首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In rat mesenteric arteries, the ability of ACh to evoke hyperpolarization of smooth muscle cells and consummate dilatation relies on an increase in endothelial cell cytosolic free [Ca2+] and activation of Ca2+-activated K+ channels (KCa). The time course of average and spatially organized rises in endothelial cell [Ca2+]i and concomitant effects on membrane potential were investigated in individual cells of pressurized arteries and isolated sheets of native cells stimulated with ACh. In both cases, ACh stimulated a sustained and oscillating rise in endothelial cell [Ca2+]i. Overall, the oscillations remained asynchronous between cells, yet occasionally localized intercellular coordination became evident. In pressurized arteries, repetitive waves of Ca2+ moved longitudinally across endothelial cells, and depended on Ca2+-store refilling. The rise in endothelial cell Ca2+ was associated with sustained hyperpolarization of endothelial cells in both preparations. This hyperpolarization was also evident when recording from smooth muscle cells in pressurized arteries, and from resting membrane potential, selective inhibition of small-conductance K Ca (SK Ca) with apamin (50 nM) was sufficient to inhibit this response. In the presence of phenylephrine-tone, both apamin and the selective inhibitor of intermediate conductance K Ca (IK Ca) TRAM-34 (1 microM) were required to inhibit the non-nitric oxide-mediated dilatation to ACh. When hyperpolarization of endothelial cells was fully prevented either with inhibitors of K Ca or in KCl (35 mM)-depolarized cells, both the time course and frequency of oscillations in endothelial cell [Ca2+]i to ACh were unaffected. Together, these data show that although a rise in endothelial cell [Ca2+]i stimulates hyperpolarization, depletion of intracellular stores with ACh stimulates Ca2+-influx which is not significantly influenced by the increase in cellular electrochemical gradient for Ca2+ caused by that hyperpolarization.  相似文献   

2.
Elevation of intracellular Ca(2+) concentration ([Ca(2+)](i)) in endothelial cells is proposed to be required for generation of vascular actions of endothelium-derived hyperpolarizing factor (EDHF). This study was designed to determine the endothelial Ca(2+) source that is important in development of EDHF-mediated vascular actions. In porcine coronary artery precontracted with U-46619, bradykinin (BK) and cyclopiazonic acid (CPA) caused endothelium-dependent relaxations in the presence of N(G)-nitro-L-arginine (L-NNA). The L-NNA-resistant relaxant responses were inhibited by high K(+), indicating an involvement of EDHF. In the presence of Ni(2+), which inhibits Ca(2+) influx through nonselective cation channels, the BK-induced EDHF relaxant response was greatly diminished and the CPA-induced response was abolished. BK and CPA elicited membrane hyperpolarization of smooth muscle cells of porcine coronary artery. Ni(2+) suppressed the hyperpolarizing responses in a manner analogous to removal of extracellular Ca(2+). EDHF-mediated relaxations and hyperpolarizations evoked by BK and CPA in porcine coronary artery showed a temporal correlation with the increases in [Ca(2+)](i) in porcine aortic endothelial cells. The extracellular Ca(2+)-dependent rises in [Ca(2+)](i) in endothelial cells stimulated with BK and CPA were completely blocked by Ni(2+). These results suggest that Ca(2+) influx into endothelial cells through nonselective cation channels plays a crucial role in the regulation of EDHF.  相似文献   

3.
The activation of endothelial cells by endothelium-dependent vasodilators has been investigated using bioassay, patch clamp and 45Ca flux methods. Cultured pulmonary artery endothelial cells have been demonstrated to release EDRF in response to thrombin, bradykinin, ATP and the calcium ionophore A23187. The resting membrane potential of the endothelial cells was -56 mV and the cells were depolarized by increasing extracellular K+ or by the addition of (0.1-1.0 mM)Ba2+ to the bathing solution. The electrophysiological properties of the cultured endothelial cells suggest that the membrane potential is maintained by an inward rectifying K+ channel with a mean single channel conductance of 35.6 pS. The absence of a depolarization-activated inward current and the reduction of 45Ca influx with high K+ solution suggests that there are no functional voltage-dependent calcium or sodium channels. Thrombin and bradykinin were shown to evoke not only an inward current (carried by Na+ and Ca2+) but also an increase in 45Ca influx suggesting that the increase in intracellular calcium necessary for EDRF release is mediated by an opening of a receptor operated channel. High doses of thrombin and bradykinin induced intracellular calcium release, however, at low doses of thrombin no intracellular calcium release was observed. We propose that the increased cytosolic calcium concentration in endothelial cells induced by endothelium dependent vasodilators is due to the influx of Ca2+ through a receptor operated ion channel and to a lesser degree to intracellular release of calcium from a yet undefined intracellular store.  相似文献   

4.
Effects of porcine-human endothelin-1 on mechanical as well as electrical activities and on intracellular free Ca2+ levels in the guinea pig taenia coli were compared with those of nifedipine, a voltage-dependent Ca2+ channel blocker. Endothelin-1 (0.1-100 nM) caused a concentration-dependent suppression of spontaneous contractions but did not significantly affect the sustained contraction evoked by 40 mM KCl. However, nifedipine (0.1-100 nM) inhibited both types of contractions in a concentration-dependent manner. In electrophysiological studies, endothelin-1 (30 nM) or nifedipine (30 nM) eliminated spontaneous spike discharges. Endothelin-1 produced hyperpolarization, while nifedipine did not change the resting membrane potential. The endothelin-1 induced suppression of spontaneous contractions was dose-dependently antagonized by apamin (0.01-10 nM), an inhibitor of a small conductance Ca(2+)-dependent K+ channel, and D-tubocurarine (10-100 microM), an inhibitor of Ca(2+)-dependent K+ channel, but was unaffected by 4-aminopyridine (0.01-1 mM), an inhibitor of a voltage-dependent K+ channel. In the study with fura 2 excited at 340 nm, endothelin-1 abolished, from the tissue, the fluorescence signals that were coupled with spontaneous contraction. It is suggested that the inhibitory action of endothelin-1 on spontaneous contraction may be caused by hyperpolarization of the membrane that reduces the spontaneous generation of spike discharge coupled normally to an increase in the intracellular free Ca2+ levels in the guinea pig taenia coli. The hyperpolarization may be caused by activating apamin-sensitive Ca(2+)-dependent K+ channels.  相似文献   

5.
We have used combined patch clamp and fura-2 fluorescence to elucidate the role of membrane potential in the regulation of the cytosolic Ca2+ concentration ([Ca2+]i) in a human umbilical vein derived endothelial cell-line, EA.hy926 (EA cells) stimulated with vasoactive agonists, such as ATP, histamine and bradykinin. This stimulation caused hyperpolarization and sustained Ca2+ plateau in nonclamped cells. Clamping agonist-stimulated cells at negative potentials enhanced the amplitude of this plateau, whereas it was smaller at more depolarized potentials, indicating that Ca2+ influx follows its driving force. Depolarization of the membrane by increasing extracellular K+ or by applying charybdotoxin, a blocker of big conductance Ca2+-dependent K+ channels during agonist stimulation diminished the plateau rise in [Ca2+]i. It is concluded that the membrane potential is an efficient regulator of Ca2+ influx during the plateau phase of agonist-mediated Ca2+ signals. In addition, the modulating effects on Ca2+ signals should be interpreted with caution if the membrane potential of the cells is not controlled.  相似文献   

6.
Apple procyanidins (AP), one of the polyphenol-rich compounds, showed an endothelial-dependent vasorelaxation in rat aorta, but the mechanisms of beneficial effects are still unclear. The present study was designed to clarify the potential role of AP in rat aorta endothelial cells (RAECs). The treatment of RAECs with AP (1-10 μg/ml) resulted in a dose-dependent hyperpolarization with a maximum effect at 10 μg/ml, and for this reason, AP (10 μg/ml) was used in all the following experiments. AP-induced hyperpolarization was significantly inhibited by pretreatment of nonspecific K(+) inhibitor, tetraethyl ammonium chloride or specific K(+) channel inhibitors, iberiotoxin, glibenclamide, 4-aminopyridine and BaCl(2), as well as by high KCl or Ca(2+)-free solution. AP-induced hyperpolarization was also proved using 64-channel multielectrode dish system that can monitor a direct and real-time change of membrane potential. Furthermore, AP treatment caused a significant increase of nitric oxide (NO) production and cyclic guanosine monophosphate levels via endothelial NO synthase messenger RNA expression. The NO production was inhibited by N(G)-monoethyl-l-arginine or Ca(2+)-free solution and was completely abolished by their combination. Also, AP inhibited endothelial proliferation, while the effect was significantly abolished by N(G)-monoethyl-l-arginine or tetraethyl ammonium chloride. These findings suggest that AP induces both hyperpolarization of RAECs via multiple activation of K(+) channels and activation of NO/cyclic guanosine monophosphate pathway via increasing NO production or is responsible for antiangiogenic effect. Diminishment of hyperpolarization as well as NO production of AP in Ca(2+)-free solution implicated that AP would play a crucial role in promoting Ca(2+) influx into endothelial cells so as to promote both actions.  相似文献   

7.
The involvement of ion channels in B and T lymphocyte activation is supported by many reports of changes in ion fluxes and membrane potential after mitogen binding. Human T and B lymphocytes demonstrate an early and transient hyperpolarization after ligand binding. Inasmuch as the change in membrane potential is dependent on elevation of free cytosolic calcium, the hyperpolarization is presumably through opening of Ca(2+)-stimulated K+ channels. We have used charybdotoxin, a known inhibitor of Ca(2+)-dependent K+ channels, to study the role of these channels in lymphocyte activation and mitogenesis. We demonstrate that charybdotoxin inhibits the ligand-induced transient membrane hyperpolarization in B and T cells in a dose-dependent fashion, without affecting changes in cytosolic Ca2+. However, blockade of the Ca(2+)-activated K+ channel is not associated with changes in cell-cycle gene activation, IL-2 production, IL-2R expression or B and T cell mitogenesis. These results imply that membrane potential changes secondary to the ligand-dependent opening of Ca(2+)-activated K+ channels are not involved in B and T lymphocyte activation and mitogenesis.  相似文献   

8.
K+ channels were recorded in excised, inside-out patches from the apical membrane of the freshly isolated tubule of the caudal portion of the rat epididymis. With asymmetric K+ concentrations in bath and pipette (140 mM K+in/6 mM K+out), the channels had a slope conductance of 54.2 pS at 0 mV. The relative permeability of K+ over Na+ was about 171 to 1. The channels were activated by intracellular Ca2+ and by membrane depolarization. These channels belong to a class defined as "intermediate-conductance Ca2+-activated K+ channel. " External tetraethylammonium ions (TEA+) caused a flickery block of the channel with reduction in single-channel current amplitude measured at a range of holding membrane potentials (-40 to 60 mV). Activity of the K+ channels was inhibited by intracellular ATP (KD =1.188 mM). The channel activity was detected only occasionally in patches from the apical membrane (about 1 in 17 patches containing active channels). The presence of the intermediate-conductance Ca2+-activated K+ channels indicates that they could provide a route for K+ secretion in a Ca2+-dependent process responsible for a high luminal K+ concentration found in the epididymal duct of the rat.  相似文献   

9.
The purpose of the present study was to determine if hemodynamic shear stress increases free cytosolic Ca2+ concentration ([Ca2+]i) of cultured pulmonary artery endothelial cells exposed to steady laminar fluid flow in a parallel plate chamber. Average [Ca2+]i was estimated by measuring cell-associated fura-2 fluorescence using microfluorimetric analysis. To determine [Ca2+]i close to the membrane surface, 86Rb+ efflux via Ca(2+)-dependent K+ channels was measured. Upon initiation of flow or upon step increases in flow, no change in [Ca2+]i was observed using fura-2. However, increases in shear stress produced a large, transient increase in 86Rb+ efflux. The shear stress-dependent increase in 86Rb+ efflux was not blocked by either tetrabutylammonium ions (20 mM) or by charybdotoxin (10 nM), two specific inhibitors of the Ca(2+)-dependent K+ channel of vascular endothelial cells. These results demonstrate that shear stress per se has little effect on either the average cytosolic [Ca2+]i as measured by fura-2 or on [Ca2+]i close to the cytoplasmic surface of the plasmalemma as measured by the activity of Ca(2+)-dependent K+ channels.  相似文献   

10.
The kinetics of Na(+)-Ca2+ exchange current after a cytoplasmic Ca2+ concentration jump (achieved by photolysis of DM-nitrophen) was measured in excised giant membrane patches from guinea pig or rat heart. Increasing the cytoplasmic Ca2+ concentration from 0.5 microM in the presence of 100 mM extracellular Na+ elicits an inward current that rises with a time constant tau 1 < 50 microseconds and decays to a plateau with a time constant tau 2 = 0.65 +/- 0.18 ms (n = 101) at 21 degrees C. These current signals are suppressed by Ni2+ and dichlorobenzamil. No stationary current, but a transient inward current that rises with tau 1 < 50 microseconds and decays with tau 2 = 0.28 +/- 0.06 ms (n = 53, T = 21 degrees C) is observed if the Ca2+ concentration jump is performed under conditions that promote Ca(2+)-Ca2+ exchange (i.e., no extracellular Na+, 5 mM extracellular Ca2+). The transient and stationary inward current is not observed in the absence of extracellular Ca2+ and Na+. The application of alpha-chymotrypsin reveals the influence of the cytoplasmic regulatory Ca2+ binding site on Ca(2+)-Ca2+ and forward Na(+)-Ca2+ exchange and shows that this site regulates both the transient and stationary current. The temperature dependence of the stationary current exhibits an activation energy of 70 kj/mol for temperatures between 21 degrees C and 38 degrees C, and 138 kj/mol between 10 degrees C and 21 degrees C. For the decay time constant an activation energy of 70 kj/mol is observed in the Na(+)-Ca2+ and the Ca(2+)-Ca2+ exchange mode between 13 degrees C and 35 degrees C. The data indicate that partial reactions of the Na(+)-Ca2+ exchanger associated with Ca2+ binding and translocation are very fast at 35 degrees C, with relaxation time constants of about 6700 s-1 in the forward Na(+)-Ca2+ exchange and about 12,500 s-1 in the Ca(2+)-Ca2+ exchange mode and that net negative charge is moved during Ca2+ translocation. According to model calculations, the turnover number, however, has to be at least 2-4 times smaller than the decay rate of the transient current, and Na+ inward translocation appears to be slower than Ca2+ outward movement.  相似文献   

11.
The patch-clamp technique was used to investigate ionic channels in the apical membrane of rabbit proximal tubule cells in primary culture. Cell-attached recordings revealed the presence of a highly selective K+ channel with a conductance of 130 pS. The channel activity was increased with membrane depolarization. Experiments performed on excised patches showed that the channel activity depended on the free Ca2+ concentration on the cytoplasmic face of the membrane and that decreasing the cytoplasmic pH from 7.2 to 6.0 also decreased the channel activity. In symmetrical 140 mM KCl solutions the channel conductance was 200 pS. The channel was blocked by barium, tetraethylammonium and Leiurus quinquestriatus scorpion venom (from which charybdotoxin is extracted) when applied to the extracellular face of the channel. Barium and quinidine also blocked the channel when applied to the cytoplasmic face of the membrane. Another K+ channel with a conductance of 42 pS in symmetrical KCl solutions was also observed in excised patches. The channel was blocked by barium and apamin, but not by tetraethylammonium applied to the extracellular face of the membrane. Using the whole-cell recording configuration we determined a K+ conductance of 4.96 nS per cell that was blocked by 65% when 10 mM tetraethylammonium was applied to the bathing medium.  相似文献   

12.
The role of homocysteine for store-operated calcium influx was investigated in human umbilical cord endothelial cell line. Homocysteine significantly decreased thapsigargin-evoked Ca2+ entry, membrane hyperpolarization and actin polymerization. GSH and DTT prevented homocysteine-induced inhibition of thapsigargin-evoked Ca2+ entry, membrane hyperpolarization and actin polymerization; while GSSG had the opposite effect. Homocysteine blocked large conductance Ca2+-activated K+ (BK(Ca)) channels in a concentration-dependent manner and related to the redox status of the endothelial cells. BK(Ca) channels opener NS1619 reversed thapsigargin-evoked Ca2+ entry, membrane hyperpolarization and actin polymerization; BK(Ca) channels inhibitor iberiotoxin had the opposite effect. The findings suggest that homocysteine is involved in store-regulated Ca2+ entry through membrane potential-dependent and actin cytoskeleton-dependent mechanisms, redox status of homocysteine and BK(Ca) channels may play a regulatory role in it.  相似文献   

13.
Measurements were made of the electrophysiological and cAMP response to changes in extracellular [Ca2+] and to hormone application in a bone cell clone. Both transient and long-term electrophysiological responses were studied. An increase in extracellular [Ca2+] usually resulted in a transient hyperpolarization of about 60-sec duration. In addition, increases in extracellular [Ca2+] from 0.9 to 1.8 mM and from 1.8 to 3.6 mM resulted in long-term hyperpolarization and increased potential fluctuations. Increasing bathing [Ca2+] until the membrane potential reached the K+ equilibrium level resulted in a significant decrease in fluctuations. Addition to the bathing medium of quinine, a putative blocker of the Ca2+-dependent K+ channel, resulted in long-term depolarization of the mean membrane potential, and a long-term decrease in potential fluctuations. Addition of Mg2+, a mild antagonist of Ca2+ entry into the cell, produced transient depolarization and reduction of potential fluctuations. These effects suggest that the potential fluctuations reflect cytoplasmic [Ca2+] fluctuations via Ca2+-dependent K+ membrane channels. Under an extracellular [Ca2+] of 1.8 mM, the application of prostaglandin E2 (PGE2), isoproterenol, and parathyroid hormone produced no significant effect on mean membrane potential or on the sustained potential fluctuations, but PGE2 did significantly raise intracellular cAMP. Under an increased bathing [Ca2+], significant changes in mean potential and fluctuations did occur in response to PGE2, but not in response to the other hormones, while the PGE2 effect on cAMP was not greatly changed. Hyperpolarizing transients of about 30-sec duration occurred in response to all of the hormones, particularly at an extracellular [Ca2+] of 3.6 mM. Thus, there are both transient and long-term electrophysiological responses to hormone application, with only the long-term response correlated with the production of cAMP. These electrophysiological responses may represent separate transient and long-term calcium transport responses to hormone application.  相似文献   

14.
With the use of oxonol voltage-sensitive fluorescent dye it has been shown that the stimulation of macrophages (MP) with tuftsin results in a two-phase change in membrane potential: depolarization followed by hyperpolarization of plasma membrane. The pattern of changes in membrane potential depends on Na+ concentration in the medium and is disturbed with binding of cytoplasmic Ca2+. Fluorescent signal obtained from MP loaded with Ca(2+)-activated photoprotein obelin points to a significant increase in the concentration of cytoplasmic Ca2+ under the influence of tuftsin on cells: the source for Ca2+ being the medium. The rate of regulatory voltage decrease in MP increases under the influence of tuftsin: the effect of this peptide being similar to that of calcium ionophore. All these findings taken together enable us to suggest a phenomenological scheme of transmembrane ion signals arising during stimulation of MP with tuftsin: the receptor-mediated calcium channel provides a rise in cytoplasmic Ca2+ which opens non-selective cation channels for Na+ ions to activate eventually Ca(2+)-dependent K(+)-transport.  相似文献   

15.
The effect of Na+-K+ pump activation on endothelium-dependent relaxation (EDR) and on intracellular Ca2+ concentration ([Ca2+]i) was examined in mouse aorta and mouse aortic endothelial cells (MAECs). The Na+-K+ pump was activated by increasing extracellular K+ concentration ([K+]o) from 6 to 12 mM. In aortic rings, the Na+ ionophore monensin evoked EDR, and this EDR was inhibited by the Na+/Ca2+ exchanger (NCX; reverse mode) inhibitor KB-R7943. Monensin-induced Na+ loading or extracellular Na+ depletion (Na+ replaced by Li+) increased [Ca2+]i in MAECs, and this increase was inhibited by KB-R7943. Na+-K+ pump activation inhibited EDR and [Ca2+]i increase (K+-induced inhibition of EDR and [Ca2+]i increase). The Na+-K+ pump inhibitor ouabain inhibited K+-induced inhibition of EDR. Monensin (>0.1 microM) and the NCX (forward and reverse mode) inhibitors 2'4'-dichlorobenzamil (>10 microM) or Ni2+ (>100 microM) inhibited K+-induced inhibition of EDR and [Ca2+]i increase. KB-R7943 did not inhibit K+-induced inhibition at up to 10 microM but did at 30 microM. In current-clamped MAECs, an increase in [K+]o from 6 to 12 mM depolarized the membrane potential, which was inhibited by ouabain, Ni2+, or KB-R7943. In aortic rings, the concentration of cGMP was significantly increased by acetylcholine and decreased on increasing [K+]o from 6 to 12 mM. This decrease in cGMP was significantly inhibited by pretreating with ouabain (100 microM), Ni2+ (300 microM), or KB-R7943 (30 microM). These results suggest that activation of the forward mode of NCX after Na+-K+ pump activation inhibits Ca2+ mobilization in endothelial cells, thereby modulating vasomotor tone.  相似文献   

16.
Cellular membrane potential and ciliary motility were examined in tissues cultures prepared from frog palate and esophagus epithelia. Addition of micromolar concentrations of extracellular ATP caused membrane hyperpolarization and enhanced the beat frequency. These two effects of ATP were 1) dose dependent, reaching a maximum at 10 microM ATP; 2) dependent on the presence of extracellular Ca2+ or Mg2+; 3) insensitive to inhibitors of voltage-gated calcium channels; 4) abolished after depleting the intracellular Ca2+ stores with thapsigargin; 5) attenuated by quinidine (1 mM), Cs+ (5-20 mM), and replacement of extracellular Na+ by K+; 6) insensitive to charybdotoxin (5-20 nM), TEA (1-20 microM), and apamin (0.1-1 microM); 7) independent of initial membrane potential; and 8) unaffected by amiloride. In addition, extracellular ATP induced an appreciable rise in intracellular Ca2+. Addition of thapsigargin caused an initial enhancement of the ciliary beat frequency and membrane hyperpolarization. These results strongly suggest the involvement of calcium-dependent potassium channels in the response to ATP. The results show that moderate hyperpolarization is closely associated with a sustained enhancement of ciliary beating by extracellular ATP.  相似文献   

17.
The effect of membrane potential on Ca2+ activated K+ channels was studied on human peripheral lymphocytes. Membrane potential was monitored using bisoxonol and flow cytometry. 1 mM Ca2+ in the presence of 2 microM ionomycin depolarized the control cell population, while 100 microM Ca2+ caused hyperpolarization. However 1 mM Ca2+ had a hyperpolarizing effect on previously partially depolarized cells. Potassium channel blockers did not influence the depolarization, while they inhibited the hyperpolarization. Based on the experimental evidence a voltage gating of Ca2+ activated K+ channels is suggested.  相似文献   

18.
Calcium-activated potassium channels in chondrocytes.   总被引:2,自引:0,他引:2  
The presence of calcium-activated potassium channels in chondrocytes of growing cartilage was tested. Results obtained with fura-2 on cultured resting chondrocytes indicate that the cells respond to an elevation of extracellular calcium concentration ([Ca2+]o) from 0.1 to 2 mM increasing the intracellular concentration of the ion ([Ca2+]i) from 117 to 187 nM. This increment may be blocked by 3 microM La3+. Patch clamp experiments in cell-attached configuration showed that, when [Ca2+]i rises, the open probability (Po) of the K+ channels increases. Increments in both Po and unitary currents of the K+ channels can be obtained after applying 2.5 microM A23187 with 2 mM [Ca2+]o. Hence, the results demonstrate that, in chondrocytes, a class of Ca(2+)-activated K+ channels is present and their activity is related to an increase of [Ca2+]i.  相似文献   

19.
The effects of glucose, diazoxide, K+, and tolbutamide on the activity of K+ channels, membrane potential, and cytoplasmic free Ca2+ concentration were investigated in beta-cells from the Uppsala colony of obese hyperglycemic mice. With [K+]e = [K+]i = 146 mM, it was demonstrated that the dominating channel at the resting potential is a K+ channel with a single-channel conductance of about 65 picosiemens and a reversal potential of about +70 mV (pipette potential). This channel is characterized by complex kinetics with openings grouped in bursts. The channel was completely inhibited by 20 mM glucose in intact cells or by intracellularly applied Mg-ATP (1 mM). The number of active channels was markedly reduced already by 5 mM glucose. However, the single channel current of the channels remaining active was unaffected, indicating no major depolarization. To evoke a substantial depolarization of the membrane and thereby action potentials, a total block in channel activity was necessary. This could be achieved either by increasing the concentration of glucose to 20 mM or by combining 5 mM glucose with 100 microM tolbutamide. In both cases, the effect was counteracted by the hyperglycemic sulfonamide diazoxide. The effects on single channel activity were paralleled by changes in membrane potential and cytoplasmic free Ca2+ concentration, also when the latter measurements were performed at room temperature. The transient increase in the number of active channels and the resulting hyperpolarization observed after raising the glucose concentration to 20 mM probably reflected a drop in cytoplasmic ATP concentration. It is suggested that ATP works as a key regulator of the beta-cell membrane potential and thereby the opening of voltage-activated Ca2+ channels.  相似文献   

20.
We examined whether the increase in endothelial albumin permeability induced by alpha-thrombin is dependent on extracellular Ca2+ influx. Permeability of 125I-albumin across confluent monolayers of cultured bovine pulmonary artery endothelial cells was measured before and after the addition of 0.1 microM alpha-thrombin. In the presence of normal extracellular Ca2+ concentration ([Ca2+]o, 1000 microM), alpha-thrombin produced a 175 +/- 10% increase in 125I-albumin permeability. At lower [Ca2+]o (100, 10, 1, or less than 1 microM), alpha-thrombin caused a 140% increase in permeability (P less than 0.005). LaCl3 (1 mM), which competes for Ca2+ entry, blunted 38% of the increase in permeability. Preloading endothelial monolayers with quin2 to buffer cytosolic Ca2+ (Cai2+) produced a dose-dependent inhibition of the increase in 125I-albumin permeability. Preincubation with nifedipine or verapamil was ineffective in reducing the thrombin-induced permeability increase. A 60 mM K+ isosmotic solution did not alter base-line endothelial permeability. alpha-Thrombin increased [Ca2+]i in a dose-dependent manner and the 45Ca2+ influx rate. Extracellular medium containing 60 mM K+ did not increase 45Ca2+ influx, and nifedipine did not block the rise in 45Ca2+ influx caused by alpha-thrombin. Ca2+ flux into endothelial cells induced by alpha-thrombin does not occur through voltage-sensitive channels but may involve receptor-operated channels. In conclusion, the increase in endothelial albumin permeability caused by alpha-thrombin is dependent on Ca2+ influx and intracellular Ca2+ mobilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号