首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
2.
Inactivation of Rho GTPases inhibited the neurite outgrowth of PC12 cells. The role of Cdc42 in neurite outgrowth was then studied by selective inhibition of Cdc42 signals. Overexpression of ACK42, Cdc42 binding domain of ACK-1, inhibited NGF-induced neurite outgrowth in PC12 cells. ACK42 also inhibited the neurite outgrowth of PC12 cells induced by constitutively activated mutant of Cdc42, but not Rac. These results suggest that Cdc42 plays an important role in mediating NGF-induced neurite outgrowth of PC12 cells. Inhibition of neurite outgrowth was also demonstrated using a cell permeable chimeric protein, penetratin-ACK42. A dominant negative mutant of Rac, RacN17 inhibited Cdc42-induced neurite outgrowth of PC12 cells suggesting that Rac acts downstream of Cdc42. Further studies, using primary-cultures of rat cerebellar granule neurons, showed that Cdc42 is also involved in the neurite outgrowth of cerebellar granule neurons. Both penetratin-ACK42 and Clostridium difficile toxin B, which inactivates all members of Rho GTPases strongly inhibited the neurite outgrowth of cerebellar granule neurons. These results show that Cdc42 plays a similar and essential role in the development of neurite outgrowth of PC12 cells and cerebellar granule neurons. These results provide evidence that Cdc42 produces signals that are essential for the neurite outgrowth of PC12 cells and cerebellar granule neurons. These authors contributed equally  相似文献   

3.
We present evidence that direct activation of neuronal second messenger pathways in PC12 cells by opening voltage-dependent calcium channels mimics cell adhesion molecule (CAM)-induced differentiation of these cells. PC12 cells were cultured on monolayers of control 3T3 cells or 3T3 cells expressing transfected N-cadherin in the presence of KCl or a calcium channel agonist Bay K 8644. Both potassium depolarization and agonist-induced activation of calcium channels promoted substantial neurite outgrowth from PC12 cells cultured on control 3T3 monolayers and increased neurite outgrowth from those cultured on N-cadherin-expressing 3T3 monolayers. The potassium-induced response could be inhibited by L- and N-type calcium channel antagonists and by kinase inhibitor K-252b but was unaffected by pertussis toxin. In contrast activators of protein kinase C did not stimulate neurite outgrowth, and the neurite outgrowth response induced by activation of protein kinase A was not inhibited by calcium channel antagonists or pertussis toxin. These studies support the postulate that CAM-induced neuronal differentiation involves a specific transmembrane signaling pathway and suggest that activation of this pathway after CAM binding may be more important for the neurite outgrowth response than CAM-dependent adhesion per se.  相似文献   

4.
Reelin is an extracellular matrix molecule that is involved in the normal development of the cerebellar lamination, Bergmann glial fibres alignment, Purkinje cell monolayer arrangement and granule cell migration. In this study, we have examined the effects of maternal exposure of deltamethrin (DLT), a type II pyrethroid insecticide, on the structural and functional development of rat cerebellum during postnatal life. DLT (0.75 mg/kg body weight, intraperitoneally dissolved in dimethylsulphoxide) was administered in timed pregnant rats during two different gestational time periods, i.e. gestational days of 7–10 and 11–14, respectively. In DLT exposed rats, a significant overexpression of reelin was observed in the cells of the external granule cell layer (EGL) and internal granule cell layer along with an ectopic expression of reelin in the EGL as well as in the migrating granule cells just below the EGL, revealing an arrest of granule cell migration in this zone. Mis-orientation and hypertrophy of the Bergmann glial fibres further hampered the journey of the granule cells to their final destination. Possibly reelin overexpression also caused misalignment of the Purkinje cells and inhibited the neurite growth leading to a significant decrease in the spine density, main dendritic length and width of the dendritic arbour. Thus, it is proposed that the DLT exerts its neurotoxic effects possibly via the intracellular accumulation and low release of reelin leading to an impaired granule cell and Purkinje cell migration, inhibition of neurite outgrowth and reduced spine density. Such impaired cerebellar development leads to motor coordination deficits.  相似文献   

5.
Abstract: The NG2 chondroitin sulfate proteoglycan inhibits neurite outgrowth from neonatal rat cerebellar granule neurons when presented to the neurons as a component of the substrate. To begin to understand the cellular mechanisms by which this inhibition occurs, we investigated the hypothesis that cerebellar granule neurons express cell surface receptors for NG2 and that these receptors are linked to cellular signaling pathways. Here, we show that the NG2 core protein binds specifically and with high affinity to cerebellar granule neurons. Using protein cross-linking techniques and immunoprecipitation, a 280-kDa membrane cell surface protein of granule neurons was identified as an NG2-binding site. Treatment of the neurons with pertussis toxin reversed the growth inhibition, suggesting a role for pertussis toxin-sensitive G proteins in the inhibitory response. Treatment of the neurons with pharmacological agents that increase either intracellular calcium or intracellular cyclic AMP levels partially reversed the growth inhibition induced by NG2. These results suggest that the growth-inhibitory actions of NG2 proteoglycan are due to an interaction with a specific cell surface receptor that is linked, either directly or indirectly, to intracellular second messenger systems.  相似文献   

6.
A combinatorial library of undecapeptides was produced and utilized for the isolation of peptide binding to the fibronectin type 3 modules (F3I–F3II) of the neural cell adhesion molecule (NCAM). The isolated peptides were sequenced and produced as dendrimers. Two of the peptides (denoted ENFIN2 and ENFIN11) were confirmed to bind to F3I–F3II of NCAM by surface plasmon resonance. The peptides induced neurite outgrowth in primary cerebellar neurons and PC12E2 cells, but had no apparent neuroprotective properties. NCAM is known to activate different intracellular pathways, including signaling through the fibroblast growth factor receptor, the Src-related non-receptor tyrosine kinase Fyn, and heterotrimeric G-proteins. Interestingly, neurite outgrowth stimulated by ENFIN2 and ENFIN11 was independent of signaling through fibroblast growth factor receptor and Fyn, but could be inhibited with pertussis toxin, an inhibitor of certain heterotrimeric G-proteins. Neurite outgrowth induced by trans- homophilic NCAM was unaffected by the peptides, whereas knockdown of NCAM completely abrogated ENFIN2- and ENFIN11-induced neuritogenesis. These observations suggest that ENFIN2 and ENFIN11 induce neurite outgrowth in an NCAM-dependent manner through G-protein-coupled signal transduction pathways. Thus, ENFIN2 and ENFIN11 may be valuable for exploring this particular type of NCAM-mediated signaling.  相似文献   

7.
CD47 is involved in neurite differentiation in cultured neurons, but the function of CD47 in brain development is largely unknown. We determined that CD47 mRNA was robustly expressed in the developing cerebellum, especially in granule cells. CD47 protein was mainly expressed in the inner layer of the external granule layer (EGL), molecular layer, and internal granule layer (IGL), where granule cells individually become postmitotic and migrate, leading to neurite fasciculation. At postnatal day 8 (P8), CD47 knockout mice exhibited an increased number of proliferating granule cells in the EGL, whereas the CD47 agonist peptide 4N1K increased the number of postmitotic cells in primary granule cells. Knocking out the CD47 gene and anti‐CD47 antibody impaired the radial migration of granule cells from the EGL to the IGL individually in mice and slice cultures. In primary granule cells, knocking out CD47 reduced the number of axonal collaterals and dendritic branches; by contrast, overexpressing CD47 or 4N1K treatment increased the axonal length and numbers of axonal collaterals and dendritic branches. Furthermore, the length of the fissure between Lobules VI and VII was decreased in CD47 knockout mice at P21 and at 14 wk after birth. Lastly, CD47 knockout mice exhibited increased social interaction at P21 and depressive‐like behaviors at 10 wk after birth. Our study revealed that the cell adhesion molecule CD47 participates in multiple phases of granule cell development, including proliferation, migration, and neurite differentiation implying that aberrations of CD47 are risk factors that cause abnormalities in cerebellar development and atypical behaviors.© 2014 Wiley Periodicals, Inc. Develop Neurobiol 75: 463–484, 2015  相似文献   

8.
The formation of the cerebellar circuitry depends on the outgrowth of connections between the two principal classes of neurons, granule neurons and Purkinje neurons. To identify genes that function in axon outgrowth, we have isolated a mouse homolog of C. elegans UNC51, which is required for axon formation, and tested its function in cerebellar granule neurons. Murine Unc51.1 encodes a novel serine/threonine kinase and is expressed in granule cells in the cerebellar cortex. Retroviral infection of immature granule cells with a dominant negative Unc51.1 results in inhibition of neurite outgrowth in vitro and in vivo. Moreover, infected neurons fail to express TAG-1 or neuron-specific beta-tubulin, suggesting that development is arrested prior to this initial step of differentiation. Thus, Unc51.1 signals the program of gene expression leading to the formation of granule cell axons.  相似文献   

9.
We have used monolayers of control 3T3 cells and 3T3 cells expressing transfected human L1 as a culture substrate for rat PC12 cells and rat cerebellar neurons. PC12 cells and cerebellar neurons extended longer neurites on human L1 expressing cells. Neurons isolated from the cerebellum at postnatal day 9 responded equally as well as those isolated at postnatal day 1-4, and this contrasts with the failure of these older neurons to respond to the transfected human neural cell adhesion molecule (NCAM). Human L1-dependent neurite outgrowth could be blocked by antibodies that bound to rat L1 and, additionally, the response could be fully inhibited by pertussis toxin and substantially inhibited by antagonists of L- and N-type calcium channels. Calcium influx into neurons induced by K+ depolarization fully mimics the L1 response. Furthermore, we show that L1- and K+(-)dependent neurite outgrowth can be specifically inhibited by a reduction in extracellular calcium to 0.25 microM, and by pretreatment of cerebellar neurons with the intracellular calcium chelator BAPTA/AM. In contrast, the response was not inhibited by heparin or by removal of polysialic acid from neuronal NCAM both of which substantially inhibit NCAM-dependent neurite outgrowth. These data demonstrate that whereas NCAM and L1 promote neurite outgrowth via activation of a common CAM-specific second messenger pathway in neurons, neuronal responsiveness to NCAM and L1 is not coordinately regulated via posttranslational processing of NCAM. The fact that NCAM- and L1-dependent neurite outgrowth, but not adhesion, are calcium dependent provides further evidence that adhesion per se does not directly contribute to neurite outgrowth.  相似文献   

10.
When grown in the absence of astroglial cells, purified mouse cerebellar granule neurons survive less than 36 hr and do not extend neurites. Here we report that low concentrations of basic fibroblast growth factor (bFGF, 1-25 ng/ml) maintained the viability and promoted the differentiation of purified granule neurons. The effect of bFGF on granule cell neurite outgrowth was dose dependent. Neurite outgrowth was stimulated markedly in the presence of 1-25 ng/ml bFGF, but effects were not seen below 1 ng/ml or above 50 ng/ml. When affinity-purified antibodies against bFGF (1-5 micrograms/ml) were added either to purified granule cells or to co-cultures of neurons and astroglial cells, process extension by granule neurons was severely impaired. The inhibition of neurite outgrowth in the presence of anti-bFGF antibodies was reversed by the addition of 25 ng/ml of exogenous bFGF. In addition to neuronotrophic effects, bFGF influenced the rate of growth of the astroglial cells. This result depended on whether the astroglia were grown in isolation from neurons, where low doses of bFGF (10-25 ng) stimulated glial growth, or in coculture with neurons, where much higher doses of bFGF (100-250 ng/ml) were needed for glial mitogenesis. Immunoprecipitation of lysates from 35S-labeled cerebellar astroglial cells with anti-bFGF antibodies revealed a single band after SDS-PAGE at 18,000 Da, the molecular weight of bFGF. These results indicate that glial cells synthesize bFGF and are possibly an endogenous source of bFGF in cerebellar cultures. Thus, astroglial cells synthesize soluble factors needed for neuronal differentiation.  相似文献   

11.
The cerebellar external granule layer (EGL) is the site of the largest transit amplification in the developing brain, and an excellent model for studying neuronal proliferation and differentiation. In addition, evolutionary modifications of its proliferative capability have been responsible for the dramatic expansion of cerebellar size in the amniotes, making the cerebellum an excellent model for evo-devo studies of the vertebrate brain. The constituent cells of the EGL, cerebellar granule progenitors, also represent a significant cell of origin for medulloblastoma, the most prevalent paediatric neuronal tumour. Following transit amplification, granule precursors migrate radially into the internal granular layer of the cerebellum where they represent the largest neuronal population in the mature mammalian brain. In chick, the peak of EGL proliferation occurs towards the end of the second week of gestation. In order to target genetic modification to this layer at the peak of proliferation, we have developed a method for genetic manipulation through ex vivo electroporation of cerebellum slices from embryonic Day 14 chick embryos. This method recapitulates several important aspects of in vivo granule neuron development and will be useful in generating a thorough understanding of cerebellar granule cell proliferation and differentiation, and thus of cerebellum development, evolution and disease.  相似文献   

12.
To determine the domains of the neural cell adhesion molecule L1 involved in neurite outgrowth, we have generated monoclonal antibodies against L1 and investigated their effects on neurite outgrowth of small cerebellar neurons in culture. When the 10 antibodies were coated as substrate, only antibody 557.B6, which recognizes an epitope represented by a synthetic peptide comprising amino acids 818 to 832 at the border between the fibronectin type III homologous repeats 2 and 3, was as efficacious as L1 in promoting neurite outgrowth, increasing intracellular levels of Ca2+, and stimulating the turnover of inositol phosphates. These findings suggest that neurite outgrowth and changes in these second messengers are correlated. Such a correlation was confirmed by the ability of Ca2+ channel antagonists and pertussis toxin to inhibit neurite outgrowth on L1 and antibody 557.B6. These observations indicate for the first time a distinct site on cell surface-bound-L1 as a prominent signal-transducing domain through which the recognition events appear to be funneled to trigger neurite outgrowth, increase turnover of inositol phosphates, and elevate intracellular levels of Ca2+. © 1995 John Wiley & Sons, Inc.  相似文献   

13.
Abstract: Activation of tyrosine kinases is established as an important mechanism for controlling growth cone motility and neurite outgrowth. We have tested the effects of a range of tyrosine kinase inhibitors on neurite outgrowth from postnatal day 4 cerebellar granule cells cultured over confluent monolayers of 3T3 fibroblasts. The only agent that had any effect was herbimycin A, which stimulated neurite outgrowth. The response is shown to be attributable to a direct effect of this tyrosine kinase inhibitor on neurones. The neurite outgrowth response to herbimycin A was inhibited by two other tyrosine kinase inhibitors, which on their own did not affect neurite outgrowth. The data suggest that the response to herbimycin A reflects either a direct or indirect activation of one or more protein tyrosine kinases. Independent signalling events downstream from tyrosine kinase activation underlying the neurite outgrowth response to herbimycin A include increased activity of protein kinase C and calcium influx into neurones through both N-and L-type calcium channels.  相似文献   

14.
15.
During neuronal development, GABAA-mediated responses are depolarizing and induce an increase in the intracellular calcium concentration. Since calcium oscillations can modulate neurite outgrowth, we explored the capability of GABA to induce changes in cerebellar granule cell morphology. We find that treatment with GABA (1-1000 microm) induces an increase in the intracellular calcium concentration through the activation of GABA(A) receptors and voltage-gated calcium channels of the L-subtype. Perforated patch-clamp recordings reveal that this depolarizing response is due to a chloride reversal potential close to - 35 mV. When cells are grown in depolarizing potassium chloride concentrations, a shift in reversal potential (Erev) for GABA is observed, and only 20% of the cells are depolarized by the neurotransmitter at day 5 in vitro. On the contrary, cells grown under resting conditions are depolarized after GABA application even at day 8. GABA increases the complexity of the dendritic arbors of cerebellar granule neurons via a calcium-dependent mechanism triggered by voltage-gated calcium channel activation. Specific blockers of calcium-calmodulin kinase II and mitogen-activated protein kinase kinase (KN93 and PD098059) implicate these kinases in the intracellular pathways involved in the neuritogenic effect of GABA. These data demonstrate that GABA exerts a stimulatory role on cerebellar granule cell neuritogenesis through calcium influx and activation of calcium-dependent kinases.  相似文献   

16.
Neurogenesis in the cerebellum proceeds through a temporal series of cell production from two separate epithelia, the ventricular zone (VZ) and the external granule cell layer (EGL). Using the laacZ cell lineage tracer in transgenic mice, we describe cellular clones whose dates of birth span the entire period of cerebellar development and deduce a sequence of cell dispersion leading to the final allocation of cells in the cerebellum. Clones probably labeled early during neural tube formation show that individual progenitors can give rise to all cerebellar cell types. The distribution of clonally related granule cells in these clones indicates a mediolateral organization of EGL progenitors already established before the allocation of the EGL progenitors to the cerebellum. Clones restricted to the cerebellar VZ show that the VZ derives progenitors for deep nuclei and multipotent cortical progenitors, which lose their systematic lineage relationship when longitudinal cell intermingling in the cerebellar VZ becomes more limited. The small clones also show that cell dispersion is radial in the internal granule layer and tangential in the molecular layer. Together, the data demonstrate the broad maintenance of the relative order of cells from neural tube stages to the adult cerebellum.  相似文献   

17.
Accumulating evidence suggests that metallothionein (MT)-I and -II promote neuronal survival and regeneration in vivo . The present study investigated the molecular mechanisms underlying the differentiation and survival-promoting effects of MT and a peptide modeled after MT, EmtinB. Both MT and EmtinB directly stimulated neurite outgrowth and promoted survival in vitro using primary cultures of cerebellar granule neurons. In addition, expression and surface localization of megalin, a known MT receptor, and the related lipoprotein receptor-related protein-1 (LRP) are demonstrated in cerebellar granule neurons. By means of surface plasmon resonance MT and EmtinB were found to bind to both megalin and LRP. The bindings were abrogated in the presence of receptor-associated protein-1, an antagonist of the low-density lipoprotein receptor family, which also inhibited MT- and EmtinB-induced neurite outgrowth and survival. MT-mediated neurite outgrowth was furthermore inhibited by an anti-megalin serum. EmtinB-mediated inhibition of apoptosis occurred without a reduction of caspase-3 activity, but was associated with reduced expression of the pro-apoptotic B-cell leukemia/lymphoma-2 interacting member of cell death (BimS). Finally, evidence is provided that MT and EmtinB activate extracellular signal-regulated kinase, protein kinase B, and cAMP response element binding protein. Altogether, these results strongly suggest that MT and EmtinB induce their neuronal effects through direct binding to surface receptors belonging to the low-density lipoprotein receptor family, such as megalin and LRP, thereby activating signal transduction pathways resulting in neurite outgrowth and survival.  相似文献   

18.
19.
Abstract: Pigment epithelium-derived factor (PEDF), purified from human fetal retinal pigment epithelium cell culture medium, was shown to potentiate the differentiation of human Y-79 retinoblastoma cells. To investigate potential neurotrophic effects of PEDF on neurons other than those of retinal derivation, we used cultures of cerebellar granule cells. The number of cerebellar granule cells was significantly larger in the presence of PEDF, as demonstrated by an assay for viable cells that uses 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2 H -tetrazolium, inner salt, conversion, by cell count, and by immunocytochemistry. The effect of PEDF showed a dose-response relationship, with a larger effect in chemically defined medium than in serum-containing medium [ED50 = 30 ng/ml (0.70 n M ) in chemically defined medium and 100 ng/ml (2.3 n M ) in serum-containing medium]. PEDF had no effect on incorporation of bromodeoxyuridine (cell proliferation) or on neurofilament content (neurite outgrowth) measured by an enzyme-linked immunoadsorbent assay. These results demonstrate that PEDF has a neurotrophic survival effect on cerebellar granule cells in culture and suggest the possibility that it may affect other CNS neurons as well.  相似文献   

20.
Postnatal cerebellum development involves the generation of granule cells and Bergmann glias (BGs). The granule cell precursors are located in the external germinal layer (EGL) and the BG precursors are located in the Purkinje layer (PL). BGs extend their glial fibers into the EGL and facilitate granule cells' inward migration to their final location. Growth arrest specific gene 1 (Gas1) has been implicated in inhibiting cell-cycle progression in cell culture studies (G. Del Sal et al., 1992, Cell 70, 595--607). However, its growth regulatory function in the CNS has not been described. To investigate its role in cerebellar growth, we analyzed the Gas1 mutant mice. At birth, wild-type and mutant mice have cerebella of similar size; however, mature mutant cerebella are less than half the size of wild-type cerebella. Molecular and cellular examinations indicate that Gas1 mutant cerebella have a reduced number of granule cells and BG fibers. We provide direct evidence that Gas1 is required for normal levels of proliferation in the EGL and the PL, but not for their differentiation. Furthermore, we show that Gas1 is specifically and coordinately expressed in both the EGL and the BGs postnatally. These results support Gas1 as a common genetic component in coordinating EGL cell and BG cell proliferation, a link which has not been previously appreciated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号