首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have generated transgenic mice carrying human ornithine decarboxylase gene. Two different transgene constructs were used: (i) a 5'-truncated human ornithine decarboxylase gene and (ii) an intact human ornithine decarboxylase gene. Transgenic mice carrying the 5'-truncated gene did not express human ornithine decarboxylase-specific mRNA. Transgenic mice carrying the intact human ornithine decarboxylase gene expressed human-specific ornithine decarboxylase mRNA in all tissues studied. However, as indicated by actual enzyme assays, the expression pattern was highly unusual. In comparison with their wild-type littermates, the transgenic mice exhibited greatly elevated enzyme activity in almost every tissue studied. Ornithine decarboxylase activity was moderately elevated in parenchymal organs such as liver, kidney, and spleen. Tissues like heart, muscle, lung, thymus, testis, and brain displayed an enzyme activity that was 20 to 80 times higher than that in the respective tissues of nontransgenic animals. The offspring of the first transgenic male founder animal did not show any overt abnormalities, yet their reproductive performance was reduced. The second transgenic founder animal, showing similar aberrant expression of ornithine decarboxylase in all tissues studied, including an extremely high activity in testis, was found to be infertile. Histological examination of the tissues of the latter animal revealed marked changes in testicular morphology. The germinal epithelium was hypoplastic, and the spermatogenesis was virtually totally shut off. Similar examination of male members of the first transgenic mouse line revealed comparable, yet less severe, histological changes in testis.  相似文献   

2.
To characterize the role of BRCA1 in mammary gland development and tumor suppression, a transgenic mouse model of BRCA1 overexpression was developed. Using the mouse mammary tumor virus (MMTV) promoter/enhancer, transgenic mice expressing human BRCA1 or select mutant controls were generated. Transgenic animals examined during adolescence were shown to express the human transgene in their mammary glands. The mammary glands of 13-week-old virgin homozygous MMTV-BRCA1 mice presented the morphology of moderately increased lobulo-alveolar development. The mammary ductal trees of both hemizygous and homozygous MMTV-BRCA1t340 were similar to those of control non-transgenic littermates. Interestingly, both hemi- and homozygous mice expressing a splice variant of BRCA1 lacking the N-terminal RING finger domain (MMTV-BRCA1sv) exhibited marked mammary lobulo-alveolar development, particularly terminal end bud proliferation. Morphometric analyses of mammary gland whole mount preparations were used to measure epithelial staining indices of ~35% for homozygous MMTV-BRCA1 mice and ~60% for both hemizygous and homozygous MMTV-BRCA1sv mice versus ~25% for non-transgenic mice. Homozygous MMTV-BRCA1 mice showed delayed development of tumors when challenged with 7,12 dimethylbenzanthracene (DMBA), relative to non-transgenic and homozygous BRCA1t340 expressing mice. In contrast, homozygous MMTV-BRCA1sv transgenic animals were sensitized to DMBA treatment and exhibited a very rapid onset of mammary tumor development and accelerated mortality. MMTV-BRCA1 effects on mortality were restricted to DMBA-induced tumors of the mammary gland. These results demonstrate in vivo roles for BRCA1 in both mammary gland development and in tumor suppression against mutagen-induced mammary gland neoplasia.  相似文献   

3.
4.
The ability to regulate temporal- and spatial-specific expression of target genes in transgenic mice will facilitate analysis of gene function and enable the generation of murine models of human diseases. The genetic analysis of mammary gland tumorigenesis requires the development of mammary gland-specific transgenics, which are tightly regulated throughout the adult mammary epithelium. Analysis of genes implicated in mammary gland tumorigenesis has been hampered by mosaic transgene expression and the findings that homozygous deletion of several candidate genes (cyclin D1, Stat5A, prolactin receptor) abrogates normal mammary gland development. We describe the development of transgenic mouse lines in which sustained transgene expression was inducibly regulated, both specifically and homogeneously, in the adult mammary gland epithelium. Transgenes encoding RXRalpha and a chimeric ecdysone receptor under control of a modified MMTV-LTR, which targets mammary gland expression, were used. These transgenic 'receptor' lines were crossed with transgenic 'enhancer' lines in which the ecdysone/RXR binding site induced ligand-dependent expression of transgenic beta-galactosidase. Pharmacokinetic analysis of a highly bioactive ligand (ponasterone A), identified through screening ecdysteroids from local plants, demonstrated sustained release and transgene expression in vivo. This transgenic model with both tightly regulated and homogeneous transgene expression, which was sustained in vivo using ligands readily extracted from local flora, has broad practical applicability for genetic analysis of mammary gland disease.  相似文献   

5.
1. Starvation caused a marked decrease in the activity of ornithine decarboxylase in mammary gland, together with a lesser decrease in the activity of S-adenosylmethionine decarboxylase and a marked fall in milk production. Liver ornithine decarboxylase and S-adenosylmethionine decarboxylase activities were unaffected. 2. Refeeding for 2.5 h was without effect on ornithine decarboxylase in mammary gland, but it returned the S-adenosylmethionine decarboxylase activity in mammary gland to control values and elevated both ornithine decarboxylase and S-adenosylmethionine decarboxylase in liver. 3. Refeeding for 5 h returned the activity of ornithine decarboxylase in mammary gland to fed-state values and resulted in further increases in S-adenosylmethionine decarboxylase in mammary gland and liver and in ornithine decarboxylase in liver. 4. Prolactin deficiency in fed rats resulted in decreased milk production and decreased activity of ornithine decarboxylase in mammary gland. The increase in ornithine decarboxylase activity normally seen after refeeding starved rats for 5 h was completely blocked by prolactin deficiency. 5. In fed rats, injection of streptozotocin 2.5 h before death caused a decrease in the activities of ornithine decarboxylase and S-adenosylmethionine decarboxylase in mammary gland, which could be reversed by simultaneous injection of insulin. Insulin deficiency also prevented the increase in S-adenosylmethionine decarboxylase in liver and mammary gland normally observed after refeeding starved rats for 2.5 h.  相似文献   

6.
7.
Transgenic mice carrying the v-Ha-ras oncogene under the control of the mouse mammary tumor virus long terminal repeat were produced. These mice exhibit several phenotypes: mammary tumors, bilateral hyperplasia of the harderian lacrimal gland, primary bronchio-alveolar lung adenocarcinoma, and splenomegaly. High levels of the transgene RNA were detected in mammary, harderian, and lung tumors. Accumulation of cells of the myeloid lineages was found in enlarged spleens. This phenotype may represent an indirect effect of v-Ha-ras expression on myeloid progenitors. Our data illustrate the cell-specific effects of v-Ha-ras.  相似文献   

8.
9.
Transgenic mice were generated which express a truncated nuclear retinoic acid receptor beta (RAR beta), closely resembling the natural isoform RAR beta 4, under the control of the MMTV promoter. The transgene was expressed in salivary gland, testis, lung and mammary tissue in two different lines. At approximately 11-14 months virtually all the transgenic mice showed hyperplasia of the lung alveolar epithelium with an excess of type II pneumocytes. Hyperplasia of the mammary alveoli and terminal ducts was also seen in some females. Salivary glands and some sebaceous glands were hyperplastic in most male transgenic mice, but only rarely in females or in non-transgenics. Primary benign and malignant tumours were more numerous in transgenic mice than in controls, with a total of 23 in 43 mice versus two in 33 non-transgenic animals. Treatment with dexamethasone to increase transgene expression resulted in exaggerated versions of the above phenotypes. Overexpression of RAR beta 4 therefore appears to predispose various tissues to hyperplasia and neoplasia, and this by contrast to the RAR beta 2 isoform, which has tumour suppressor activity. A survey of ratios of RAR beta 4:RAR beta 2 expression in human lung tumour cell lines showed an increase compared with normal lung tissue, suggesting that RAR beta 4 may play a similar role in human tumorigenesis.  相似文献   

10.
A hybrid mouse major urinary protein (MUP)/SV40 T antigen gene was microinjected into fertilized mouse embryos and the resulting transgenic mice analyzed for the regulated expression of the transgene. Available evidence indicates that the MUP gene used for the hybrid gene construct is expressed in both male and female liver and possibly mammary gland. Three different transgenic lines exhibited a consistent pattern of tissue specific expression of the transgene. As a consequence of transgene expression and T antigen synthesis in the liver, both male and female transgenic animals developed liver hyperplasia and tumors. Transgene expression and liver hyperplasia commenced at approximately 2-4 weeks of age, the same time that MUP gene expression is first detected in the liver. The expression of the transgene resulted in an immediate strong suppression of liver MUP mRNA levels but had relatively little effect on other liver specific mRNAs. From 4 to 8 weeks, the liver increased several fold in size, relative to non-transgenic littermates. Definitive tumor nodules were not apparent until 8-10 weeks. The transgene was also consistently found to be expressed in the skin sebaceous glands and the preputial gland, a modified sebaceous gland. The expression of the transgene in the skin sebaceous glands is consistent with the presence of MUP mRNA in the skin and a putative role for MUPs in the transport and excretion of small molecules. Occasional expression of the transgene in other tissues (kidney and mammary connective tissues) was also noted.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
We have developed transgenic mice in which expression of the mouse int-2/Fgf-3 gene is regulated by a single long terminal repeat from mouse mammary tumor virus. Such mice contain and transmit a replica of the activated int-2/Fgf-3 allele present in a spontaneous mammary tumor from a BR6 mouse. Although free of infectious mouse mammary tumor virus and with a different genetic background, the transgenic mice develop pregnancy-responsive mammary epithelial proliferations that are similar to the early stages of tumorigenesis in the BR6 strain. Histological examination revealed that most of these tumors showed pronounced tubular and acinar structures, features usually associated with morphological differentiation. In some cases, the tumors were locally invasive, causing disruption of the dermis which manifested itself as local hair loss. In situ hybridization showed that patterns of transgene expression in the abnormal glands were markedly nonuniform. In contrast, mouse mammary tumor virus-induced neoplasms showed more uniform expression of int-2/Fgf-3, as did the urogenital epithelial proliferations that occur among males of this transgenic line. These data suggest that mammary tumors in virally infected animals may depend primarily on autocrine stimulation by the int-2/Fgf-3 gene product, whereas both autocrine and paracrine mechanisms may contribute to tumors and hyperplasias found in transgenic animals.  相似文献   

12.
We investigated the consequences of augmented c-myc gene expression in the mammary gland of transgenic mice. For this purpose we directed the expression of a mouse c-myc transgene to the differentiating mammary epithelial cells by subjecting the protein coding region to the 5' regulatory sequences of the murine whey acidic protein gene (Wap). Analogous to the expression pattern of the endogenous Wap gene, the Wap-myc transgene is abundantly expressed in the mammary gland during lactation. The tissue-specific and hormone-dependent expression of the Wap-myc transgene results in an 80% incidence of mammary adenocarcinomas. As early as two months after the onset of Wap-myc expression, tumours occur in the mammary glands of the transgenic animals. The tumours express not only the Wap-myc transgene, but also the endogenous Wap and beta casein genes. The expression of the milk protein genes becomes independent of the lactogenic hormonal stimuli and persists even in transplanted nude mouse tumours.  相似文献   

13.
Dibutyryl cAMP and prolactin stimulated ornithine decarboxylase activity in mouse mammary gland explants which had been preincubated with insulin and cortisol for 1 day; maximally stimulatory concentrations of dibutyryl cAMP and prolactin produced a response which was greater than the sum of the responses of prolactin and dibutyryl cAMP when tested alone. 8-Bromo-cGMP inhibited ornithine decarboxylase activity whereas other derivatives of cyclic nucleotides were without effect. Cortisol concentrations were found to be important for optimizing the dibutyryl cAMP and prolactin responses. Optimal prolactin responses were obtained with cortisol concentrations greater than 10(-7) M, whereas optimal dibutyryl cAMP responses were observed with cortisol concentrations less than 10(-7) M. Despite the differing optimal cortisol concentrations for the prolactin and dibutyryl cAMP responses, it is concluded that prolactin and dibutyryl cAMP probably stimulate ornithine decarboxylase activity in the mammary gland via the same mechanism.  相似文献   

14.
The synthesis of foreign proteins can be targeted to the mammary gland of transgenic animals, thus permitting commercial purification of otherwise unavailable proteins from milk. Genetic regulatory elements from the mouse whey acidic protein (WAP) gene have been used successfully to direct expression of transgenes to the mammary gland of mice, goats and pigs. To extend the practical usefulness of WAP promoter-driven fusion genes and further characterize WAP expression in heterologous species, we introduced a 6.8 kb DNA fragment containing the genomic form of the mouse WAP gene into sheep zygotes. Two lines of transgenic sheep were produced. The transgene was expressed in mammary tissue of both lines and intact WAP was secreted into milk at concentrations estimated to range from 100 to 500 mg/litre. Ectopic WAP gene expression was found in salivary gland, spleen, liver, lung, heart muscle, kidney and bone marrow of one founder ewe. WAP RNA was not detected in skeletal muscle and intestine. These data suggest that unlike pigs, sheep may possess nuclear factors in a variety of tissues that interact with WAP regulatory sequences. Though the data presented are based on only two lines, these findings suggest WAP regulatory sequences may not be suitable as control elements for transgenes in sheep bioreactors.  相似文献   

15.
Cre-mediated gene deletion in the mammary gland.   总被引:22,自引:1,他引:21       下载免费PDF全文
To delete genes specifically from mammary tissue using the Cre-lox system, we have established transgenic mice expressing Cre recombinase under control of the WAP gene promoter and the MMTV LTR. Cre activity in these mice was evaluated by three criteria. First, the tissue distribution of Cre mRNA was analyzed. Second, an adenovirus carrying a reporter gene was used to determine expression at the level of single cells. Third, tissue specificity of Cre activity was determined in a mouse strain carrying a reporter gene. In adult MMTV-Cre mice expression of the transgene was confined to striated ductal cells of the salivary gland and mammary epithelial cells in virgin and lactating mice. Expression of WAP-Cre was only detected in alveolar epithelial cells of mammary tissue during lactation. Analysis of transgenic mice carrying both the MMTV-Cre and the reporter transgenes revealed recombination in every tissue. In contrast, recombination mediated by Cre under control of the WAP gene promoter was largely restricted to the mammary gland but occasionally observed in the brain. These results show that transgenic mice with WAP-Cre but not MMTV-Cre can be used as a powerful tool to study gene function in development and tumorigenesis in the mammary gland.  相似文献   

16.
Insulin-like growth factor 1 (IGF-1) mediates many of the actions of growth hormone. Overexpression of IGF-1 was reported to have endocrine and paracrine/autocrine effects on somatic growth in transgenic mice. To study the paracrine/autocrine effects of IGF-1 in mammary gland, transgenic mice were produced by pronuclear microinjection of a construct containing a bovine alpha-lactalbumin (alpha-LA) promoter linked to an ovine IGF-1 cNDA. This alpha-LA promoter has previously been shown to direct expression of a human factor VIII gene specifically to the mammary gland of transgenic mice. Three transgenic mouse lines were established as a result of microinjection of 398 embryos. Transgene expression was found in mammary gland at day 1 of lactation from these three lines. Progeny test were carried out by mating two transgenic males/one transgenic female to two nontransgenic females/one nontransgenic male. Mice from one line (line 1225) were all nonexpressors and the other (line 1372) failed to produce offspring. Milk yield was analyzed in the line 1137 that produced 10 mice, of which three were transgenic females and three nontransgenic females. All of the three transgenic females showed integration of the transgene and expressed transgene IGF-1 mRNA in the mammary gland. Milk yields from days 5, 10, and 15 of lactation were significant greater in transgenic expressors than in their nontransgenic littermates. Specifically, there is 17.9% increase in total milk yield from these three days for transgenics compared with nontransgenics. These results demonstrate that local overexpression of IGF-1 in transgenic mice is capable to stimulating milk yield during the first lactation.  相似文献   

17.
18.
19.
We have studied the induction of papilloma formation in response to skin tumor promotion in transgenic mice overexpressing the human ornithine decarboxylase gene and in their nontransgenic littermates. The transgenic animals displayed a basal epidermal ornithine decarboxylase activity that was nearly 20 times higher than in their nontransgenic littermates. A single topical application of 12-O-tetradecanoylphorbol-13-acetate induced a much more profound and longer-lasting increase in transgene-derived ornithine decarboxylase activity in comparison with the endogenous enzyme activity. Initiation of skin tumorigenesis with a single topical application of dimethylbenz[a]antracene followed by twice-weekly application of 12-O-tetradecanoylphorbol-13-acetate resulted in the appearance of first papillomas both in nontransgenic and transgenic animals by week 7. However, after 11 weeks of 12-O-tetradecanoylphorbol-13-acetate application, the number of papillomas per animal was almost 100% higher in the transgenic animals than in their nontransgenic littermates. These results indicate that an overexpression of epidermal ornithine decarboxylase confers a growth advantage on skin tumors in vivo.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号