首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Linoleic acid hydroperoxide (LoaOOH) formed during free radical attack on long-chain unsaturated fatty acids is an important source of biomembrane damage and is implicated in the onset of atherosclerosis, hepatic diseases, and food rancidity. LoaOOH is toxic to wild-type Saccharomyces cerevisiae at a very low concentration (0.2 mM) relative to other peroxides. By using isogenic mutant strains, the possible roles of glutathione (gsh1 and gsh2), glutathione reductase (glr1), respiratory competence ([rho0] petite), and yAP-1p-mediated expression (yap1) in conferring LoaOOH resistance have been examined. Respiration-related processes were essential for maximal toxicity and adaptation, as evidenced by the fact that the [rho0] petite mutant was most resistant to LoaOOH but could not adapt. Furthermore, when respiration was blocked by using inhibitors of respiration and mutants defective in respiratory-chain components, cells became more resistant. An important role for reduced glutathione and yAP-1 in the cellular response to LoaOOH was shown, since the yap1 and glr1 mutants were more sensitive than the wild type. In addition, total glutathione peroxidase activity increased following treatment with LoaOOH, indicating a possible detoxification role for this enzyme. Yeast also showed an adaptive response when pretreated with a nonlethal dose of LoaOOH (0.05 mM) and subsequently treated with a lethal dose (0.2 mM), and de novo protein synthesis was required, since adaptation was abolished upon treatment of cells with cycloheximide (25 μg ml−1). The wild-type adaptive response to LoaOOH was independent of those for the superoxide-generating agents paraquat and menadione and also of those for the organic hydroperoxides cumene hydroperoxide and tert-butyl hydroperoxide. Pretreatment with LoaOOH induced resistance to hydrogen peroxide, while pretreatment of cells with malondialdehyde (a lipid peroxidation product) and heat shock (37°C) gave cross-adaptation to LoaOOH, indicating that yeast has effective overlapping defense systems that can detoxify fatty acid hydroperoxides directly or indirectly.  相似文献   

3.
UV-A irradiation caused a dose-dependent decrease in cellular oxygen consumption (56%) and ATP content (65%) in human NCTC 2544 keratinocytes, one hour after treatment. This effect was partially reversed by maintaining the irradiated cells in normal culture conditions for 24h. Using malate/glutamate or succinate as substrates for mitochondrial electron transport, the oxygen uptake of digitoninpermeabilised cells was greatly inhibited following UV-A exposure. These results strongly suggest that UV-A irradiation affects the state 3 respiration of the mitochondria. However, under identical conditions, UV-A exposure did not reduce the mitochondrial transmembrane potential. The antioxidant, vitamin E inhibited UV-A-induced lipid peroxidation, but did not significantly prevent the UV-A-mediated changes in cellular respiration nor the decrease in ATP content, suggesting that these effects were not the result of UV-A dependent lipid peroxidation. UV-A irradiation also led to an increase in MnSOD gene expression 24 hours after treatment, indicating that the mitochondrial protection system was enhanced in response to UV-A treatment. These findings provide evidence that impairment of mitochondrial respiratory activity is one of the early results of UV-A irradiation for light doses much lower than the minimal erythemal dose.  相似文献   

4.
UV-A irradiation caused a dose-dependent decrease in cellular oxygen consumption (56%) and ATP content (65%) in human NCTC 2544 keratinocytes, one hour after treatment. This effect was partially reversed by maintaining the irradiated cells in normal culture conditions for 24h. Using malate/glutamate or succinate as substrates for mitochondrial electron transport, the oxygen uptake of digitoninpermeabilised cells was greatly inhibited following UV-A exposure. These results strongly suggest that UV-A irradiation affects the state 3 respiration of the mitochondria. However, under identical conditions, UV-A exposure did not reduce the mitochondrial transmembrane potential. The antioxidant, vitamin E inhibited UV-A-induced lipid peroxidation, but did not significantly prevent the UV-A-mediated changes in cellular respiration nor the decrease in ATP content, suggesting that these effects were not the result of UV-A dependent lipid peroxidation. UV-A irradiation also led to an increase in MnSOD gene expression 24 hours after treatment, indicating that the mitochondrial protection system was enhanced in response to UV-A treatment. These findings provide evidence that impairment of mitochondrial respiratory activity is one of the early results of UV-A irradiation for light doses much lower than the minimal erythemal dose.  相似文献   

5.
Cells treated with low doses of linoleic acid hydroperoxide (LoaOOH) exhibit a cell-cycle delay that may provide a mechanism to overcome oxidative stress. Strains sensitive to LoaOOH from the genome-wide deletion collection were screened to identify deletants in which the cell-cycle delay phenotype was reduced. Forty-seven deletants were identified that were unable to mount the normal delay response, implicating the product of the deleted gene in the oxidant-mediated cell-cycle delay of the wild-type. Of these genes, SWI6 was of particular interest due to its role in cell-cycle progression through Start. The swi6 deletant strain was delayed on entry into the cell cycle in the absence of an oxidant, and oxidant addition caused no further delay. Transforming the swi6 deletant with SWI6 on a plasmid restored the G1 arrest in response to LoaOOH, indicating that Swi6p is involved in oxidant sensing leading to cell division delay. Micro-array studies identified genes whose expression in response to LoaOOH depended on SWI6. The screening identified 77 genes that were upregulated in the wild-type strain and concurrently downregulated in the swi6 deletant treated with LoaOOH. These data show that functions such as heat shock response, and glucose transport are involved in the response.  相似文献   

6.
Membrane lipid peroxidation processes yield products that may react with DNA and proteins to cause oxidative modifications. Recently, we demonstrated that the control of cytosolic redox balance and the cellular defense against oxidative damage is one of the primary functions of cytosolic NADP+-dependent isocitrate dehydrogenase (IDPc) through to supply NADPH for antioxidant systems. The protective role of IDPc against lipid peroxidation-mediated apoptosis in U937 cells was investigated in control and cells pre-treated with oxlalomalate, a competitive inhibitor of IDPc. Upon exposure to 2,2'-azobis (2-amidinopropane) hydrochloride (AAPH) to U937 cells, which induces lipid peroxidation in membranes, the susceptibility to apoptosis was higher in oxalomalate-treated cells as compared to control cells. The results suggest that IDPc plays an important protective role in apoptosis of U937 cells induced by lipid peroxidation-mediated oxidative stress.  相似文献   

7.
《Free radical research》2013,47(12):1054-1065
Abstract

Eukaryotic microorganisms are constantly challenged by reactive oxygen species derived endogenously or encountered in their environment. Such adversity is particularly applied to Saccharomyces cerevisiae under harsh industrial conditions. One of the major oxidants to challenge S. cerevisiae is linoleic acid hydroperoxide (LoaOOH). This study, which used genome-wide microarray analysis in conjunction with deletion mutant screening, uncovered the molecular pathways of S. cerevisiae that were altered by an arresting concentration of LoaOOH (75 μM). The oxidative stress response, iron homeostasis, detoxification through PDR transport and direct lipid β-oxidation were evident through the induction of the genes encoding for peroxiredoxins (GPX2, TSA2), the NADPH:oxidoreductase (OYE3), iron uptake (FIT2, ARN2, FET3), PDR transporters (PDR5, PDR15, SNQ2) and β-oxidation machinery (FAA2, POX1). Further, we discovered that Gpx3p, the dual redox sensor and peroxidase, is required for protection against LoaOOH, indicated by the sensitivity of gpx3Δ to a mild dose of LoaOOH (37.5 μM). Deletion of GPX3 conferred a greater sensitivity to LoaOOH than the loss of its signalling partner YAP1. Deletion of either of the iron homeostasis regulators AFT1 or AFT2 also resulted in sensitivity to LoaOOH. These novel findings for Gpx3p, Aft1p and Aft2p point to their distinct roles in response to the lipid peroxide. Finally, the expression of 89 previously uncharacterised genes was significantly altered against LoaOOH, which will contribute to their eventual annotation.  相似文献   

8.
Enzymatic antioxidants such as selenium-dependent glutathione peroxidase (GPx), glutathione transferase (GST), glutathione reductase (GR), and superoxide dismutases (SOD), as well as the concentration of hydrogen peroxide (H2O2) and malondialdehyde (MDA, an indicator of lipid peroxidation) were determined to identify which antioxidant enzymes participate in the efficient scavenging of ROS generated upon exposure to high doses of Cd2+ in fourth-instar Propsilocerus akamusi (Tokuna) (Diptera: Chironomidae) larvae after 72-h exposure. A significant increase in MDA levels and a change in GR and GPx activities in the Cd(2+)-treated P. akamusi were observed. The MDA in 25.0 and 50.0 mmol/liter treatments was significantly higher than that of the control dose after 72 h exposure. GPx activity was significantly induced by Cd2+ exposure only in the 50.0-mmol/liter treatment with a 0.59-fold increase in the control. All doses of Cd2+ significantly suppressed GR activity compared with the findings for the control dose, with an inhibited rate up to 0.55-fold in the 25.0 mmol/liter Cd2+ treatment. SOD and GST activities were not altered. The results indicate that Cd2+ can induce oxidative stress as indicated by the changes in lipid peroxidation and antioxidant status. For P. akamusi, an increase in the dose that the threshold needed for defense (namely, MDA level and GPx activity) activation was achieved. From this, organisms can be hypothesized to enable cells to avoid oxidant stress up to a certain extent where damage is again measurable (higher Cd2+ concentration).  相似文献   

9.
10.
11.
In view of the promising use of n-3 polyunsaturated fatty acids (PUFAs) in the prevention and treatment of neurological diseases, it is necessary to ascertain the lack of detrimental oxidative effects. We evaluated short- and long-term effects of 25, 50 and 75 μM docosahexaenoic acid (DHA) supplementation on the oxidative status of C6 glial cells. DHA was incorporated into cells dose and time dependently without any cytotoxic effect. Reactive oxygen species (ROS) level was related to DHA dose and supplementation time. At the lowest dose no significant increase in ROS values was observed at hour 24. Low doses of DHA strengthened the cellular antioxidant defence system as highlighted by a raise in both GPX and catalase activity, and the decreased levels of lipid peroxidation. This effect was pronounced at 24 h of supplementation, almost disappeared at hour 48, while after 72 h an opposite effect was observed: lipid peroxidation increased concomitantly with DHA doses. Therefore, the final effect of DHA on cellular redox status is dependent on dose and time supplementation.  相似文献   

12.
13.
The free radical hypothesis of aging postulates that senescence is due to an accumulation of cellular oxidative damage, caused largely by reactive oxygen species that are produced as by-products of normal metabolic processes. Recently, we demonstrated that the control of cytosolic and mitochondrial redox balance and the cellular defense against oxidative damage is one of the primary functions of cytosolic (IDPc) and mitochondrial NADP+ -dependent isocitrate dehydrogenase (IDPm) by supplying NADPH for antioxidant systems. In this paper, we demonstrate that modulation of IDPc or IDPm activity in IMR-90 cells regulates cellular redox status and replicative senescence. When we examined the regulatory role of IDPc and IDPm against the aging process with IMR-90 cells transfected with cDNA for IDPc or IDPm in sense and antisense orientations, a clear inverse relationship was observed between the amount of IDPc or IDPm expressed in target cells and their susceptibility to senescence, which was reflected by changes in replicative potential, cell cycle, senescence-associated beta-galactosidase activity, expression of p21 and p53, and morphology of cells. Furthermore, lipid peroxidation, oxidative DNA damage, and intracellular peroxide generation were higher and cellular redox status shifted to a prooxidant condition in the cell lines expressing the lower level of IDPc or IDPm. The results suggest that IDPc and IDPm play an important regulatory role in cellular defense against oxidative stress and in the senescence of IMR-90 cells.  相似文献   

14.
In view of the promising use of n-3 polyunsaturated fatty acids (PUFAs) in the prevention and treatment of neurological diseases, it is necessary to ascertain the lack of detrimental oxidative effects. We evaluated short- and long-term effects of 25, 50 and 75 μM docosahexaenoic acid (DHA) supplementation on the oxidative status of C6 glial cells. DHA was incorporated into cells dose and time dependently without any cytotoxic effect. Reactive oxygen species (ROS) level was related to DHA dose and supplementation time. At the lowest dose no significant increase in ROS values was observed at hour 24. Low doses of DHA strengthened the cellular antioxidant defence system as highlighted by a raise in both GPX and catalase activity, and the decreased levels of lipid peroxidation. This effect was pronounced at 24 h of supplementation, almost disappeared at hour 48, while after 72 h an opposite effect was observed: lipid peroxidation increased concomitantly with DHA doses. Therefore, the final effect of DHA on cellular redox status is dependent on dose and time supplementation.  相似文献   

15.
16.
17.
Cellular apoptosis in a tissue may occur for the maintenance of proper ratio of cells or because of toxic effects of free radicals or other agents. Male germ cell apoptosis is pivotal in maintaining the proper functioning of the testis, but it is not clear how free radicals affect germ cells and what the defense mechanisms are that are used by these cells to combat the toxic effects of the products of oxidative stress. This study shows that male germ cells are susceptible to H(2)O(2)-induced stress and, upon exposure to H(2)O(2) in vitro, demonstrate a typical apoptotic phenotype that includes DNA fragmentation and formation of DNA ladders. Other changes include considerable accumulation of products of lipid peroxidation in the germ cells after exposure to H(2)O(2). Evidence is presented for the existence of multiple isoforms of glutathione S-transferases (GSTs) that possess both transferase and Se-independent peroxidase activity. Germ cell GST activity increases after H(2)O(2) exposure. If this increase in activity is inhibited with suitable inhibitors, the formation of products of lipid peroxidation is augmented, resulting in germ cell apoptosis. Also, when constitutive GST activity is inhibited, accumulation of products of lipid peroxidation occurs, resulting in increased cellular apoptosis. These data show that GSTs form a part of adaptive response of germ cells to oxidative stress and are important constituents in detoxifying the products of lipid peroxidation.  相似文献   

18.
Membrane lipid peroxidation processes yield products that may react with DNA and proteins to cause oxidative modifications. Cytosolic NADP+-dependent isocitrate dehydrogenase (ICDH) in U937 cells produces NADPH, an essential reducing equivalent for the antioxidant system. The protective role of ICDH against lipid peroxidation-mediated oxidative damage in U937 cells was investigated in control cells pre-treated with oxalomalate, a competitive inhibitor of ICDH. Upon exposure to 2,2'-azobis(2-amidinopropane) hydrochloride (AAPH) to U937 cells, which induces lipid peroxidation in membranes, the viability was lower and the protein oxidation, lipid peroxidation, and oxidative DNA damage, reflected by an increase in 8-hydroxy-2'-deoxyguanosine, were higher in oxalomalate-treated cells as compared to control cells. We also observed the significant increase in the endogenous production of reactive oxygen species, as measured by the oxidation of 2',7'-dichlorodihydrofluorescin, as well as the significant decrease in the intracellular GSH level in oxalomalate-treated U937 cells upon exposure to AAPH. These results suggest that ICDH plays an important role as an antioxidant enzyme in cellular defense against lipid peroxidation-mediated oxidative damage through the removal of reactive oxygen species.  相似文献   

19.
Diphenyl diselenide (DPDS) is an organoselenium compound with interesting pharmacological activities and various toxic effects. In previous reports, we demonstrated the pro-oxidant action and the mutagenic properties of this molecule in bacteria, yeast and cultured mammalian cells. This study investigated the genotoxic effects of DPDS in multiple organs (brain, kidney, liver, spleen, testes and urinary bladder) and tissues (bone marrow, lymphocytes) of mice using in vivo comet assay, in order to determine the threshold of dose at which it has beneficial or toxic effects. We assessed the mechanism underlying the genotoxicity through the measurement of GSH content and thiobarbituric acid reactive species, two oxidative stress biomarkers. Male CF-1 mice were given 0.2-200 micromol/kg BW DPDS intraperitonially. DPDS induced DNA damage in brain, liver, kidney and testes in a dose response manner, in a broad dose range at 75-200 micromol/kg with the brain showing the highest level of damage. Overall, our analysis demonstrated a high correlation among decreased levels of GSH content and an increase in lipid peroxidation and DNA damage. This finding establishes an interrelationship between pro-oxidant and genotoxic effects. In addition, DPDS was not genotoxic and did not increase lipid peroxidation levels in any organs at doses < 50 micromol/kg. Finally, pre-treatment with N-acetyl-cysteine completely prevented DPDS-induced oxidative damage by the maintenance of cellular GSH levels, reinforcing the positive relationship of DPDS-induced GSH depletion and DNA damage. In summary, DPDS induces systemic genotoxicity in mammals as it causes DNA damage in vital organs like brain, liver, kidney and testes.  相似文献   

20.
Membrane lipid peroxidation processes yield products that may react with proteins to cause oxidative modification. Recently, we demonstrated that the control of cytosolic and mitochondrial redox balance and oxidative damage is one of the primary functions of NADP+-dependent isocitrate dehydrogenase (ICDH) through to supply NADPH for antioxidant systems. When exposed to lipid peroxidation products, such as malondialdehyde (MDA), 4-hydroxynonenal (HNE) and lipid hydroperoxide, ICDH was susceptible to oxidative damage, which was indicated by the loss of activity and the formation of carbonyl groups. The structural alterations of modified enzymes were indicated by the change in thermal stability, intrinsic tryptophan fluorescence and binding of the hydrophobic probe 8-anilino 1-napthalene sulfonic acid. Upon exposure to 2,2′-azobis(2-amidinopropane) hydrochloride (AAPH), which induces lipid peroxidation in membrane, a significant decrease in both cytosolic and mitochondrial ICDH activities were observed in U937 cells. Using immunoprecipitation and immunoblotting, we were able to isolate and positively identify HNE adduct in mitochondrial ICDH from AAPH-treated U937 cells. The lipid peroxidation-mediated damage to ICDH may result in the perturbation of the cellular antioxidant defense mechanisms and subsequently lead to a pro-oxidant condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号