首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In 1967 and 1968 plots of sugar beet in two identically grown crops were shaded for successive four week periods starting on 13 June, 18 July and 22 August, and the growth of the plants compared with that on unshaded plots. At the beginning of each period in 1967 some shaded and unshaded plants received additional nitrogen, and in 1968 plants continuously shaded from June to September were compared with unshaded plants irrigated to equalize their water losses with those of the shaded plants. The weather in 1967 was sunny and dry and that in 1968 dull and wet, but the yields of dry matter, and particularly of sugar, of the unshaded crop in the 2 years were similar because, although net assimilation rate (E) was greater in 1967 than 1968, mean leaf area index (L) in 1968 was almost double that in the 1967 crop. Shading decreased the incoming radiation by 56%; it decreased E proportionally in 1967, increasing L slightly, but it decreased both E (by 44%) and L in 1968. The weights of dry matter and sugar in the roots of the shaded crop were consistently smaller at the end of shading and at final harvest in October in both years, and their weights, but not those of the tops or the whole plant, at final harvest over all shading treatments in both years were proportional to the amount of radiation received by the crop between June and September. Although shading greatly decreased the supply of photosynthate to the roots, it did not change the sugar content percentage of dry matter, except in the early stages of growth when the sugar content was rapidly increasing. Sugar content percentage of fresh weight of the roots was consistently decreased by shading, wholly because water content was increased relative to dry matter. Therefore the sugar yield of shaded plants was less because the dry weights of the roots were less, not because the partition of photosynthate between sugar storage and root growth changed. There appears to be a mechanism within the root operating over a wide range of photosynthate supply that maintains a nearly constant proportion of sucrose to non-sugar, contrary to the hypothesis that sugar stored in the roots is photosynthate in excess of what can be used in growth of the plant. However, in the extreme condition of continuous shading which drastically decreased the dry weights of all parts of the plant, sugar percentage of dry matter in the roots was decreased, but only from 80 to 70%. In 1967 extra nitrogen applied at the start of shading increased L and the dry weight of the tops in all periods, but had no effect on the dry weight of roots. Because 1968 was a wet year the irrigation treatment had no effect on E or L except for a slight increase in L during the first period; it had no effect on plant dry weight. Both irrigation and additional nitrogen decreased the sugar content percentage of fresh weight of the roots only by altering their water content; sugar percentage of dry matter was unaffected. None of these changes persisted until the final harvest in October.  相似文献   

2.
Declining temperature and low light often appear together to affect cotton (Gossypium hirsutum L.) growth and development. To investigate the interaction on fibre elongation, two cultivars were grown in fields in 2010 and 2011 and in pots in 2011 under three shading levels for three planting dates, and the differences of environmental conditions between different planting dates were primarily on temperature. Fibre length in the late planting date 25 May was the longest instead of the normal planting date. Late planting prolonged fibre elongation period and the effect of late planting on fibre length formation was greater than low light. In the normal planting date, shading increased fibre length through delaying the peak of β-1,3-glucanase gene expression and bringing the peak of β-1,3-glucan synthase gene expression forward, leading to a longer duration of plasmodesmata(PD) closure to increase fibre length, instead of changing sucrose contents or relate enzyme activities. However, in the late planting dates, the difference of the duration of PD closure between shading treatments was not obvious, but low light had a negative impact on sucrose contents, sucrose synthase (SuSy) and vacuolar invertase(VIN) activities during fibre rapid elongation period, leading to the decline of fibre length. Due to late planting and low light, the decreased extent of fibre length of Sumian 15 was larger than Kemian 1. Under the combined condition, Sumian 15 had a shorter gene expression of Expansin, and more sensitive sucrose content, VIN and SuSy activity during fibre rapid elongation period. This resulted in the length formation of Sumian 15 which was more sensitive than Kemian 1, when the cotton suffered the combined effects.  相似文献   

3.
棉麦两熟共生期遮荫对棉苗生长发育的影响   总被引:3,自引:2,他引:1  
黄淮棉区棉麦两熟2号主要种植方式(3:2式和3:1式)共生期不同程度遮荫,影响棉苗叶片C、N代谢和可溶性蛋白质含量,过氧化物酶(POD)活性、丙二醛(MDA)累积,与一熟棉相比较,遮荫棉苗的生理代谢能力降低,但3:2式共生期遮荫对棉苗生理代谢及其生长发育的影响与一熟棉差异较小,3:1式共生期遮荫对棉苗的生理代谢影响较大,不利于棉苗生长发育。  相似文献   

4.
Summary A 2-year field study was undertaken on a sandy loam in a tropical monsoon region to determine the growth and yield response of maize (Zea mays L.) to 10–11 day intermittent submergence at two growth stagesviz., 20 (stage 1) and 40 (stage 2) days after planting, in combination with two rates of rice straw mulch (0 and 6 t/ha) and three levels (0, 30 and 60 kg/ha) of soil-applied supplemental nitrogen. Intermittent submergence at both growth stages caused a severe oxygen stress in the root-zone. Compared with no-flooding, stage-1 flooding without additional N reduced the grain yield by 51 and 69%, stover yield by 16 and 45% and grain: stover ratio by 41 and 47% in the first and second year, respectively. Similar were the submergence effects on N, P, K and Zn concentrations in leaves, ears per plant and grain weight per ear. Relatively more adverse effects of stage-1 flooding in the second than the first year followed from the hotter soil and atmospheric environments in the former season. The stage-2 flooding produced practically no ill effects on growth and yield of the crop. Soil application of 60 kg N/ha after termination of stage-1 flooding recovered the grain yield by 77% in the first year and 65% in the second year. Additional nitrogen also benefited the growth and yield characters. The interactive effects of straw mulching with flooding were not distinct. Senior Scientist (Irrigation), formerly graduate student and Assistant Soil Physicsts, respectively.  相似文献   

5.
The relationships between temperature and surface wetness and subsequent infection of hop tissues by P. humuli were examined on potted plants and detached leaves kept in temperature-controlled growth rooms. Periods of wetness which would just allow leaf infection ranged from 1 1/2 h at 30d? to 24 h at 5d?. The corresponding ranges for shoots were: light infection, 3 h at 19–23d? to 6 h at 8–10d?; severe infection, 4 h at 19–23d? to 8 h at 12–13d?. These data were used to relate the development of downy mildew in an unsprayed hop garden during 1967 and 1968 to periods with temperature/surface wetness suitable for minimum (minor infection periods) and severe infection (major infection periods). In 1967 a sudden outbreak of infected basal shoots (spikes) was related to an isolated major infection period. By contrast, early in 1968, major shoot infection periods did not arise and spikes appeared gradually in response to a succession of minor infection periods. More spikes were formed in 196 than in 1967; this was not related to the incidence of infection periods but probably reflected the relatively higher concentrations of airborne sporangia early in 1968. In both years outbreaks of leaf and lateral shoot infection could be traced to major infection periods caused by rain; sudden disease increases again originated from isolated infection periods. There was a close similarity between the incubation period for each principal disease outbreak and that expected from growth-room experiments. Major infection periods occurred more frequently at the end of June 1968, resulting in a higher final concentration of diseased tissue than in 1967. Predicted major infection periods failed to induce large disease increases when dew alone provided wetness or when no airborne sporangia could be detected.  相似文献   

6.
氮供给和种植密度是影响植物生长的两个重要因素。豆科植物因其生物固氮能力而在受到氮限制的生态系统中具有重要作用, 氮含量增加促进植物生长的同时也会抑制豆科植物的生物固氮能力, 种植密度会通过种内竞争影响豆科植物的生长和生物固氮能力, 然而少有研究关注氮肥添加和种植密度对豆科植物生长和生物固氮能力的影响。该研究以达乌里胡枝子(Lespedeza davurica)为研究对象, 通过温室盆栽实验, 探究氮肥和种植密度对其生长和生物固氮的影响。实验设置4个氮添加水平(0、5、10、20 g·m-2·a-1)和3种种植密度(1、3、6 Ind.·pot-1, 约32、96、192 Ind.·m-2)。结果发现: 1)施肥和密度增加均影响了达乌里胡枝子的生长。叶片碳(C)、氮(N)含量、净光合速率随施氮量增加而增加, 氮添加也促进了植物的生长, 当施氮量为10 g·m-2·a-1时植物产量达到最大。叶片C、N含量、净光合速率随种植密度增加而下降, 密度增加可以促进每盆的总生物量, 但对单个植株的生长有负效应。2)氮肥对根瘤形成有抑制作用, 但种植密度增加会缓解氮肥对生物固氮能力带来的“氮阻遏”。该实验条件下, 当施氮量为10 g·m-2·a-1, 种植密度为3 Ind.·pot-1, 或施氮量为5 g·m-2·a-1, 种植密度为6 Ind.·pot-1时, 能最大程度发挥“施氮增产”和种植密度缓解“氮阻遏”的作用。氮添加降低了达乌里胡枝子的根瘤生物量和对根瘤形成的投资(根瘤生物量占总生物量的比例), 从而抑制达乌里胡枝子的生物固氮。种植密度增加导致达乌里胡枝子因种内竞争增加而使资源获取受限, 从而增加对根瘤的投资和根瘤生物量来获得更多来自大气中的氮。3)结构方程结果显示, 氮肥和种植密度通过直接或间接作用, 解释了64%的达乌里胡枝子生物量变化和42%的根瘤生物量变化。上述结果表明合理优化豆科植物的施肥量和种植密度可能对人工草地种植以及退化草地恢复管理具有重要意义。  相似文献   

7.
Propagation through vegetative cuttings is a widely used technique that may bias estimates of genetic and environmental effects on plant growth. Leafy stem cuttings from 210 genotypes from eight populations of Salix pulchra were rooted and raised at three levels of nitrogen availability. Cuttings showed a complex suite of responses to vegetative propagation. Population and/or genotypic variation in response to vegetative propagation was observed in (1) retention of leaves during rooting, (2) date that cuttings resumed shoot growth after rooting, and (3) the frequency of cuttings that remained shoot dormant throughout the experiment. Nitrogen treatments also caused different responses to vegetative propagation, influencing date that cuttings resumed shoot growth and frequency of shoot dormancy. Because each of these responses had a direct effect on final plant size, I concluded that final size was a product of both differences among genotypes and treatments in plant growth rate, as well as genotype- and treatment-specific responses to vegetative propagation. This study shows that plant growth experiments can be designed to quantify responses to vegetative propagation and statistically remove these artifacts of propagation from estimates of genetic and environmental effects on plant growth.  相似文献   

8.
In examinations between September 1966 and December 1968 of 741 specimens of rose species and cultivars, cleistocarps of Sphaerotheca pannosa were found on thirty-two cultivars, mostly ramblers and old shrub roses, and on nine of these they were found in two or three successive seasons. On stem pieces placed on soil in each of the winters 1966-7, 1967-8 and 1968-9 the number of cleistocarps with asci and ascospores decreased during November and December and rose slightly in January, but none showed dehiscence. Cleistocarps on rose bushes examined during the winters of 1967-8 and 1968-9 showed a progressive degeneration of ascospores, and by December none was found. Perennation of S. pannosa in buds was demonstrated by field observations, by inducing bursting of dormant buds on surface-sterilized shoots and by dissection of dormant apical buds. In field studies in 1968 of the development of mildew, infected buds were noted on 22 March but secondary infections did not appear until 17 April, though viable conidia and susceptible leaf tissue were present during this period. Low temperatures appeared to be partly responsible for this lag. On detached leaves in the laboratory the fungus developed from germination to sporulation in 4 days at 20°, 7 days at 15°, 11 days at 10° and 28 days at 3°. Keeping inoculated detached leaves at 0° for 10 days apparently did not affect the viability of the conidia. In both 1967 and 1968 there were two host growth periods, each culminating in flowering, between May and September; mildew did not develop on the shoots until the second growth phase, then the disease increased logarithmically on shoots and blooms during August and September. The disease on the shoots was effectively controlled in the field during 1968 by applications of ‘Benlate’ (benomyl) or dinocap, but not by methy-rimol; these fungicides were less effective in controlling mildew on pedicels. Laboratory tests showed that ‘Benlate’ inhibited sporulation of S. pannosa by deforming the conidiophores.  相似文献   

9.
We followed C and N reserves of grapevines grown in trenches under semi-controlled conditions over a 3-year period after planting. Temporal mobilization of stored C and N and subsequent distribution of reserve materials within the vines were described in parallel with 15N uptake, particularly during the third growing season. Storage C in the perennial tissues (roots, trunk, canes) was mainly made of starch, which accumulated in the ray parenchyma of the wood. In the permanent tissues, starch and total nitrogen contents were found to decrease early in the development (bleeding sap, budbreak) whereas, on a concentration basis, they decreased only after stage 7 (first leaf fully expanded). Starch started to accumulate again in the perennial tissues during flowering. The same observation was made with total nitrogen, although N levels were much lower than those of starch. The 15N study showed that N uptake by the roots started at budbreak and increased with vine development, becoming predominant over reserve mobilization only after the onset of flowering. Taken together, these results indicate that the spring growth period can be divided into three main phases: In the first (dormancy to budbreak), significant losses of C and N proceed mainly via root necrosis. In the second period (first leaf to the onset of bloom), a strong mobilization of starch (and, to a lower extent, of N) occurred for supporting vegetative and reproductive growth. At that point, most of the C and N reserves used on the spring flush were those of the roots, rather than those of the old wood (trunk, canes). In the third period (bloom and early berry development), the mobilization process became low and was relieved by N uptake (and CO2 assimilation) supplying nutrients to the sink structures.  相似文献   

10.
The objective of the present study was to elucidate whether remobilized N from lower leaves is involved in causing the drop in N(2) fixation during pod-filling in common bean (Phaseolus vulgaris L). Moreover, we addressed the question of whether remobilized N from lower leaves would reach the nodules. Nodulated common bean plants were grown in a growth chamber in quartz sand. During a 2-week period, at vegetative and at reproductive growth, 50% of the leaves (lower part) were either excised or individually darkened, thereby removing the same photosynthetic capacity yet allowing N to be remobilized from the darkened leaves. Moreover, at the vegetative growth period, three lower leaves per plants were (15)N labelled by applying (15)NH(4)NO(3) prior to imposing the darkening treatment. Leaf darkening at vegetative growth induced N remobilization as well as reduced N(2)-fixation rates and growth. Leaf excision at reproductive growth enhanced N(2) fixation. Changes in N(2)-fixation rates were in all cases the result of altered growth rates, while the % N in the whole plant and in various plant parts remained conserved. Directly after leaf labelling, but also at the end of the vegetative growth period, substantial amounts of (15)N from the leaves could be recovered in nodules in the control, and in higher amounts in the leaf-darkening treatment. It is proposed that nitrogen from leaves circulates within the plant via nodules, and that the strength or composition of this circular flow may be the signal for a putative N-feedback effect.  相似文献   

11.
Aneurolepidium chinense (Trin.) Kitag. is a perennial rhizome grass with fertile vegetative propagation. According to the field-investigation at fixed locations in fixed period, the seasonal change of vegetative propagation of A. chinense population and the autopopulation were specifically analysed. The results showed that both A. chinense population and the autopopulation could continuously make vegetative propagation in the entire growh season. The vegetative propagation brought more potential into play in the autopopulation of planting tillering than in the autopopulation of planting seedling, and the dynamics conformed to the Logistic curve growth for every experimental autopopulation in the planting growth season. The vegetative propagation of the population and the autopopulation was more seriously affected by the sexual development and the growth. The plant size was rigorously restricted by the population density, and the change of regularity followed–0.6699 power between mean weight per plant and the population density in the period of maximum biomass in the natural cutting grassland. The comprehensive analysis showed that A. chinense population depended on vegetative propagation and the population regeneration of the self-regulation, but the population hadnt far reached the most density which could be accommodated by standing conditions in the natural cutting grassland in the Songnen Plain of China.  相似文献   

12.
For three years the population size, rates of growth, standing stock, production and yield of all year classes of salmon and trout within three sections of a stream in Scotland were studied. Total salmon production as fresh weight per m2 was 6.5 g in 1966, 10.6 g in 1967 and 11.1 g in 1968, and total trout production was 10.3g in 1966, 12.3 g in 1967 and 7.7g in 1968. Fish of 0+ and 1+ year old provided usually more than 90% of the total annual salmon production and 80 % of the annual trout production. Yield of salmon smolts (about 9 cm or longer after 2 years growth) per m2 was 0.10 in 1966, 0.22 in 1967 and 0.15 in 1968. The smolt yield by weight was 29 % of the production of the 1966 year class of salmon and 16% of the 1967 year class. Numbers of trout of 9 cm or longer produced in the same time were higher and their weight was 60% of the total production of the 1966 year class and 32% of the 1967 year class.  相似文献   

13.
Photosynthesis by White Clover Leaves in Mixed Clover/Ryegrass Swards   总被引:1,自引:0,他引:1  
Measurements of rates of net photosynthesis were made on singleBlanca white clover leaves on plants taken from a field-grown,mixed clover/perennial ryegrass sward during two regrowth periods. Net photosynthesis fell by 20 per cent in the first measurementperiod as leaf area index increased and the grass componentof the crop flowered, but did not change significantly in thesecond measurement period during which the grass remained vegetative. Leaves which had been artificially protected from shading inthe sward did not have significantly different photosyntheticcapacities from leaves in the undisturbed sward, even in thefirst measurement period. As leaf area index and sward height increased, successive cloverpetioles were longer, keeping the newly expanded leaves nearthe top of the sward where they received full light. It is suggestedthat it is this which allows successive clover leaves, unlikethose of vegetative grasses, to attain a high photosyntheticcapacity throughout a growth period. Trifolium repens, Lolium perenne, Photosynthetic capacity, shading, growth  相似文献   

14.
利用温室盆栽试验,研究了不同光强100%、40%、20%和5%下三叶鬼针草营养生长期和繁殖期的生长特征。结果表明:中度遮荫有利于三叶鬼针草支持结构的生长和营养期的物质积累,重度遮荫下仍能生长良好。在两个生长时期,相对生长速率(RGR)、净同化速率(NAR)均在100%光强下最大,5%光强下最小;总生物量在营养期和繁殖期分别在40%光强和全光照下最大,在3%光强下最小;株高、总叶面积(TLA)、根生物量比(RMR)、根冠比(R/C)、叶生物量比(LMR)、比叶面积(SLA)、叶面积比(LAR)、平均叶面积比(LARm)在3%光强时均大于全光照下的;支持结构生物量比(SBR)在40%光强、20%光强下大于3%光强和全光照处理。这说明三叶鬼针草在形态、生物量分配及生长特性上对光因素具较强的可塑性,这可能是其分布范围广、具有强入侵性的因素之一。  相似文献   

15.
刘贤赵  康绍忠 《生态学报》2002,22(12):2264-2271
对番茄植株做了两种不同程度的遮荫处理,观测了夏季午间遮荫对光合速率,干物质积累量及其在根,茎,叶之间的分配,和叶N,P,K的含量以及经济产量的影响,发现不同时期遮荫影响不同。(1)遮荫增加三个阶段(开花早期,盛花期和开花后期)的气孔导度和胞间CO2浓度,显著降低开花早期中午的净化合速率,但盛花期中度遮荫(40%遮荫)使净光合速率随着时间的增加逐渐上升,在开花后期表现更加明显,平均净光合速率比对照高20%以上,蒸腾速率也增加较多。(2)开花早期和盛花期重度遮荫(如本实验中的75%遮荫)显著降低根,茎的干重,而开花后期中度遮荫的根,茎干重高于对照,但遮荫对叶干重的影响不明显。(3)开花早期和盛花期遮荫不明显影响叶片中N,P,K的含量,但开花后期中度遮荫使N,P,K含量增加,(4)开花早期两种遮荫对果实产量影响较小,但盛花期重度遮荫使产量降低,全部产量中无效部分所占的比例上升,开花后期中度遮荫的总产量和有效产量增加,单果重也增加,这些结果表明,在某些时期中度遮荫可以克服夏天辐射过强,气温过高对番茄的不良影响,对番茄生长,干物质积累和提高产量等有利,在生产上有意义。  相似文献   

16.
17.
本文根据野外定位定期观测,分析了羊草[Aneurolepidium chinense(Trin.)Kitag.]种群和羊草个体群营养繁殖的特点。结果表明,在整个生长季,羊草能不断地进行营养繁殖。在移植当年,羊草分蘖株个体群的营养繁殖潜力比实生苗个体群的更大,两个实验个体群的数量均符合于逻辑斯谛曲线增长。生殖生长对羊草的营养繁殖有较大的影响。天然割草场上的羊草种群在生物量达最高时期,种群植株的大小受密度的制约,平均单株重量与密度之间遵循-0.6699 幂的规律性变化。综合分析表明,在松嫩平原天然割草场上,羊草种群依靠营养繁殖更新延续、自我调节,但该种群尚未达到环境所能容纳的最大数量。  相似文献   

18.
Nitrogen redistribution to sorghum grains as affected by plant competition   总被引:2,自引:0,他引:2  
An experiment was conducted to study nitrogen absorption and translocation in grain sorghum plants during their reproductive growth. Sorghum was grown in four row spacings: 50 and 70 cm in single rows, 80 and 120cm in double rows 20 cm apart. Plant populations were 71000, 142000 and 213000 plants/ha. After flowering, samples were taken at 12 day intervals, and the plants were divided into grains and stover, where N was analyzed. There was an increase in N concentration in lower plant populations and in wider row spacings. However, total nitrogen accumulation (in kg/ha) increased as the number of plants was increased. In the vegetative parts of the plants there were higher N concentrations in lower populations showing that there was a higher N absorption and a lower translocation to the grains. When grain sorghum was grown in 50 cm rows, there was a high N accumulation, a high N translocation to the grains and the highest yield. This row spacing led to the highest N use efficiency.  相似文献   

19.
Changes in sward growth above ground by shade is a controversialsubject for field experimentation because the differential allocationof carbon (C) to shoots and roots is difficult to measure. Inthis experiment the effect of three levels of irradiance (100%,56% and 33% of full sunlight) on C and nitrogen (N) allocationin Dichanthium aristatum were studied under well-watered andwell-fertilized conditions. Dry matter accumulation, weightratio per organ and N allocation indices were studied duringtwo cycles of growth, after planting and after cutting. Shadehad no effect on the C and N influxes into the whole plant,showing that the N absorption is regulated by the C assimilation.However, C, and principally N, were preferentially allocatedto the laminae under reduced irradiance. Under 100% and 56%of full sunlight, more N was allocated to the stubble component.This situation was reversed in the lowest radiation level, indicatingthat N reserves, and not exclusively C reserves, may limit theregrowth of this perennial grass when growing under high levelsof shade. The higher shoot:root ratio under shade shows thedisadvantage in the use of radiation use efficiency calculatedfrom aerial biomass data when comparing differents levels ofshade. Key words: Growth, shading, reserves, C4 species  相似文献   

20.
遮光对小麦植株氮素转运及品质的影响   总被引:5,自引:1,他引:4  
Mu HR  Jiang D  Dai TB  Cao WX 《应用生态学报》2010,21(7):1718-1724
以耐弱光性不同的冬小麦品种扬麦158(耐弱光品种)和扬麦11(不耐弱光品种)为材料,研究了拔节至成熟期遮光对小麦籽粒产量、植株氮素代谢及籽粒和面团品质的影响.结果表明:拔节至成熟期遮光22%和33%时,扬麦158和扬麦11籽粒产量分别比对照下降4.1%~9.9%和15.3%~25.8%;而小麦籽粒蛋白质产量分别下降3.0%~8.3%和10.4%~14.1%,且随着遮光程度的加重,小麦籽粒氮素积累对花后氮素积累的依赖性增强.遮光条件下各营养器官中花前贮存氮素转运量均下降,但叶片氮素转运效率(RENP)上升,从而补偿了茎鞘、穗壳中RENP的下降,因此营养器官总RENP未受遮光条件的显著影响.拔节至成熟期遮光提高了小麦籽粒蛋白质含量,这与弱光下籽粒蛋白质积累量下降幅度小于产量下降幅度所形成的"浓缩效应"有关.弱光对成熟期小麦籽粒清蛋白和球蛋白含量无显著影响,但显著提高了醇溶蛋白和麦谷蛋白含量,导致小麦湿面筋含量、面团形成时间和稳定时间提高,面团弱化度降低.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号