首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Guanyl nucleotide binding-proteins, or G-proteins, are ubiquitous molecules that are involved in cellular signal transduction mechanisms. Because a role has been established for cAMP in meiosis and G-proteins participate in cAMP-generating systems by stimulating or inhibiting adenylate cyclase, the present study was conducted to examine the possible involvement of G-proteins in the resumption of meiotic maturation. Cumulus cell-free mouse oocytes (denuded oocytes) were maintained in meiotic arrest in a transient and dose-dependent manner when microinjected with the nonhydrolyzable GTP analog, GTP gamma S. This effect was specific for GTP gamma S, because GppNHp, GTP, and ATP gamma S were without effect. Three compounds, known to interact with G-proteins, were tested for their ability to modulate meiotic maturation: pertussis toxin, cholera toxin, and aluminum fluoride (AlF4-). Pertussis toxin had little effect on maturation in either cumulus cell-enclosed oocytes or denuded oocytes when meiotic arrest was maintained with dibutyryl cAMP (dbcAMP) or hypoxanthine. Cholera toxin stimulated germinal vesicle breakdown (GVB) in cumulus cell-enclosed oocytes during long-term culture, but its action was inhibitory in denuded oocytes. AlF4- stimulated GVB in both cumulus cell-enclosed oocytes and denuded oocytes when meiotic arrest was maintained with hypoxanthine but was much less effective in dbcAMP-arrested oocytes. In addition, AlF4- abrogated the inhibitory action of cholera toxin in denuded oocytes and also that of follicle-stimulating hormone (FSH) in cumulus cell-enclosed oocytes. Cholera toxin or FSH alone each stimulated the synthesis of cAMP in oocyte-cumulus cell complexes, whereas pertussis toxin or AlF4- alone were without effect. Both cholera toxin and AlF4- augmented the stimulatory action of FSH on cAMP. These data suggest the involvement of guanyl nucleotides and G-proteins in the regulation of GVB, although different G-proteins and mediators may be involved at the oocyte and cumulus cell levels. Cholera toxin most likely acts by ADP ribosylation of the alpha subunit of Gs and increased generation of cAMP, whereas AlF4- appears to act by antagonizing a cAMP-dependent step.  相似文献   

2.
The role of heterotrimeric G-proteins on the formation of constitutive secretory vesicles (CSVs) and immature secretory granules (ISGs) from the trans-Golgi network (TGN) of PC12 cells was investigated. Using immunofluorescence and subcellular fractionation in conjunction with immunoblotting or ADP-ribosylation by either pertussis toxin or cholera toxin, TGN membranes were found to contain not only several alpha i/alpha o G-protein subunits including apparently alpha i3, but also alpha s. Pertussis toxin treatment of cells, which resulted in the stoichiometric ADP-ribosylation of alpha i/alpha o, a modification known to prevent their coupling to receptors, led to the stimulation of cell-free CSV and ISG formation, suggesting the presence of a guanine nucleotide exchange factor for alpha i/alpha o on the TGN. Mastoparan-7, a peptide known to mimic an activated receptor and to stimulate nucleotide exchange on alpha i/alpha o, inhibited cell-free vesicle formation, an effect abolished by pertussis toxin. In contrast, activation of alpha s by cholera toxin treatment of cells resulted in a stimulation of cell-free CSV and ISG formation. This stimulation could be reversed when the alpha subunits not activated by cholera toxin, i.e. alpha i/alpha o, were activated by GTP gamma S and [AIF4]-. Our results show that both inhibitory and stimulatory trimeric G-proteins on the TGN participate in the regulation of secretory vesicle formation.  相似文献   

3.
We studied the regulation of arachidonic acid (AA) release by guanosine 5'-O-(3-thiotriphosphate (GTP gamma S) and Ca2+ in electropermeabilized HL60 granulocytes. Stimulation of AA release by GTP gamma S and Ca2+ was mediated by phospholipase A2 (PLA2) and required the presence of MgATP (EC50: 100-250 microM). The nucleotide effects were Ca(2+)-dependent (maximal effects detected at 1 microM free cation). UTP and ATP gamma S, which stimulate AA release in intact HL60 granulocytes with potencies and efficacies similar to those of ATP, were ineffective in supporting the effects of GTP gamma S in electropermeabilized cells. Pretreatment with pertussis toxin affected stimulation of AA release by ATP in intact cell, without altering the nucleotide effects in permeabilized cells. We observed the protein kinase C-dependent phosphorylation of PLA2 in permeabilized HL60 granulocytes, together with a correlation between the effects of phorbol esters and staurosporine on this reaction and on AA release. ATP-independent activation of PLA2 by GTP gamma S and/or Ca2+ was measured in subcellular fractions prepared from HL60 granulocytes. These data appear consistent with a model in which PLA2 activity in resting HL60 granulocytes is subjected to an inhibitory constraint that prevents its activation by Ca2+ and G-proteins. Removal of this constraint, either by the protein kinase C-dependent phosphorylation of the enzyme in vivo or physical disruption of the regulatory assembly (e.g. by N2 cavitation), allows its activation by Ca2+ and G-proteins.  相似文献   

4.
Studies were performed to examine a potential role for a guanine nucleotide-binding protein in epidermal growth factor (EGF)-stimulated phospholipase A2 (PLA2) activity. EGF increased prostaglandin E2 (PGE2) production in intact or saponin-permeabilized rat inner medullary collecting tubule (RIMCT) cells. Incubation of permeabilized cells with guanosine 5'-O-(thiotriphosphate) (GTP gamma S) enhanced and with guanosine 5'-O-(2-thiodiphosphate) (GDP beta S) inhibited the response to EGF. GDP beta S had no effect on ionomycin-stimulated PGE2 production. Exposure of intact cells to 25 mM NaF + 10 microM AlCl3 enhanced both basal and EGF-stimulated PGE2 production. Pertussis toxin ADP-ribosylated a 41-kDa protein in RIMCT cell membranes. Pretreatment of cells with pertussis toxin (100 ng/ml for 16 h) eliminated the response to EGF in intact cells and the response to EGF + GTP gamma S in permeabilized cells. Pertussis toxin had no effect on the response to ionomycin. The effect of pertussis toxin was not due to alterations in cAMP as cellular cAMP levels were unaffected by pertussis toxin both in the basal state and in the presence of EGF. PGE2 production in response to EGF was not transduced by a G protein coupled to phospholipase C (PLC) as neomycin, which inhibited PLC, did not decrease EGF-stimulated PGE2 production. Also, PGE2 production was not increased by inositol trisphosphate and did not require the presence of extracellular Ca2+. In contrast to EGF-stimulated PLC activity, stimulation of PLA2 by EGF was not susceptible to inhibition by phorbol 12-myristate 13-acetate. These results clearly demonstrate the existence of a PLA2-specific pertussis toxin-inhibitable guanine nucleotide-binding protein coupled to the EGF receptor in RIMCT cells.  相似文献   

5.
Tumor necrosis factor (TNF) is a monokine that induces pleiotropic events in both transformed and normal cells. These effects are initiated by the binding of TNF to high affinity cell surface receptors. The post-receptor events and signaling mechanisms induced by TNF, however, have remained unknown. The present studies demonstrate the presence of a single class of high affinity receptors on membranes prepared from HL-60 promyelocytic leukemic cells. The interaction of TNF with these membrane receptors was associated with a 3.8-fold increase in specific binding of the GTP analogue, GTP gamma S. Scatchard analysis of GTP gamma S binding data demonstrated that TNF stimulates GTP binding by increasing the affinity of available sites. The TNF-induced stimulation of GTP binding was also associated with an increase in GTPase activity. Moreover, the increase in GTPase activity induced by TNF was sensitive to pertussis toxin. The results also demonstrate that TNF similarly increased GTP binding and pertussis toxin-sensitive GTPase activity in membranes from mouse L929 fibroblasts, thus indicating that these effects are not limited to hematopoietic cells. Analysis of HL-60 membranes after treatment with pertussis toxin in the presence of [32P]NAD revealed three substrates with relative molecular masses of approximately Mr 41,000, 40,000, and 30,000. In contrast, L929 cell membranes had only two detectable pertussis toxin substrates of approximately Mr 41,000 and 40,000. Although the Mr 41,000 pertussis toxin substrate represents the guanine nucleotide-binding inhibitory protein Gi, the identities of the Mr 40,000 and Mr 30,000 substrates remain unclear. In any event, inhibition of the TNF-induced increase in GTPase activity and ADP-ribosylation of Gi by pertussis toxin suggested that TNF might act by increasing GTPase activity of the Gi protein. However, the results further indicate that TNF has no detectable effect on basal or prostaglandin E2-stimulated cAMP levels in HL-60 cells. Taken together, these findings indicate that a pertussis toxin-sensitive GTP-binding protein other than Gi, and possibly the Mr 40,000 substrate, is involved in the action of TNF. Finally, the demonstration that pertussis toxin inhibited TNF-induced cytotoxicity in L929 cells supports the presence of a GTP-binding protein which couples TNF-induced signaling to a biologic effect.  相似文献   

6.
Inhibition of luteinizing hormone (LH) exocytosis by guanosine 5'-[gamma-thio]triphosphate (GTP gamma S) in permeabilized pituitary cells has indicated the involvement of one or more GTP-binding proteins in the exocytotic mechanism distal to second messenger generation. We now report that two inhibitory sites of action of GTP gamma S can be distinguished by their dependence on GTP gamma S concentration and their sensitivity to pertussis toxin. Ca(2+)-stimulated exocytosis was half-maximally inhibited by 6.8 microM GTP gamma S, a six-fold higher concentration than that required for inhibition of exocytosis stimulated by phorbol ester plus cAMP. In addition, GTP gamma S inhibition of Ca(2+)-stimulated exocytosis was insensitive to pertussis toxin, in contrast to the inhibition of exocytosis stimulated by phorbol ester plus cAMP, which was abolished by pretreatment with pertussis toxin. These results indicate that at least two stimulus-specific GTP-binding proteins are involved in regulating LH exocytosis distal to second messenger generation.  相似文献   

7.
Gailly P  Najimi M  Hermans E 《FEBS letters》2000,483(2-3):109-113
We previously demonstrated the functional coupling of the rat neurotensin receptor NTS1 with G-proteins on transfected CHO cell homogenates by showing modulation of agonist affinity by guanylyl nucleotides and agonist-mediated stimulation of [(35)S]GTP gamma S binding. In the present study, we observed that G(i/o)-type G-protein inactivation by pertussis toxin (PTx) resulted in a dramatic reduction of the NT-induced [(35)S]GTP gamma S binding whereas the effect of guanylyl nucleotide was almost not affected. As expected, NT-mediated phosphoinositide hydrolysis and intracellular calcium mobilization were not altered after PTx treatment. This suggests the existence of multiple signaling cascades activated by NT. Accordingly, using PTx and the PLC inhibitor U-73122, we showed that both signaling pathways contribute to the NT-mediated production of arachidonic acid. These results support evidence for a dual coupling of the NTS1 with PTx-sensitive and insensitive G-proteins.  相似文献   

8.
Arachidonic acid (20:4) and other cis-unsaturated fatty acids exert direct effects on a variety of cells, effects that do not depend on the metabolism of fatty acids via cyclooxygenase or lipoxygenase pathways. In these studies arachidonic acid and other cis-unsaturated fatty acids (but not trans-unsaturated or saturated fatty acids) increased the specific binding of the nonhydrolyzable analog of GTP, [35S]GTP gamma S, to purified neutrophil membrane preparations and elicited superoxide anion generation from intact neutrophils. There was a positive correlation (r = 0.70) between the capacity of fatty acids to increase nucleotide binding and to elicit the respiratory burst. Scatchard plot analysis of binding at equilibrium demonstrated an increase in the number of available GTP binding sites in the presence of 50 microM arachidonic acid. Nonsteroidal antiinflammatory agents interfered with the arachidonic acid effect on [35S]GTP gamma S binding. ADP-ribosylation of the pertussis toxin substrate Gi alpha within the plasmalemma-reduced specific [35S]GTP gamma S binding and blocked arachidonate-dependent enhancement of binding. Moreover, pertussis toxin treatment of intact neutrophils inhibited arachidonic acid-induced superoxide anion generation. The data indicate that arachidonic acid directly activates a GTP binding protein in the neutrophil plasma membrane and may thereby act as a second messenger in signal transduction.  相似文献   

9.
Plasma membranes from bovine liver contain a phosphatidylinositol 4,5-bisphosphate-specific phospholipase C (PLC) activity that is activated by guanine nucleotides. The G-proteins involved retained their ability to activate bovine brain PLC-beta 1 in a guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S)-dependent manner following extraction from the membranes with cholate and reconstitution with phospholipids. This reconstitution assay was used to purify the G-proteins by chromatography on heparin-Sepharose, DEAE-Sephacel, octyl-Sepharose, hydroxylapatite, Mono Q, and Sephacryl S-300 gel filtration. Gel electrophoresis showed that two alpha-subunits with molecular mass of 42 and 43 kDa were isolated to a high degree of purity, together with a beta-subunit. Neither alpha-subunit was a substrate for pertussis toxin-catalyzed ADP-ribosylation. Gel filtration of the final activity indicated an apparent molecular mass of 95 kDa, suggesting the presence of an alpha beta gamma heterotrimer. Immunological data revealed that the 42- and 43-kDa proteins were related to alpha-subunits of the Gq class recently purified from brain (Pang, I.-H., and Sternweis, P. C. (1990) J. Biol. Chem. 265, 18707-18712) and identified by molecular cloning (Strathmann, M., and Simon, M. I. (1990) Proc. Natl. Acad. Sci. U. S. A. 87, 9113-9117). The activation of PLC-beta 1 by the purified G-protein preparation was specific for nonhydrolyzable guanine nucleotides, the efficacy decreasing in order GTP gamma S greater than guanylimidodiphosphate greater than guanylyl(beta,gamma-methylene)-diphosphonate. Half-maximal activation required 4 microM GTP gamma S suggesting that the affinity of the G-proteins for GTP analogues is low. The GTP gamma S-dependent activation of PLC-beta 1 required millimolar Mg2+ and was inhibited by guanosine 5'-O-(2-thiodiphosphate) and by excess beta gamma-subunits. Aluminum fluoride also activated PLC-beta 1 in the presence of the G-proteins. The G-proteins were inactive toward PLC-gamma 1 or PLC-delta 1. In summary, these findings identify two G-protein activators of PLC-beta 1 that have the properties of heterotrimeric G-proteins and are members of the Gq class.  相似文献   

10.
Detection of G Proteins in Purified Bovine Brain Myelin   总被引:5,自引:5,他引:0  
Following a previous report on detection of muscarinic receptors in myelin with the implied presence of G proteins, we now demonstrate by more direct means the presence of such proteins and their quantification. Using [35S]guanosine 5'-O-(3-thiotriphosphate) ([35S]GTP gamma S) as the binding ligand, purified myelin from bovine brain was found to contain approximately half the binding activity of whole white matter (138 +/- 9 vs. 271 +/- 18 pmol/mg of protein). Scatchard analysis of saturation binding data revealed two slopes, a result suggesting at least two binding populations. This binding was inhibited by GTP and its analog but not by 5'-adenylylimidodiphosphate [App(NH)p], GMP, or UTP. Following sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) of myelin proteins and blotting on nitrocellulose, [alpha-32P]GTP bound to three bands in the 21-27-kDa range in a manner inhibited by GTP and GTP gamma S but not App(NH)p. ADP-ribosylation of myelin with [32P]NAD+ and cholera toxin labeled a protein of 43 kDa, whereas reaction with pertussis toxin labeled two components of 40 kDa. Cholate extract of myelin subjected to chromatography on a column of phenyl-Sepharose gave at least three major peaks of [35S]GTP gamma S binding activity. SDS-PAGE and immunoblot analyses of peak I indicated the presence of Go alpha, Gi alpha, and Gs alpha. Further fractionation of peak II by diethyl-aminoethyl-Sephacel chromatography gave one [35S]GTP gamma S binding peak with the low-molecular-mass (21-27 kDa) proteins and a second showing two major protein bands of 36 and 40 kDa on SDS-PAGE.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Pretreatment of intact NG108-15 cells with pertussis toxin suppresses opioid inhibition of cyclic AMP accumulation mediated by the inhibitory guanine nucleotide-binding regulatory protein, Ni, which apparently also mediates the inhibitory nucleotide effects on opioid against binding. The toxin treatment had no effect on opioid agonist binding measured in NG108-15 cell membranes without sodium present. However, the toxin potentiated the inhibitory effect of sodium on agonist binding, leading to an agonist-specific reduction of opioid receptor affinity in the presence of sodium in the binding reaction. The potency of the stable GTP analog, GTP gamma S, to reduce agonist binding in the presence of sodium was little changed in membranes prepared from pertussis toxin-treated cells compared to control membranes, whereas the potency of the stable GDP analog, GDP beta S, was magnified. The data indicate that ADP-ribosylation of Ni by pertussis toxin potentiates sodium regulation of opioid agonist binding and that the communication between Ni and opioid receptors is not lost by the covalent modification of Ni.  相似文献   

12.
The post-receptor events which follow the binding of interleukin 1 (IL1) to cells are unclear. The present studies provide evidence for the activation of a guanine nucleotide binding protein (G protein) by IL1 in the membranes of an IL1 receptor-rich strain (NOB-1) of the EL4 murine thymoma line. IL1 alpha and beta increased the binding of the GTP analogue [35S]guanosine 5'-[gamma-thiol]trisphosphate (GTP gamma S) to membranes prepared from these cells. By 1 min after addition of IL1 there was a 2-fold enhancement in binding which was dose dependent in the range 0.1-100 ng/ml. A qualitatively similar result was obtained with IL1 beta although it was 10 times less potent. Specific neutralizing antisera to IL1 alpha and IL1 beta abolished the response. Experiments in which the concentration of [35S]GTP gamma S was varied revealed that IL1 increased the affinity of the binding sites for [35S]GTP gamma S and not their number. IL1 alpha was shown to stimulate GTPase activity in the membranes, the time and concentration dependence of this was similar to that observed for increased [35S]GTP gamma S binding. Half-maximal enhancement of [35S]GTP gamma S binding by IL1 alpha, measured after 4 min, occurred at 5% IL1 receptor occupancy. Maximal stimulation was achieved when 30% of receptors were occupied. Experiments with pertussis and cholera toxins revealed that pretreating membranes with pertussis toxin (100 ng/ml) inhibited by 50% the IL1-induced [35S]GTP gamma S binding and [gamma-32P]GTP hydrolysis. Cholera toxin (100 ng/ml) was without effect. However, both pertussis and cholera toxins at concentrations of 100 ng/ml inhibited IL1-induced IL2 secretion in EL4 NOB-1 cells. These results show that the IL1 receptor of a responsive thymoma line activates, and may be coupled to, a G protein(s). This is a possible mechanism of IL1 signal transduction.  相似文献   

13.
We compared the mechanisms by which thrombin and platelet-derived growth factor (PDGF) activate phospholipase C in cultured vascular smooth muscle cells. Thrombin caused a transient (less than 5 min) increase in inositol trisphosphate (IP3) while PDGF caused a sustained (greater than 10 min) increase. Both pertussis toxin and phorbol 12-myristate 13-acetate (PMA) inhibited the thrombin-induced increase in IP3 but neither agent affected the PDGF-induced increase in IP3. To examine the role of GTP binding (G) proteins in the activation of phospholipase C by these two hormones, GTP analogues were introduced into saponin-permeabilized cells. In the absence of hormones, guanosine 5'-O-(3-thiotrisphosphate) (GTP gamma S) caused a progressive increase in IP3 release which was inhibited 55% by PMA (200 ng/ml). In the presence of thrombin, GTP gamma S caused synergistic increase in IP3 release. The synergism between GTP gamma S and thrombin was virtually eliminated by 10 min prior exposure to PMA (200 ng/ml). When PDGF was the hormonal agonist, GTP gamma S also caused synergistic increase in IP3 release and guanosine 5'-O-(2-thiodiphosphate) blunted PDGF-induced IP3 release. However, in contrast to thrombin, the synergism between GTP gamma S and PDGF was unaffected by PMA. Thus, thrombin and PDGF activate phospholipase C by signal transduction systems which differ in kinetic properties and in sensitivity to PMA and pertussis toxin. Despite these differences, both systems appear to involve GTP binding proteins at some step.  相似文献   

14.
Addition of guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) to intact Chinese hamster lung fibroblasts (CCL39) depolarized by high K+ concentrations results in activation of phosphoinositide-specific phospholipase C (PLC) (at GTP gamma S concentrations greater than 0.1 mM), inhibition of adenylate cyclase (between 10 microM and 0.5 mM), and activation of adenylate cyclase (above 0.5 mM). Since GTP gamma S-induced activation of PLC is dramatically enhanced upon receptor-mediated stimulation of PLC by alpha-thrombin, we conclude that in depolarized CCL39 cells GTP gamma S directly activates various guanine nucleotide-binding regulatory proteins (G proteins) coupled to PLC (Gp(s)) and to adenylate cyclase (Gi and Gs). Pretreatment of cells with pertussis toxin strongly inhibits GTP gamma S-induced activation of PLC and inhibition of adenylate cyclase. GTP gamma S cannot be replaced by other nucleotides, except by guanosine 5'-O-(2-thiodiphosphate) (GDP beta S), which mimics after a lag period of 15-20 min all the effects of GTP gamma S, with the same concentration dependence and the same sensitivity to pertussis toxin. We suggest that GDP beta S is converted in cells into GTP beta S, which acts as GTP gamma S. Since cell viability is not affected by a transient depolarization, these observations provide a simple method to examine long-term effects of G protein activation on DNA synthesis. We show that a transient exposure of G0-arrested CCL39 cells to GTP gamma S or GDP beta S under depolarizing conditions is not sufficient by itself to induce a significant mitogenic response, but markedly potentiates the mitogenic action of fibroblast growth factor, a mitogen known to activate a receptor-tyrosine kinase. The potentiating effect is maximal after 60 min of pretreatment with 2 mM GTP gamma S. GDP beta S is equally efficient but only after a lag period of 15-20 min. Mitogenic effects of both guanine nucleotide analogs are suppressed by pertussis toxin. Since the activation of G proteins by GTP gamma S under these conditions vanishes after a few hours, we conclude that a transient activation of G proteins facilitates the transition G0----G1 in CCL39 cells, whereas tyrosine kinase-induced signals are sufficient to mediate the progression into S phase.  相似文献   

15.
GTP-binding activity to Dictyostelium discoideum membranes was investigated using various guanine nucleotides. Rank order of binding activities was: GTP gamma S greater than GTP greater than 8-N3-GTP; the binding of GTP gamma S and GTP, but not of 8-N3-GTP, was stimulated by receptor agonists. [3H]GTP binding to D. discoideum membranes has been described previously by a single binding type (Kd = 2.6 microM, Bmax = 85 nM). More detailed studies with [35S]GTP gamma S showed heterogeneous binding composed of two forms of binding sites with respectively high (Kd = 0.2 microM) and low (Kd = 6.3 microM) affinity. cAMP derivatives enhanced GTP gamma S binding by increasing the affinity and the number of the high-affinity sites, while the low-affinity sites were not affected by cAMP. The specificity of cAMP derivatives for stimulation of GTP gamma S binding showed a close correlation with the specificity for binding to the cell surface cAMP receptor. Pretreatment of D. discoideum cells with pertussis toxin did not affect basal GTP and GTP gamma S binding, but eliminated the cAMP stimulation of GTP and GTP gamma S binding. These results indicate that D. discoideum cells have a pertussis toxin-sensitive GTP-binding protein that interacts with the surface cAMP receptor, suggesting the functional interaction of surface receptor with a G-protein in D. discoideum.  相似文献   

16.
In this study, the influence of the inhibitory mu-opioid receptor on the potencies of 5'-guanosine alpha-thiotriphosphate (GTP gamma S) and GDP at the inhibitory GTP-binding protein (Gi) were investigated in an adenylyl cyclase system. It was hoped that a receptor-mediated change in the potency of either GTP gamma S or GDP in affecting adenylyl cyclase activity may elucidate how a receptor alters cyclase activity via its G-protein. In an adenylyl cyclase system employing 5'-adenylyl imidodiphosphate as substrate, GTP gamma S, a nonhydrolyzable analog of GTP, inhibited forskolin-stimulated adenylyl cyclase activity in the absence of morphine; morphine failed to significantly affect the apparent potency of GTP gamma S. GDP blocked the GTP gamma S-induced inhibition of adenylyl cyclase; morphine profoundly diminished the ability of GDP to block the inhibitory effect of GTP gamma S. The IC50 values of GTP gamma S were 0.02 +/- 0.01, 0.18 +/- 0.04, and 2.2 +/- 0.5 microM in the absence of other drugs, in the presence of a combination of 100 microM GDP and morphine, and in the presence of 100 microM GDP, respectively. GDP blocked the inhibitory effect of GTP gamma S (0.3 microM) in a concentration-dependent manner; the EC50 for GDP was 16 +/- 2.6 microM in the absence of morphine and 170 +/- 32 microM in the presence of morphine. Exposure of 7315c cells to pertussis toxin for 3 h resulted in a small decrease in the potency of GTP gamma S in inhibiting cyclase. However, the relative potency of GDP in blocking the GTP gamma S-mediated inhibition of cyclase was increased: the EC50 values of GDP were 11 +/- 4 and 0.81 +/- 0.2 microM in untreated and pertussis toxin-treated membranes, respectively. In untreated membranes, there was a brief lag in the GTP gamma S-induced inhibition of adenylyl cyclase; morphine diminished this lag. In membranes treated with pertussis toxin, there was an exaggerated lag in the onset of GTP gamma S inhibition of adenylyl cyclase activity; morphine could no longer affect this lag. Thus, uncoupling the mu-opioid receptor from Gi appeared to increase the affinity of Gi for GDP. These data suggest that the effect of an inhibitory receptor is to decrease the affinity of Gi for GDP by virtue of its interaction with the carboxy-terminal region of Gi alpha.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Signal transduction of fibroblast growth factor (FGF) receptors is known to involve tyrosine phosphorylation of several substrates, including Grb2, phospholipase C-γ, and phosphatidylinositol 3-kinase, whereas the role of G-proteins in FGF receptor signaling is controversial. In the present study we investigated the role of G-proteins in FGF receptor signaling in rat pancreatic acini. Immunological analysis revealed the presence of FGF receptor and phospholipase C-γ1 in rat pancreatic acini. Both basic fibroblast growth factor (FGF-2) and guanosine 5′-(γ-O-thio)triphosphate (GTPγS) caused an increase in inositol 1,4,5-trisphosphate (1,4,5-IP3) production and amylase release. Combined stimulation of the acini with GTPγS and FGF-2 led to a decrease of these responses as compared to the effect of the single substances. When pancreatic acini were preincubated with FGF-2 (1 nM) or vehicle (water) ADP-ribosylation of the α-subunit of Gi-type G-proteins by pertussis toxin was reduced in membranes prepared from FGF-2 pretreated acini as compared to control acini, suggesting functional interaction of FGF receptors with Gi-proteins. Pretreatment of acini with pertussis toxin which inhibits Gi-type G-proteins abolished the inhibitory effect of GTPγS on FGF-induced 1,4,5-IP3 production and amylase release, whereas the stimulatory effects of FGF-2 and GTPγS on these parameters remained unchanged. In conclusion, these results show communication of FGF receptors and Gi-type G-proteins and that Gi-type G-proteins exert an inhibitory influence on FGF-induced activation of phosphoinositide-specific phospholipase C in pancreatic acinar cells. © 1996 Wiley-Liss, Inc.  相似文献   

18.
Actin assembly in electropermeabilized neutrophils: role of G-proteins   总被引:5,自引:0,他引:5  
Polymerization of microfilaments, one of the responses triggered in neutrophils by stimuli such as the chemoattractant N-formyl-methionyl-leucyl-phenylalanine (fMLP), involves the conversion of actin from the monomeric to the filamentous form. The exact sequence of events responsible for this conversion remains to be defined, but its susceptibility to inhibition by pertussis toxin provides indirect evidence that GTP-binding proteins (G-proteins) are involved. In this report, electropermeabilized cells were used to obtain more direct evidence of a role for G-proteins in actin assembly. Staining with 7-nitrobenz-2-oxa-1,3-diazole (NBD)-phallacidin and flow cytometry were used to monitor the formation of filamentous actin. GTP-gamma-S, a nonhydrolyzable analogue of GTP and aluminum fluoride, which in combination with GDP can activate G-proteins, stimulated actin assembly in electropermeabilized cells but had only marginal effects on intact cells. fMLP-induced actin polymerization in permeabilized cells was inhibited by pretreatment with GDP-beta-S, an analogue of GDP that stabilizes the inactive form of G-proteins. In contrast, stimulation by phorbol 12-myristate 13-acetate (PMA) was largely unaffected by GDP-3-S. These observations indicate that activation of G-proteins is essential for actin assembly induced by receptor-dependent stimuli such as fMLP. Moreover, GTP-binding proteins do not seem to be required in the late stages of the signalling cascade, i.e. after stimulation of protein kinase C.  相似文献   

19.
Recent reports have shown that GTP-binding proteins (G-proteins) are present in plants but have given limited indication as to their site of action. G-proteins in animal cells transduce extracellular signals into intracellular or membrane-mediated events, including the regulation of ion channels. Using whole-cell patch clamp, we provide evidence that a G-protein in guard cells of fava bean regulates the magnitude (and not the kinetics) of inward current through K+-selective ion channels in the plasma membrane. GDP[beta]S (100 to 500 [mu]M) increases inward K+ current, whereas GTP[gamma]S (500 [mu]M) has the opposite effect. The control nucleotides ADP[beta]S and ATP[gamma]S (500 [mu]M) do not affect K+ current. Reduction of inward current by GTP[gamma]S is eliminated in the presence of the Ca2+ chelator, BAPTA (1,2-bis(2-aminophenoxy)ethane-N,N,N[prime],N[prime],-tetraacetic acid) (5 mM). When applied intracellularly, the G-protein regulators, cholera toxin and pertussis toxin, both decrease inward K+ current. The entry of K+ (and anions) into guard cells increases their turgor, opening stomatal pores in the leaf epidermis that allow gas exchange with the environment. Our data suggest the involvement of a G-protein in the inhibition of K+ uptake and stomatal opening. Changes in stomatal aperture, vital to both photosynthesis and plant water status, reflect guard-cell responsiveness to a variety of known environmental signals. The results presented here indicate that, in plants as well as animals, ion channel regulation by environmental stimuli may be mediated by G-proteins.  相似文献   

20.
Sodium fluoride was used to investigate a possible involvement of G-proteins in the regulation of endothelial calcium channels. Incubation of cultured porcine aortic endothelial cells with sodium fluoride produced a dose-dependent increase in intracellular free calcium (EC50 approximately 5 mM). The effect strictly depended on the presence of extracellular CaCl2, indicating an enhanced influx of extracellular Ca2+ rather than a release of Ca2+ from intracellular stores. The Al3+ chelator deferoxamine abolished the stimulatory effect of sodium fluoride but did not interfere with the stimulatory effect of bradykinin. These data confirm the current hypothesis that the complex AlF-4 and not the fluoride anion activates G-proteins and exclude a direct inhibitory effect of deferoxamine on Ca2(+)-uptake. In contrast to isoproterenol and 5'-N-ethylcarboxamido-adenosine (NECA), which elevated endothelial cAMP-levels without affecting intracellular Ca2(+)-concentrations, sodium fluoride was not able to increase endothelial cAMP. This indicates that the effect of sodium fluoride on endothelial Ca2(+)-levels is not due to stimulation of a Gs-protein. Similar to its effect on cytoplasmic Ca2+, sodium fluoride also increased endothelial cGMP-levels which has recently been suggested to serve as biochemical marker for the formation of endothelium derived relaxing factor (EDRF). Thus, similar to the activation of receptor operated calcium channels, direct stimulation of a G-protein by sodium fluoride results in an increase of cytoplasmic Ca2+ and the formation of EDRF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号