首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the presence of D=-carnitine significant decarboxylation of 2-oxoglutarate occurs with γ-butyrobetaine hydroxylase (EC 1.14.11.1) both from Pseudomonas sp AK 1 and from human kidney. No product was formed from carnitine when D=L=-carnitine was incubated with either enzyme but succinate was formed in 1:1 stoichiometry to decarboxylation using D=-carnitine and the human enzyme. L=-Carnitine is also an uncoupler for the human enzyme. There is no significant decarboxylation of 2-oxoglutarate in the absence of a substrate, but during normal catalysis in the presence of γ-butyrobetaine the formation of CO2 from 2-oxoglutarate exceeds carnitine formation with 20% for the human enzyme.  相似文献   

2.
The antagonist binding properties of rat pancreatic and cardiac muscarinic receptors were compared. In both tissues pirenzepine (PZ) had a low affinity for muscarinic receptors labelled by (3H)N-methylscopolamine [3)NMS) (KD values of 140 and 280 nM, respectively, in pancreatic and cardiac homogenates). The binding properties of pancreatic and cardiac receptors were, however, markedly different. This was indicated by different affinities for dicyclomine, (11-([(2-[diethylamino)-methyl)-1-piperidinyl] acetyl)-5, 11-dihydro-6H-pyrido(2,3-b)(1,4) benzodiazepin-6-on) (AFDX-116), 4-diphenylacetoxy-N-methyl-piperidine methobromide (4-DAMP) and hexahydrosiladifenidol (HHSiD). Pancreatic and cardiac muscarinic receptors also showed different (3H)NMS association and dissociation rates. These results support the concept of M2 receptor heterogeneity and confirm that M2 receptor subtypes have different binding kinetic properties.  相似文献   

3.
4.
The muscarinic agonist [3H]cismethyldioxolane ([3H]CD) was used to characterize the effects of regulators upon high-affinity agonist binding sites of the rat heart, cerebral cortex and cerebellum. Comparative studies with sodium ions (Na+), magnesium ions (Mg++), N-ethylmaleimide (NEM) and the guanine nucleotide Gpp(NH)p revealed tissue-specific effects. Mg++ preferentially enhanced while Gpp(NH)p and NEM reduced high-affinity [3H]CD binding in the heart and cerebellum. By comparison NEM enhanced high-affinity agonist binding in the cerebral cortex while Gpp(NH)p and Mg++ had little or no effect. Kinetic studies support an allosteric mechanism for these effects and provide further evidence for muscarinic receptor subtypes in mammalian tissues.  相似文献   

5.
Sarcosine oxidase [sarcosine: oxygen oxidoreductase (demethylating) EC 1.5.3.1] from Corynebacterium contained 8 sulfhydryl groups per mol of enzyme as determined with 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) in the presence of 0.2% SDS and by titration with p-chloromercuribenzoate (PMB). Among them, 2 groups were easily modified by iodoacetamide (IAA) and the modification resulted in complete loss of enzymatic activity. The inactivation by IAA followed first-order kinetics with respect to IAA concentration. The presence of acetate, a competitive inhibitor (I), protected the enzyme from inactivation by IAA. However, the protection was only approximately 50%. The enzyme was also inactivated by PMB, but in this case, there was practically no recovery of activity after treatment with thiol compounds. The enzyme was also rapidly inactivated by incubation with diethylpyrocarbonate (DEP). The absorbance change accompanying the inactivation showed that a single histidyl residue was modified by DEP, resulting in a complete loss of enzymatic activity. In the presence of acetate, the enzyme was completely protected from DEP-inactivation. Furthermore, DEP-inactivated enzyme recovered its enzymatic activity on treatment with hydroxylamine. These observations seem to imply that the modified histidine is essential for enzyme activity. In addition, modification by DEP changed the absorption spectrum in the visible region. This strongly suggests that the modified histidyl residue is present in the vicinity of the flavin moiety of the enzyme molecule.  相似文献   

6.
2 alpha-Cyanoprogesterone (I) and 2-hydroxymethyleneprogesterone (II) were synthesized and screened as irreversible active-site-directed inhibitors of the delta 5-3-oxosteroid isomerase (EC 5.3.3.1) from Pseudomonas testosteroni. Both compounds were found to inhibit the purified bacterial enzyme in a time-dependent manner. In either case the inactivated enzyme could be dialysed without return of activity, indicating that a stable covalent bond had formed between the inhibitor and the enzyme. Inactivation mediated by compounds (I) and (II) followed pseudo-first-order kinetics, and at higher inhibitor concentrations saturation was observed. The competitive inhibitor 17 beta-oestradiol offered protection against the inactivation mediated by both compounds, and initial-rate studies indicated that compounds (I) and (II) can also act as competitive inhibitors yielding Ki values identical with those generated during inactivation experiments. 2 alpha-Cyanoprogesterone (I) and 2-hydroxymethyleneprogesterone (II) thus appear to be active-site-directed. To compare the reactivity of these 2-substituted progesterones with other irreversible inhibitors of the isomerase, 3 beta-spiro-oxiranyl-5 alpha-pregnan-20 beta-ol (III) was synthesized as the C21 analogue of 3 beta-spiro-oxiranyl-5 alpha-androstan-17 beta-ol, which is a potent inactivator of the isomerase [Pollack, Kayser & Bevins (1979) Biochem. Biophys. Res. Commun. 91, 783-790]. Comparison of the bimolecular rate constants for inactivation (k+3/Ki) mediated by compounds (I)-(III) indicated the following order of reactivity: (III) greater than (II) greater than (I). 2-Mercaptoethanol offers complete protection against the inactivation of the isomerase mediated by 2 alpha-cyanoprogesterone (I). Under the conditions of inactivation compound (I) appears to be completely stable, and no evidence could be obtained for enolate ion formation in the presence or absence of enzyme. It is suggested that cyanoprogesterone inactivates the isomerase after direct nucleophilic attack at the electropositive 2-position, and that tautomerization plays no role in the inactivation event. By contrast, 2-mercaptoethanol offers no protection against the inactivation mediated by 2-hydroxymethyleneprogesterone, and under the conditions of inactivation this compound appears to exist in the semi-enolized form.  相似文献   

7.
The recently discovered specific binding sites for benzodiazepines in the central nervous system have been characterized further. Specific 3H-diazepam binding to synaptosomal preparations from rat cerebral cortex is saturable with the dissociation constant for diazepam KD = 3.6 ± 0.1 nM. The maximal amount of specifically bound 3H-diazepam is 0.88 ± 0.05 pmole per mg protein. In the binding assay equilibrium between the specific binding sites and 3H-diazepam is reached within 15 min. Specific 3H-diazepam binding shows a linear dependency on protein up to 3.0 mg protein per assay and a sharp pH-optimum between pH 7.0 to pH 7.4 3H-diazepam binding is temperature dependent with the highest amount bound at 4° C. Specific 3H-diazepam binding is altered by treating the synaptosomal preparations with proteolytic enzymes: trypsin and -chymotrypsin lead to the complete disappearance of specific 3H-diazepam binding; carboxypeptidase A or B decrease specific 3H-diazepam binding by 36 %, while leucineaminopeptidase was without effect.  相似文献   

8.
The high-affinity muscarinic antagonist /3H/-Quinuclidinyl benzilate (/3H/-QNB) has been used to label muscarinic receptors in a crude membrane fraction of rat cerebral cortex, colon and heart. The inhibition of /3H/-QNB binding by Atropine, Oxotremorine and Pirenzepine was investigated at three temperatures: 37 degrees C, 22 degrees C and 10 degrees C. The IC50 values and the proportion of high (Rt1) and low (Rt2) affinity binding sites were determined for the three compounds. When the temperature were lowered from 37 degrees C to 10 degrees C, in the agonist and antagonist dissociation constants decreased in all tissues. Changes in temperature did not modify Rt1 or Rt2 values for Oxotremorine and Pirenzepine. The results show marked temperature-dependent modifications of IC50 values for muscarinic receptors of high- and low-affinity sites in rat cerebral cortex, colon or heart.  相似文献   

9.
Recent studies have demonstrated that the majority of muscarinic receptors in rabbit peripheral lung homogenates bind pirenzepine with high affinity (putative M1 subtype). In experiments of AF-DX 116 inhibiting [3H](-)quinuclidinyl benzilate or [3H]pirenzepine, we found similar inhibitory constants for AF-DX 116 binding in rat heart and rabbit peripheral lung that were 4-fold smaller (i.e. of higher affinity) than the inhibitory constant for rat cerebral cortex. This result demonstrates heterogeneity of the M1 muscarinic receptor subtype between peripheral lung and cerebral cortex.  相似文献   

10.
In this paper we compared the antibacterial activity of native microcin J25, a peptide antibiotic, with the activities of two analogues obtained by chemical modifications. In the first analogue, the negative charge of glutamic carboxyl group was specifically blocked with an L-glycine methyl ester and in the second the histidine imidazole ring was carbethoxylated. Both analogues decreased notably its antibiotic activity against Escherichia coli and Salmonella newport, strains sensible to the native microcin J25. The biological activity of the carbethoxylated analogue was completely recovered after treatment with hydroxylamine. The extreme importance of both polar residues could be interpreted as specific structural features indispensable for the peptide transportation into the cell, extrusion outside the cell or alternatively to inhibit the RNA-polymerase.  相似文献   

11.
The method of competition kinetics, which measures the binding kinetics of an unlabeled ligand through its effect on the binding kinetics of a labeled ligand, was employed to investigate the kinetics of muscarinic agonist binding to rat brain medulla pons homogenates. The agonists studied were acetylcholine, carbamylcholine, and oxotremorine, with N-methyl-4-[3H]piperidyl benzilate employed as the radiolabeled ligand. Our results suggested that the binding of muscarinic agonists to the high affinity sites is characterized by dissociation rate constants higher by 2 orders of magnitude than those of antagonists, with rather similar association rate constants. In contrast, the major differences between the kinetic binding parameters of agonists and antagonists to the low affinity agonist binding sites are in the association rate constants, which were 2-5 orders of magnitude lower for agonists. This demonstrates that there are basic differences in the interactions of agonists with the low and high affinity sites. Our findings also suggest that isomerization of the muscarinic receptors following ligand binding is significant in the case of antagonists, but not of agonists. Moreover, it is demonstrated that in the medulla pons preparation, agonist-induced interconversion between high and low affinity bindings sites does not occur to an appreciable extent.  相似文献   

12.
Muscarinic (cholinergic) receptor binding sites (MRB) were studied by determining the 3H-QNB binding in four cortical areas and hippocampus of 20 histologically confirmed Alzheimer patients and comparing these with corresponding controls. Alzheimer patients dying at younger age (less than or equal to 80) with profound decrease in choline-acetyltransferase activity (by 61-85%) and without any, possibly MRB modifying, drug treatment showed 30% decrease in MRB in the frontal cortex (p less than 0.05), 28% in the temporal cortex (p less than 0.05) and 37% in the hippocampus (p less than 0.01). These findings further suggest that muscarinic receptors are affected in Alzheimer's disease, at least in advanced state of the disease.  相似文献   

13.
Identification of [14C]pipecolic acid (PA) receptors was attempted in the solubilized membrane fraction from rat cerebral cortex. Specific binding proteins for both PA and muscimol, a potent -aminobutyric acid (GABA) agonist, were detected in the same preparation. Separation of labeled PA and GABA binding proteins by glycerol gradient centrifugation has shown labeled protein bands of similar sedimentation rates, suggesting that PA and GABA may be binding to identical proteins. It seems likely that the PA binding receptor either may possess the same sedimentation characteristics as that of the GABA receptor, or both GABA and PA which is an endogenous and weak GABA agonist may bind to the same receptor complex, if not to the same binding site.  相似文献   

14.
Whereas Tamoxifen exerts potent antiestrogenic action in ER dependent breast cancer, it was largely without effect on rat liver gluconeogenesis which could be dramatically diminished by estrogens and androgens. Although estradiol was preferentially bound to an ER4 component that coeluted with CBG from DE-52 columns, 3H-tamoxifen labelled the ER3 moiety that was clearly distinct from transcortin. Similarly, testosterone was bound to the AR4 entity but R-1881 was eluted in the AR3 region. All these ER and AR populations were furthermore distinct from liver GR. These, for the first time, demonstrate polymorphic nature of AR and ER and suggest that agonist and antagonist actions may be expressed via separate populations of the receptor, contrary to the established, classical view that dictates competitive antagonism between them for the one and the same site.  相似文献   

15.
Diethylpyrocarbonate (DEP), an amino acid modifying reagent, causes complete inactivation of particulate and deoxycholate-solubilized benzodiazepine-receptors from calf cerebral cortex. No heterogeneity was observed in DEP-sensitivity of the receptors. Protection from DEP-induced inactivation was provided by the centrally active benzodiazepines, diazepam and nitrazepam, but not by the peripherally active Ro5-4864, suggesting that DEP modifies a residue which is essential for the central actions of benzodiazepines. GABA did not protect against inactivation or influence the protection afforded by diazepam, indicating that the DEP-modifiable residue is independent of GABA binding sites, or that GABA binding sites are also sensitive to DEP. DEP-induced inactivation of benzodiazepine-receptors proceeds much faster at pH 10.1 than at pH 8.1 or 6.0, indicating the modification of a high pKa side group, possibly the phenol of a tyrosyl residue. This postulation is in accord with our previous findings with the modifying reagents tetranitromethane and N-acetylimidazole.  相似文献   

16.
In order to investigate the possibility that there may be two conformationally distinct dopamine D1 binding sites, the effect of lysine-modifying agents on striatal dopamine D1 receptors was investigated. Treatment with the distilbene derivative, 4,4'-diisothiocyanostilbene-2,2'-disulfonate, (DIDS), resulted in an irreversible D1 receptor inactivation that was associated with a 70% loss of binding sites. The remaining DIDS-insensitive sites displayed both a decreased affinity (approximately 5 fold) for the D1 antagonist SCH-23390 and an enhanced affinity of dopaminergic agonists (approximately 10 fold) for the agonist high-affinity form of the receptor. Pretreatment with Gpp(NH)p, a non-hydrolysable guanine nucleotide, prevented the formation of the agonist high-affinity form, indicating that these sites are G-protein-linked. Prior occupancy of D1 receptors with dopaminergic agonists and antagonists afforded no protection against DIDS inactivation, suggesting that a site outside the ligand binding subunit of the D1 receptor was modified. Taken together, these data suggest that [3H]SCH-23390 labels two conformationally distinct populations of dopamine D1 receptors.  相似文献   

17.
L D McVittie  D R Sibley 《Life sciences》1989,44(23):1793-1802
A phencyclidine (PCP) receptor binding site has been solubilized in an active ligand-binding state from rat cerebral cortical membranes with sodium deoxycholate. Optimal receptor solubilization occurs at a detergent/protein ratio of 0.5 (w/w); for 5 mg protein/ml solubilized with 0.25% sodium deoxycholate, about 60% of the protein and 25% of the receptor is solubilized. Specific binding of either [3H]-N-[1-(2-thienyl)cyclohexyl]piperidine ([3H]TCP) or [3H]MK-801 is measurable by filtration through Sephadex G-50 columns or glass fiber filters; more than 60% of the binding activity is stable after 48 h at 4 degrees C. In the presence of detergent, [3H]TCP binding exhibits a Kd of 250 nM, a Bmax of 0.56 pmol/mg protein, and a pharmacological profile consistent with that of the membrane-bound PCP receptor, although most drugs bind with affinities 2 to 8 fold lower than in membranes. Upon reduction of detergent concentration, binding parameters approximate those for the membrane-bound receptor ([3H]TCP binding: Kd = 48 nM, Bmax = 1.13 pmol/mg protein).  相似文献   

18.
Hulme EC  Curtis CA  Page KM  Jones PG 《Life sciences》1995,56(11-12):891-898
Site-directed mutagenesis has been used to evaluate the roles of the key aspartate and arginine residues in transmembrane domain three of the muscarinic receptors. The results suggest that the formation of an ionic bond between the Asp carboxylate group and the onium headgroup is essential to anchor acetylcholine in its active, bound conformation in both binary agonist-receptor and ternary agonist-receptor-G-protein complexes, but that secondary, non-productive binding modes, promoted by non-polar forces, may contribute to binary complex formation by other ligands. The positive charge of the arginyl side-chain is central to the recognition, and subsequent activation of G-proteins by the agonist-M1 mAChR complex.  相似文献   

19.
The kinetics of saturation, as well as of denaturation, confirm the existence of two distinct mineralocorticoid receptor populations one each for the agonist aldosterone (MR2) and the antagonist RU 26752 (MR3) in rat kidney. Receptor activation in vitro was dependent upon the buffer, progressed just as well in the presence of the agonist and the antagonist, and was inhibited by molybdate. These necessitate a reassessment of both the importance of receptor activation in vitro and its possible contribution to hormone action in vivo.  相似文献   

20.
Chronic Chagasic patient immunoglobulins (CChP-IgGs) recognize an acidic amino acid cluster at the second extracellular loop (el2) of cardiac M(2)-muscarinic acetylcholine receptors (M(2)AChRs). These residues correspond to a common binding site for various allosteric agents. We characterized the nature of the M(2)AChR/CChP-IgG interaction in functional and radioligand binding experiments applying the same mainstream strategies previously used for the characterization of other allosteric agents. Dose-response curves of acetylcholine effect on heart rate were constructed with data from isolated heart experiments in the presence of CChP or normal blood donor (NBD) sera. In these experiments, CChP sera but not NBD sera increased the efficacy of agonist action by augmenting the onset of bradyarrhythmias and inducing a Hill slope of 2.5. This effect was blocked by gallamine, an M(2)AChR allosteric antagonist. Correspondingly, CChP-IgGs increased acetylcholine affinity twofold and showed negative cooperativity for [(3)H]-N-methyl scopolamine ([(3)H]-NMS) in allosterism binding assays. A peptide corresponding to the M(2)AChR-el2 blocked this effect. Furthermore, dissociation assays showed that the effect of gallamine on the [(3)H]-NMS off-rate was reverted by CChP-IgGs. Finally, concentration-effect curves for the allosteric delay of W84 on [(3)H]-NMS dissociation right shifted from an IC(50) of 33 nmol/L to 78 nmol/L, 992 nmol/L, and 1670 nmol/L in the presence of 6.7 x 10(- 8), 1.33 x 10(- 7), and 2.0 x 10(- 7) mol/L of anti-el2 affinity-purified CChP-IgGs. Taken together, these findings confirmed a competitive interplay of these ligands at the common allosteric site and revealed the novel allosteric nature of the interaction of CChP-IgGs at the M(2)AChRs as a positive cooperativity effect on acetylcholine action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号