of hexadecenoic acid and octadecenoic acid involves a desaturase activity, whereas eicosamonoenoic acid and eicosadienoic acid are formed only by elongation of endogenous fatty acids. 4. Most of the radioactivity was found in free fatty acids (63%) and the phospholipid (26%) fraction. In phospholipids, phosphatidylcholine and phosphatidylethanolamine were the two major components. 5. Most of the fatty acids synthesized, including those not normally found in particle lipids (arachidic acid, eicosamonoenoic acid and eicosadienoic acid) were distributed fairly evenly in the phospholipid and free fatty acid fractions. However, stearic acid was found predominantly in the phospholipid fraction.  相似文献   

7.
Incorporation of [1-14C] acetate into various phospholipid and triacylglycerol fatty acids showed cyclic fluctuations in fatty acid biosynthesis that were similar for all of the major fatty acids in both male and female house crickets, Acheta domesticus, during development. All three stadia showed low levels of biosynthesis near ecdysis followed by increased synthesis to a peak at midstadium. In the phospholipid fraction, the incorporation of newly synthesized saturated fatty acids, 16:0 and 18:0, predominated near ecdysis, while at midstadium linoleic acid was the most actively synthesized fatty acid. In the triacylglycerol fraction, 18:0 and 18:1 predominated throughout the entire stadium. In contrast to the large fluctuations in fatty acid biosynthesis, the fatty acid compositions of the phospholipid and triacylglycerol fractions did not change within a stadium. However, significant differences were demonstrated between the stages and were associated primarily with differences between nymphal and adult stadia. Males and females differed in the proportions of 16:0 and 18:2 incorporated into phospholipids with females showing a greater proportion of 18:2 and a corresponding smaller proportion of 16:0 than males. The greater proportion of linoleic acid in females and in adults in general compared to nymphs and the predominance of the incorporation of newly synthesized linoleic acid into the phospholipid fraction of all stadia are consistent with the importance of this fatty acid in a number of biological roles.  相似文献   

8.
Elongation of fatty acids by microsomal fractions obtained from rat brain was measured by the incorporation of [2-14C]malonyl-CoA into fatty in the presence of palmitoyl-CoA or stearoyl-CoA. 2. Soluble and microsomal fractions were prepared from 21-day-old rats; density gradient centrifugation demonstrated that the stearoyl-CoA elongation system was localized in the microsomal fraction whereas fatty acid biosynthesis de novo from acetyl-CoA occurred in the soluble fraction. The residual activity de novo in the microsomal fraction was attributed to minor contamination by the soluble fraction. 3. The optimum concentration of [2-14C]malonyl-CoA for elongation of fatty acids was 25 mum for palmitoyl-CoA or stearoyl-CoA, and the corresponding optimum concentrations for the two primer acyl-CoA esters were 8.0 and 7.2 muM respectively. 4. Nadph was the preferred cofactor for fatty acid formation from palmitoyl-CoA or stearoyl-CoA, although NADH could partially replace it. 5. The stearoyl-CoA elongation system required a potassium phosphate buffer concentration of 0.075M for maximum activity; CoA (1 MUM) inhibited this elongation system by approx. 30%. 6. The fatty acids formed from malonyl-CoA and palmitoyl-CoA had a predominant chain length of C18 whereas stearoyl-CoA elongation resulted in an even distribution of fatty acids with chain lengths of C20, C22 and C24. 7. The products of stearoyl-CoA elongation were identified as primarily unesterified fatty acids. 8. The developmental pattern of fatty acid biosynthesis by rat brain microsomal preparations was studied and both the palmitoyl-CoA and stearoyl-CoA elongation systems showed large increases in activity between days 10 and 18 after birth.  相似文献   

9.
Fatty acid synthase (FAS) is a multifunctional homodimeric protein, and is the key enzyme required for the anabolic conversion of dietary carbohydrates to fatty acids. FAS synthesizes long-chain fatty acids from three substrates: acetyl-CoA as a primer, malonyl-CoA as a 2 carbon donor, and NADPH for reduction. The entire reaction is composed of numerous sequential steps, each catalyzed by a specific functional domain of the enzyme. FAS comprises seven different functional domains, among which the β-ketoacyl synthase (KS) domain carries out the key condensation reaction to elongate the length of fatty acid chain. Acyl tail length controlled fatty acid synthesis in eukaryotes is a classic example of how a chain building multienzyme works. Different hypotheses have been put forward to explain how those sub-units of FAS are orchestrated to produce fatty acids with proper molecular weight. In the present study, molecular dynamic simulation based binding free energy calculation and access tunnels analysis showed that the C16 acyl tail fatty acid, the major product of FAS, fits to the active site on KS domain better than any other substrates. These simulations supported a new hypothesis about the mechanism of fatty acid production ratio: the geometric shape of active site on KS domain might play a determinate role.  相似文献   

10.
Methyl-branched fatty acids present in the integument of the German cockroach, Blattella germanica, were identified by gas chromatography-mass spectrometry of their methyl esters and reduction products (alkanes) as n-3-, n-4-, n-5-, n-7-, n-8-, and n-9-monomethyl fatty acids and as n-5,9-, n-3,9-, and n-3,11-dimethyl fatty acids with 16 to 20 total carbons. These fatty acids have the same branching patterns as do the major hydrocarbons of this insect, including 3,11-dimethylnonacosane, the precursor to the major contact sex pheromone, and are presumed to be intermediates in hydrocarbon formation. A novel microsomal fatty acid synthetase (FAS) located in the integument of this insect incorporated [methyl-14C]methylmalonyl-CoA into methyl-branched fatty acids as demonstrated by radio-high-performance liquid chromatography. A cytosolic FAS is also present in the integument. Both the microsomal and the soluble FAS incorporated [methyl-14C]methylmalonyl-CoA into fatty acids, but only the microsomal FAS was able to efficiently use methylmalonyl-CoA as the sole elongating agent. This is the first report of the characterization of methyl-branched fatty acids from the integument of an insect and of an integumental microsomal FAS that incorporates methylmalonyl-CoA into branched fatty acids.  相似文献   

11.
Saccharomyces cerevisiae medium-chain acyl elongase (ELO1) mutants have previously been isolated in screens for fatty acid synthetase (FAS) mutants that fail to grow on myristic acid (C14:0)-supplemented media. Here we report that wild-type cells cultivated in myristoleic acid (C14:1Delta(9))-supplemented media synthesized a novel unsaturated fatty acid that was identified as C16:1Delta(11) fatty acid by gas chromatography-mass spectroscopy. Synthesis of C16:1Delta(11) was dependent on a functional ELO1 gene, indicating that Elo1p catalyzes carboxy-terminal elongation of unsaturated fatty acids (alpha-elongation). In wild-type cells, the C16:1Delta(11) elongation product accounted for approximately 12% of the total fatty acids. This increased to 18% in cells that lacked a functional acyl chain desaturase (ole1Delta mutants) and hence were fully dependent on uptake and elongation of C14:1. The observation that ole1Delta mutant cells grew almost like wild type on medium supplemented with C14:1 indicated that uptake and elongation of unsaturated fatty acids were efficient. Interestingly, wild-type cells supplemented with either C14:1 or C16:1 fatty acids displayed dramatic alterations in their phospholipid composition, suggesting that the availability of acyl chains is a dominant determinant of the phospholipid class composition of cellular membranes. In particular, the relative content of the two major phospholipid classes, phosphatidylethanolamine and phosphatidylcholine, was strongly dependent on the chain length of the supplemented fatty acid. Moreover, analysis of the acyl chain composition of individual phospholipid classes in cells supplemented with C14:1 revealed that the relative degree of acyl chain saturation characteristic for each phospholipid class appeared to be conserved, despite the gross alteration in the cellular acyl chain pool. Comparison of the distribution of fatty acids that were taken up and elongated (C16:1Delta(11)) to those that were endogenously synthesized by fatty acid synthetase and then desaturated by Ole1p (C16:1Delta(9)) in individual phospholipid classes finally suggested the presence of two different pools of diacylglycerol species. These results will be discussed in terms of biosynthesis of different phospholipid classes via either the de novo or the Kennedy pathway.  相似文献   

12.
Fatty acid synthetase (FAS) preparations from Saccharomyces cerevisiae cells grown at either 35 or 10 degrees C produced the same products at different temperatures and showed quite similar temperature-dependencies in Arrhenius plots, with break points at 25 degrees C. This break point does not appear to reflect a phase transition of phospholipids present in the purified FAS preparations but rather is associated with protein conformational changes. S. cerevisiae cells grown at 35 degrees C and then shifted to 10 degrees C produced fatty acids with a shorter average chain length than those fatty acids synthesized at 10 degrees C by cells already adapted to 10 degrees C (hyper response). Acetyl-CoA carboxylase activity was relatively higher in the cells grown at 35 degrees C than in the cells grown at 10 degrees C; moreover, fatty acids with longer average chain lengths were synthesized in vitro at higher malonyl-CoA concentrations, which was consistent with the difference in the average chain lengths of newly synthesized fatty acids in cells grown at 35 and 10 degrees C. However, the activity levels of acetyl-CoA carboxylase and fatty acid synthetase alone did not account for the hyper response phenomena.  相似文献   

13.
The elongation of [9,10-3H]oleoyl-CoA with malonyl-CoA to form 20, 22, and 24 carbon monounsaturated fatty acids was demonstrated in housefly microsomes by radio-GLC. These elongation reactions, which have been postulated to be involved in hydrocarbon biosynthesis, have not been previously demonstrated in insects. 2-Octadecynoate (18:1 Δ2=) inhibited the in vivo incorporation of [1-14C]acetate into both fatty acids and hydrocarbons in a dose-dependent manner. At doses of 10 μg per female housefly of the alkynoic acid, the incorporation of [1-14C]acetate into hydrocarbon was inhibited 93%, the incorporation of [9,10-3H]oleate into hydrocarbon was inhibited 64%, and the incorporation of [1-14C]acetate into total internal lipid was inhibited 65%. Partially purified FAS was inhibited 50% and 95% at 15 μM and 40 μM, respectively, of the alkynoic acid. These results show that 2-octadecynoate inhibits hydrocarbon biosynthesis in the housefly by inhibiting FAS, and the in vivo data suggest that the elongation of 18:1 to longer chain fatty acids is also inhibited.  相似文献   

14.
Macey MJ  Stumpf PK 《Plant physiology》1968,43(10):1637-1647
A low lipid, high starch containing tissue, namely cotyledons of germinating pea seedlings was examined for its capacity to synthesize fatty acid. Intact tissue slices readily incorporate acetate-14C into fatty acids from C16 to C24. Although crude homogenates synthesize primarily 16:0 and 18:0 from malonyl CoA, subsequent fractionation into a 10,000g pellet, a 105g pellet and supernatant (soluble synthetase) revealed that the 105g pellet readily synthesizes C16 to C28 fatty acids whereas the 10,000g and the supernatant synthesize primarily C16 and C18. All systems require acyl carrier protein (ACP), TPNH, DPNH if malonyl CoA is the substrate and ACP, Mg2+, CO2, ATP, TPNH, and DPNH if acetyl CoA is the substrate. The cotyledons of germinating pea seedlings appear to have a soluble synthetase and 10,000g particles for the synthesis of C16 and C18 fatty acid, and 105g particles which specifically synthesize the very long chain fatty acid from malonyl CoA, presumably via malonyl ACP.  相似文献   

15.
16.
The neutral lipids and their fatty acids and the sterol fractions of the marine ciliated protozoon, Parauronema acutum, were characterized. The neutral lipids consisted of triglycerides (30%), sterols (29%), free fatty acids (24%), steryl esters (9%), and diglycerides (8%) and small amounts of fatty alcohols. The fatty acid profiles of these lipids were very similar although quantitative differences were detected. Saturated fatty acids, primarily 14:0, 16:0, and 18:0 constituted 20-30% of the total. Unsaturated fatty acids containing one to three double bonds, primarily 18:1(9), 18:2 (9,12), 18:3 (9, 12, 15) and 20:3 (11, 14, 17), constituted 35-50% of the total. Highly unsaturated fatty acids, 18:4 (6, 9, 12, 15), 20:5 (5, 8, 11, 14, 17) and 22:6 (4, 7, 10, 16, 19), constituted 16-25% of the total. The fatty alcohols consisted of 14:0 (2%), 16:0 (66%), 18:0 (3%), 20:0 (8%), and 22:0 (21%). The sterols of Parauronema acutum consisted of cholesterol (53%), campesterol (32%), desmosterol (7%), and beta-sitosterol (8%).  相似文献   

17.
The peripheral membrane M protein of vesicular stomatitis virus purified by detergent extraction of virions and ion-exchange chromatography was determined to be a monomer in the absence of detergent at high salt concentrations. Reduction of the ionic strength below 0.2 M resulted in a rapid aggregation of M protein. This self-association was reversible by the detergent Triton X-100 even in low salt. However, aggregation was not reversible by high salt concentration alone. M protein is initially synthesized as a soluble protein in the cytosol of infected cells, thus raising the question of how the solubility of M protein is maintained at physiological ionic strength. Addition of radiolabeled M protein purified from virions to unlabeled cytosol from either infected or uninfected cells inhibited the self-association reaction. Cytosolic fractions from infected or uninfected cells were equally effective at preventing the self-association of M protein. Self-association could also be prevented by an irrelevant protein such as bovine serum albumin. Sedimentation velocity analysis indicated that most of the newly synthesized M protein is monomeric, suggesting that the solubility of M protein in the cytosol is maintained by either low-affinity interaction with macromolecules in the cytosol or interaction of a small population of M-protein molecules with cytosolic components.  相似文献   

18.
While de novo fatty acid synthesis uses acetyl-CoA, fatty acid elongation uses longer-chain acyl-CoAs as primers. Several mutations that interfere with fatty acid elongation in yeast have already been described, suggesting that there may be different elongases for medium- and long-chain acyl-CoA primers. In the present study, an experimental approach is described that allows differential characterization of the various yeast elongases in vitro. Based on their characteristic primer specificities and product patterns, at least three different yeast elongases are defined. Elongase I extends C12-C16 fatty acyl-CoAs to C16-C18 fatty acids. Elongase II elongates palmitoyl-CoA and stearoyl-CoA up to C22 fatty acids, and elongase III synthesizes 20-26-carbon fatty acids from C18-CoA primers. Elongases I, II and III are specifically inactivated in, respectively, elo1, elo2 and elo3 mutants. Elongases II and III share the same 3-ketoacyl reductase, which is encoded by the YBR159w gene. Inactivation of YBR159w inhibits in vitro fatty acid elongation after the first condensation reaction. Although in vitro elongase activity is absent, the mutant nevertheless contains 10-30% of normal VLCFA levels. On the basis of this finding, an additional elongating activity is inferred to be present in vivo. ybr159Delta cells show synthetic lethality in the presence of cerulenin, which inactivates fatty acid synthase. An involvement of FAS in VLCFA synthesis may account for these findings, but remains to be demonstrated directly. Alternatively, a vital role for C18 and C20 hydroxyacids, which are dramatically overproduced in ybr159Delta cells, may be postulated.  相似文献   

19.
Slices of rabbit cerebral cortex, from the foetal stage to the adult have been used to compare lipid synthesis from fatty acids synthesized de novo from [U-14C]glucose and [1-14C]acetate, with lipid synthesis from exogenous albumin-bound [1-14C]palmitate. Incorporation into cellular lipid has been determined in terms of DNA, protein, wet wt. of tissue and wet weight of whole brain. On a wet wt. basis, maximum incorporation of glucose carbon into lipid occurred in the foetal brain while lipid synthesis from acetate and palmitate was maximum at 4–14 days after birth. Glucose and acetate were incorporated into a diversity of lipids (with increasing amounts of phosphatidylcholine synthesized during maturation), while palmitate was incorporated into the free fatty acid and triglyceride fractions. A greater proportion of acetate was incorporated into fatty acids of chain-length longer than C16 compared with the incorporation of palmitate. However, on a molar basis de novo synthesized and exogenous palmitate were elongated, desaturated and incorporated into phospholipids at a similar rate, while exogenous palmitate was incorporated to a greater extent than de nova synthesized fatty acid into the triglyceride fraction. This difference in metabolism may be due to the different size of the non-esterified fatty acid pool in the two situations. At the period of their most active formation, the very long-chain fatty acids may be synthesized from a pool of the C18 series of fatty acids (saturated and monoenoic) not in equilibrium with the bulk of C18 acids in cerebral lipids. This could be a pool of acyl groups derived from ethanolamine phospholipids.  相似文献   

20.
Insect cuticular hydrocarbons are synthesized de novo in integumental tissue through the concerted action of fatty acid synthases (FASs), fatty acyl-CoA elongases, a reductase, and a decarboxylase to produce hydrocarbons and CO2. Elongation of fatty acyl-CoAs to very long chain fatty acids was studied in the integumental microsomes of the German cockroach, Blatella germanica. Incubation of [1-14C]palmitoyl-CoA, malonyl-CoA, and NADPH resulted in the production of 18-CoA with minor amounts of C20, C22, C24, C30, and C32 labeled acyl-CoA moieties. Similar experiments with [1-14C]stearoyl-CoA rendered C20-CoA as the major product, and lesser amounts of C22 and C24-CoAs were also detected. After solubilization of the microsomal FAS, kinetic parameters were determined radiochemically or by measuring NADPH consumption. The reaction velocity was linear for up to 3 min incubation time, and with a protein concentration up to 0.025 microg/microl. The effect of the chain length on the reaction velocity was compared for palmitoyl-CoA, stearoyl-CoA, and eicosanoyl-CoA. The optimal substrate concentration was 10 microM for C16-CoA, between 8 and 12 microM for C18-CoA, and close to 3 microM for C20-CoA. In vivo hydrocarbon biosynthesis was inhibited from 55.5 to 72.5% in the presence of 1 mM trichloroacetic acid, a known inhibitor of elongation reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号