首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
G domains of the mouse laminin alpha 1 and alpha 4 chains consisting of its five subdomains LG1-LG5 were overexpressed in Chinese hamster ovary cells and purified by heparin chromatography. alpha 1LG1-LG5 and alpha 4LG1-LG5 eluted at NaCl concentrations of 0.30 and 0.47 m, respectively. In solid phase binding assays with immobilized heparin, half-maximal concentrations of 14 (alpha 1LG1-LG5) and 1.4 nm (alpha 4LG1-LG5) were observed. N-Glycan cleavage of alpha 4LG1-LG5 did not affect affinity to heparin. The affinity of alpha 4LG1-LG5 was significantly reduced upon denaturation with 8 m urea but could be recovered by removing urea. Chymotrypsin digestion of alpha 4LG1-LG5 yielded high and low heparin affinity fragments containing either the alpha 4LG4-LG5 or alpha 4LG2-LG3 modules, respectively. Trypsin digestion of heparin-bound alpha 4LG1-LG5 yielded a high affinity fragment of about 190 residues corresponding to the alpha 4LG4 module indicating that the high affinity binding site is contained within alpha 4LG4. Competition for heparin binding of synthetic peptides covering the alpha 4LG4 region with complete alpha 4LG1-LG5 suggests that the sequence AHGRL1521 is crucial for high affinity binding. Introduction of mutation of H1518A or R1520A in glutathione S-transferase fusion protein of the alpha 4LG4 module produced in Escherichia coli markedly reduced heparin binding activity of the wild type. When compared with the known structure of alpha 2LG5, this sequence corresponds to the turn connecting strands E and F of the 14-stranded beta-sheet sandwich, which is opposite to the proposed binding sites for calcium ion, alpha-dystroglycan, and heparan sulfate.  相似文献   

2.
Laminin-5, consisting of the alpha 3, beta 3, and gamma 2 chains, is localized in the skin basement membrane and supports the structural stability of the epidermo-dermal linkage and regulates various cellular functions. The alpha chains of laminins have been shown to have various biological activities. In this study, we identified a sequence of the alpha 3 chain C-terminal globular domain (LG1-LG5 modules) required for both heparin binding and cell adhesion using recombinant proteins and synthetic peptides. We found that the LG3 and LG4 modules have activity for heparin binding and that LG4 has activity for cell adhesion. Studies with synthetic peptides delineated the A3G75aR sequence (NSFMALYLSKGR, residues 1412--1423) within LG4 as a major site for both heparin and cell binding. Substitution mutations in LG4 and A3G75aR identified the Lys and Arg of the A3G75aR sequence as critical for these activities. Cell adhesion to LG4 and A3G75aR was inhibited by heparitinase I treatment of cells, suggesting that cell binding to the A3G75aR site was mediated by cell surface heparan sulfate proteoglycans. We showed by affinity chromatography that syndecan-2 from fibroblasts bound to LG4. Solid-phase assays confirmed that syndecan-2 interacted with the A3G75aR peptide sequence. Stably transfected 293T cells with expression vectors for syndecan-2 and -4, but not glypican-1, specifically adhered to LG4 and A3G75aR. These results indicate that the A3G75aR sequence within the laminin alpha 3 LG4 module is responsible for cell adhesion and suggest that syndecan-2 and -4 mediate this activity.  相似文献   

3.
Heparin-column chromatography and elastase-digestion of medium from hemocyte Kc167 gave Drosophila laminin alpha3/5betagamma trimer, alpha3/5LG2-3 and alpha3/5LG4-5 modules with eluting NaCl concentrations of 450, 280 and 450 mM, respectively. Kc167 cells bound dish surface with alpha3/5betagamma trimer or alpha3/5LG4-5, but not with alpha3/5LG2-3 modules. Cell binding was counteracted by treating with heparin or heparan sulfate. RNA interference of syndecan in Kc167 cells impaired the binding, but that of dally or dally-like did not. Green fluorescent protein-expressing hemocytes also bound surface with alpha3/5betagamma trimer or alpha3/5LG4-5 module. Thus, syndecan-dependent binding of hemocytes to laminin may have a potential role in sessile hemocytes islets formation in T2-A8 segments of Drosophila.  相似文献   

4.
The C-terminal G domain of the mouse laminin alpha2 chain consists of five lamin-type G domain (LG) modules (alpha2LG1 to alpha2LG5) and was obtained as several recombinant fragments, corresponding to either individual modules or the tandem arrays alpha2LG1-3 and alpha2LG4-5. These fragments were compared with similar modules from the laminin alpha1 chain and from the C-terminal region of perlecan (PGV) in several binding studies. Major heparin-binding sites were located on the two tandem fragments and the individual alpha2LG1, alpha2LG3 and alpha2LG5 modules. The binding epitope on alpha2LG5 could be localized to a cluster of lysines by site-directed mutagenesis. In the alpha1 chain, however, strong heparin binding was found on alpha1LG4 and not on alpha1LG5. Binding to sulfatides correlated to heparin binding in most but not all cases. Fragments alpha2LG1-3 and alpha2LG4-5 also bound to fibulin-1, fibulin-2 and nidogen-2 with Kd = 13-150 nM. Both tandem fragments, but not the individual modules, bound strongly to alpha-dystroglycan and this interaction was abolished by EDTA but not by high concentrations of heparin and NaCl. The binding of perlecan fragment PGV to alpha-dystroglycan was even stronger and was also not sensitive to heparin. This demonstrated similar binding repertoires for the LG modules of three basement membrane proteins involved in cell-matrix interactions and supramolecular assembly.  相似文献   

5.
The biological activities of the laminin α2 chain LG4–5 module result from interactions with cell surface receptors, such as heparan sulfate proteoglycans and α-dystroglycan. In this study, heparin and α-dystroglycan binding sequences were identified using 42 overlapping synthetic peptides from the LG4–5 module and using recombinant LG4–5 protein (rec-α2LG4–5). Physiological activities of the active peptides were also examined in explants of submandibular glands. Heparin binding screens showed that the A2G78 peptide (GLLFYMARINHA) bound to heparin and prevented its binding to rec-α2LG4–5. Furthermore, alanine substitution of the arginine residue in the A2G78 site on rec-α2LG4–5 decreased heparin binding activity. When α-dystroglycan binding of the peptides was screened, two peptides, A2G78 and A2G80 (VQLRNGFPYFSY), bound α-dystroglycan. A2G78 and A2G80 also inhibited α-dystroglycan binding of rec-α2LG4–5. A2G78 and A2G80 specifically inhibited end bud formation of submandibular glands in culture. These results suggest that the A2G78 and A2G80 sites play functional roles as heparan sulfate- and α-dystroglycan-binding sites in the module. These peptides are useful for elucidating molecular mechanisms of heparan sulfate- and/or α-dystroglycan-mediated biological functions of the laminin α2 chain.  相似文献   

6.
The laminin alpha3 chain LG4 module (alpha3LG4 module) has cell adhesion, heparin binding, migration, and neurite outgrowth activities. The LG4 module consists of a 14-stranded beta-sheet (A-N) sandwich structure. Previously, we identified the A3G756 sequence (KNSFMALYLSKGRLVFALG in the human laminin alpha3 chain 1411-1429) as a biologically active site in the alpha3LG4 module. The A3G756 sequence is located on the E and F strands based on a crystal structure-based sequence alignment. The Lys1421 and Arg1423 residues, critical amino acids for the biological activity of A3G756, are located on the E-F connecting loop region as a KGR sequence. In this study, we focused on the KGR sequence and investigated the structural requirements of the E-F connecting loop region in the alpha3LG4 module. We synthesized three linear peptides containing the KGR sequence at the middle and the N and C termini and also prepared three cyclic analogues corresponding to the linear peptides. cyclo-hEF3A (CLYLSKGRLVFAC), which is a cyclic peptide containing the KGR sequence at the middle, showed the strongest inhibitory effect on both the heparin binding and the cell attachment to the recombinant alpha3LG4 module protein. The cyclo-hEF3A peptide was more active for syndecan-4 binding and neurite outgrowth than the linear form. Furthermore, we found that the structure of cyclo-hEF3A is similar to that of the connecting E-F loop region in human laminin alpha3LG4 module by structural analysis using molecular dynamics simulations. These results suggest that the loop structure of the E-F connecting region of the alpha3LG4 module is important for its biological activities. The cyclo-hEF3A peptide may be useful for the development of therapeutic reagents especially for wound healing and nerve regeneration.  相似文献   

7.
Laminins are expressed in specific tissues and are involved in various biological activities including promoting cell adhesion, growth, migration, neurite outgrowth, and differentiation. The laminin alpha3 chain is mainly located in the skin and is also expressed in the floor plate of the developing neural tube. Previously, we showed that the human laminin alpha3 chain LG4 module binds to syndecan-2/4, a membrane-associated proteoglycan, and promotes human fibroblast adhesion. Here, we have evaluated the neurite outgrowth activity of the laminin alpha3 chain LG4 and LG5 modules. Three overlapping recombinant proteins, which contained LG4 and/or LG5 modules of the human laminin alpha3 chain, were prepared using a mammalian cell expression system. Two proteins, rec-alpha3LG4-5 and rec-alpha3LG4, promoted cell attachment and neurite outgrowth of rat pheochromocytoma PC12 cells, but rec-alpha3LG5 was inactive. Twenty-two peptides covering the entire LG4 module were synthesized and tested for cell attachment and neurite outgrowth activity to identify active sites of the LG4 module. A3G75 (KNSFMALYLSKG, alpha3 chain 1411-1422) and A3G83 (GNSTISIRAPVY, alpha3 chain 1476-1487) promoted PC12 cell attachment and neurite outgrowth. Additionally, A3G75 and A3G83 inhibited PC12 cell attachment to rec-alpha3LG4. These results suggest that the A3G75 and A3G83 sites are important for PC12 cell attachment and neurite outgrowth in the laminin alpha3 chain LG4 module. We also conjugated the A3G75 and A3G83 peptides on chitosan membranes to test their potential as bio-materials. These peptide-conjugated chitosan membranes were more active for neurite outgrowth than the peptide-coated plates. These results suggest that the A3G75- and A3G83-conjugated chitosan membranes are applicable as bio-medical materials for neural tissue repair and engineering.  相似文献   

8.
Laminin alpha3 chain, a functionally key subunit of laminin-5, contains a large globular module (G module) which consists of a tandem repeat of five homologous LG modules (LG1-5). We previously demonstrated that the LG4 module of laminin alpha3 chain (alpha3 LG4) induces a matrix metalloproteinase-1 (MMP-1) expression through the interaction with syndecans leading to MAPK activation/IL-1beta expression signaling loop (Utani et al., J. Biol. Chem. 278, 34483-34490, 2003). Here, we show that a recombinant alpha3 LG4 and synthetic peptides containing syndecan binding motif induced a cell motility and a MMP-9 expression in ketarinocytes. The synthetic peptide (A3G756)-induced cell migration and MMP-9 upregulation were inhibited by each application of a heparin and an IL-1 receptor antagonist (IL-1RA), suggesting the involvement of syndecans and IL-1beta autocrine. Furthermore, the A3G756-induced cell motility was inhibited by an MMP-9 inhibitor and a neutralizing antibody of MMP-9, indicating induced cell motility was dependent on an MMP-9 activity. Taken these together, laminin-5 alpha3 LG4 module may play an important role in re-epithelialization at tissue remodeling.  相似文献   

9.
The 395-residue proteolytic fragment E3, which comprises the two most C-terminal LG modules of the mouse laminin alpha1 chain, was previously shown to contain major binding sites for heparin, alpha-dystroglycan and sulfatides. The same fragment (alpha1LG4-5) and its individual alpha1LG4 and alpha1LG5 modules have now been obtained by recombinant production in mammalian cells. These fragments were apparently folded into a native form, as shown by circular dichroism, electron microscopy and immunological assays. Fragment alpha1LG4-5 bound about five- to tenfold better to heparin, alpha-dystroglycan and sulfatides than E3. These binding activities could be exclusively localized to the alpha1LG4 module. Side-chain modifications and proteolysis demonstrated that Lys and Arg residues in the C-terminal region of alpha1LG4 are essential for heparin binding. This was confirmed by 14 single to triple point mutations, which identified three non-contiguous basic regions (positions 2766-2770, 2791-2793, 2819-2820) as contributing to both heparin and sulfatide binding. Two of these regions were also recognized by monoclonal antibodies which have previously been shown to inhibit heparin binding. The same three regions and a few additional basic residues also make major contributions to the binding of the cellular receptor alpha-dystroglycan, indicating a larger binding epitope. The data are also consistent with previous findings that heparin competes for alpha-dystroglycan binding.  相似文献   

10.
In an attempt to elucidate the integrin-binding site within laminin-511 (alpha5beta1gamma1), we mapped the epitope for mAb 4C7, which recognizes the globular (G) domain of the laminin alpha5 chain and inhibits binding of integrin alpha6beta1 to laminin-511, using a series of recombinant laminin-511 mutants with deletions or substitutions in the G domain. Deletion of the LG2-5 modules only partially compromised the 4C7 binding activity, while deletion of all 5 LG modules completely abrogated the activity, indicating that the epitope for 4C7 resides in the LG1 module. In support of this conclusion, 4C7 reactivity was abolished when the LG1 module of laminin-511 was swapped with the corresponding module of laminin-111, but the reactivity was retained after swapping the LG2 or LG3 module. Despite the requirement of LG1 for 4C7 binding, a recombinant LG1 module failed to bind to 4C7 when expressed alone or in tandem with LG2, but exhibited significant 4C7 binding activity when expressed as an array of LG1-3. These results indicate that 4C7 recognizes an epitope in the LG1 module, whose active conformation is stabilized in the context of the LG1-3 modules. Despite their 4C7 binding activities, neither the recombinant LG1-3 fragment nor the LG2 and LG3 swap mutants were capable of binding to integrin alpha6beta1. Thus, the integrin binding activity does not necessarily parallel the 4C7 reactivity, and possibly requires a strictly defined conformation of the LG1 module which can only be attained within an array of the intact LG1-3 modules connected to the preceding coiled-coil domain.  相似文献   

11.
The C-terminal G domains of laminin alpha chains have been implicated in various cellular and other interactions. The G domain of the alpha4 chain was now produced in transfected mammalian cells as two tandem arrays of LG modules, alpha4LG1-3 and alpha4LG4-5. The recombinant fragments were shown to fold into globular structures and could be distinguished by specific antibodies. Both fragments were able to bind to heparin, sulfatides, and the microfibrillar fibulin-1 and fibulin-2. They were, however, poor substrates for cell adhesion and had only a low affinity for the alpha-dystroglycan receptor when compared with the G domains of the laminin alpha1 and alpha2 chains. Yet antibodies to alpha4LG1-3 but not to alpha4LG4-5 clearly inhibited alpha(6)beta(1) integrin-mediated cell adhesion to laminin-8, indicating the participation of alpha4LG1-3 in a cell-adhesive structure of higher complexity. Proteolytic processing within a link region between the alpha4LG3 and alpha4LG4 modules was shown to occur during recombinant production and in endothelial and Schwann cell culture. Cleavage could be attributed to three different peptide bonds and is accompanied by the release of the alpha4LG4-5 segment. Immunohistology demonstrated abundant staining of alpha4LG1-3 in vessel walls, adipose, and perineural tissue. No significant staining was found for alpha4LG4-5, indicating their loss from tissues. Immunogold staining demonstrated an association of the alpha4 chain primarily with microfibrillar regions rather than with basement membranes, while laminin alpha2 chains appear primarily associated with various basement membranes.  相似文献   

12.
Laminins, heterotrimeric glycoproteins in the basement membrane, are involved in diverse biological activities. So far, five alpha, three beta, and three gamma chains have been identified, and at least 15 laminin isoforms exist composed of various combinations of the different three chains. The major cell-surface receptors for laminins are integrins and proteoglycans, such as dystroglycans and syndecans. Previously, we reported that synthetic peptide A4G82 (TLFLAHGRLVFM, mouse laminin alpha4 chain residues 1514-1525) showed strong cell attachment and syndecan binding activities. On the basis of the crystal structure of the LG module and sequence alignment, A4G82 is located in the connecting loop region between beta-strands E and F in the laminin alpha4 chain LG4 module. Here, we have focused on the structural importance of this E-F loop region for the biological activity of the alpha4 chain LG4 module. To determine the importance of the loop structure, we synthesized peptide A4G82X (cyclo-A4G82X, Cys-TLFLAHGRLVFX-Cys, X= norleucine), which was cyclized via disulfide bridges at both the N- and C-termini. The cyclic peptides derived from A4G82X inhibited the heparin binding activity of the alpha4 chain G domain and promoted HT-1080 cell attachment better than the corresponding linear peptides. We determined FLAHGRLVFX as a minimal sequence of cyclo-A4G82X important for cell adhesion and heparin binding using a series of truncated peptides. Moreover, HT-1080 cell attachment to the cyclic peptides was more efficiently blocked by heparin than cell attachment to the linear peptides. Furthermore, the cyclic peptides showed significantly enhanced syndecan-2-mediated cell attachment activity. These results indicate that the activity of A4G82 is highly conformation-dependent, suggesting that the E-F loop structure is crucial for its biological activity.  相似文献   

13.
Structure and function of laminin LG modules.   总被引:19,自引:0,他引:19  
Laminin G domain-like (LG) modules of approximately 180-200 residues are found in a number of extracellular and receptor proteins and often are present in tandem arrays. LG modules are implicated in interactions with cellular receptors (integrins, alpha-dystroglycan), sulfated carbohydrates and other extracellular ligands. The recently determined crystal structures of LG modules of the laminin alpha2 chain reveal a compact beta sandwich fold and identify a novel calcium binding site. Binding epitopes for heparin, sulfatides and alpha-dystroglycan have been mapped by site-directed mutagenesis and show considerable overlap. The epitopes are located in surface loops around the calcium site, which in other proteins (agrin, neurexins) are modified by alternative splicing. Efficient ligand binding often requires LG modules to be present in tandem. The close proximity of the N- and C-termini in the LG module, as well as a unique link region between laminin LG3 and LG4, impose certain constraints on the arrangement of LG tandems. Further modifications may be introduced by proteolytic processing of laminin G domains, which is known to occur in the alpha2, alpha3 and alpha4 chains.  相似文献   

14.
Laminin alpha chains show diverse biological functions in a chain-specific fashion. The laminin G-like modules (LG modules) of the laminin alpha chains consist of a 14-stranded beta-sheet sandwich structure with biologically active sequences found in the connecting loops. Previously, we reported that connecting loop regions between beta-strands E and F in the mouse laminin alpha chain LG4 modules exhibited chain-specific activities. In this study, we focus on the homologous loop regions in human laminin alpha chain LG4 modules using five synthetic peptides (hEF-1-hEF-5). These homologous peptides induced chain-specific cellular responses in various cell types. Next, to examine the dual-receptor recognition model, we synthesized chimeras (cEF13A-cEF13E) derived from peptides hEF-1 and hEF-3. All of the chimeric peptides promoted fibroblast attachment as well as the parental peptides. Attachment of fibroblasts to cEF13A and cEF13B was inhibited by anti-integrin alpha2 and beta1 antibodies and by heparin, while cell adhesion to cEF13C, cEF13D, and cEF13E was blocked only by heparin. Actin organization of fibroblasts on cEF13C was not different from that on hEF-3, but cEF13B induced membrane ruffling at the tips of the actin stress fibers. These results suggest that cEF13B had bifunctional effects on cellular behaviors through alpha2beta1 integrin and heparin/heparan sulfate proteoglycan. We conclude that the approach utilizing chimeric peptides is useful for examining cellular mechanisms in dual-receptor systems.  相似文献   

15.
The laminin alpha1 chain is a subunit of laminin-1, a heterotrimeric basement membrane protein. The LG4-5 module at the C terminus of laminin alpha1 contains major binding sites for heparin, sulfatide, and alpha-dystroglycan and plays a critical role in early embryonic development. We previously identified active synthetic peptides AG73 and EF-1 from the sequence of laminin alpha1 LG4 for binding to syndecan and integrin alpha2beta1, respectively. However, their activity and functional relationship within the laminin-1 and LG4 as well as the functional relation between these sites and alpha-dystroglycan binding sites in LG4 are not clear. To address these questions, we created mutant recombinant LG4 proteins containing alanine substitutions within the AG73 (M1), EF-1 (M2, M3), and alpha-dystroglycan binding sites (M4, M5) and analyzed their activities. We found that recombinant proteins rec-M1 and rec-M5, containing mutations within M1 and M5, respectively, did not bind heparin or lymphoid cell lines expressing syndecans. These results suggest that LG4 binds to heparin and syndecans through M1 and M5. Rec-M1 and rec-M5 reduced fibroblast attachment, whereas mutant rec-M2 and rec-M3 retained cell attachment activity but did not promote cell spreading. Fibroblast attachment to rec-LG4 was inhibited by heparin but not by integrin antibodies. Spreading of fibroblasts on rec-LG4 was inhibited by anti-integrin alpha2 and beta1 but not by anti-integrin alpha1 and alpha6. These results suggest that the M1 and M5 sites are necessary for cell attachment on LG4 through syndecans and that the EF-1 site is for cell spreading activity through integrin alpha2beta1. In contrast, laminin-1-mediated fibroblast attachment and spreading were not inhibited by heparin or anti-integrin alpha2. Our findings indicate that LG4 has a unique function distinct from laminin-1 and suggest that laminin alpha1 LG4-5 may also be produced by a proteolytic cleavage in certain tissues where it exerts its activity.  相似文献   

16.
Laminin G-like (LG) modules in the extracellular matrix glycoproteins laminin, perlecan, and agrin mediate the binding to heparin and the cell surface receptor alpha-dystroglycan (alpha-DG). These interactions are crucial to basement membrane assembly, as well as muscle and nerve cell function. The crystal structure of the laminin alpha 2 chain LG5 module reveals a 14-stranded beta sandwich. A calcium ion is bound to one edge of the sandwich by conserved acidic residues and is surrounded by residues implicated in heparin and alpha-DG binding. A calcium-coordinated sulfate ion is suggested to mimic the binding of anionic oligosaccharides. The structure demonstrates a conserved function of the LG module in calcium-dependent lectin-like alpha-DG binding.  相似文献   

17.
The adhesive interactions of cells with laminins are mediated by integrins and non-integrin-type receptors such as alpha-dystroglycan and syndecans. Laminins bind to these receptors at the C-terminal globular domain of their alpha chains, but the regions recognized by these receptors have not been mapped precisely. In this study, we sought to locate the binding sites of laminin-10 (alpha5beta1gamma1) for alpha(3)beta(1) and alpha(6)beta(1) integrins and alpha-dystroglycan through the production of a series of recombinant laminin-10 proteins with deletions of the LG (laminin G-like) modules within the globular domain. We found that deletion of the LG4-5 modules did not compromise the binding of laminin-10 to alpha(3)beta(1) and alpha(6)beta(1) integrins but completely abrogated its binding to alpha-dystroglycan. Further deletion up to the LG3 module resulted in loss of its binding to the integrins, underlining the importance of LG3 for integrin binding by laminin-10. When expressed individually as fusion proteins with glutathione S-transferase or the N-terminal 70-kDa region of fibronectin, only LG4 was capable of binding to alpha-dystroglycan, whereas neither LG3 nor any of the other LG modules retained the ability to bind to the integrins. Site-directed mutagenesis of the LG3 and LG4 modules indicated that Asp-3198 in the LG3 module is involved in the integrin binding by laminin-10, whereas multiple basic amino acid residues in the putative loop regions are involved synergistically in the alpha-dystroglycan binding by the LG4 module.  相似文献   

18.
The laminin G-like (LG) domains of laminin-111, a glycoprotein widely expressed during embryogenesis, provide cell anchoring and receptor binding sites that are involved in basement membrane assembly and cell signaling. We now report the crystal structure of the laminin alpha1LG4-5 domains and provide a mutational analysis of heparin, alpha-dystroglycan, and galactosylsulfatide binding. The two domains of alpha1LG4-5 are arranged in a V-shaped fashion similar to that observed with laminin alpha2 LG4-5 but with a substantially different interdomain angle. Recombinant alpha1LG4-5 binding to heparin, alpha-dystroglycan, and sulfatides was dependent upon both shared and unique contributions from basic residues distributed in several clusters on the surface of LG4. For heparin, the greatest contribution was detected from two clusters, 2719RKR and 2791KRK. Binding to alpha-dystroglycan was particularly dependent on basic residues within 2719RKR, 2831RAR, and 2858KDR. Binding to galactosylsulfatide was most affected by mutations in 2831RAR and 2766KGRTK but not in 2719RKR. The combined analysis of structure and activities reveal differences in LG domain interactions that should enable dissection of biological roles of different laminin ligands.  相似文献   

19.
The LG4 module of the laminin alpha 3 chain (alpha 3 LG4), a component of epithelial-specific laminin-5, has cell attachment activity and binds syndecan (Utani, A., Nomizu, M., Matsuura, H., Kato, K., Kobayashi, T., Takeda, U., Aota, S., Nielsen, P. K., and Shinkai, H. (2001) J. Biol. Chem. 276, 28779-28788). Here, we show that recombinant alpha 3 LG4 and a 19-mer synthetic peptide (A3G756) within alpha 3 LG4 active for syndecan binding increased the expression of matrix metalloproteinase-1 (MMP-1) in keratinocytes and fibroblasts. This induction was inhibited by heparin and required de novo synthesis of proteins. In keratinocytes, A3G756 up-regulated interleukin (IL)-1 beta and MMP-1 expression and an IL-1 receptor antagonist thoroughly inhibited A3G756-mediated induction of MMP-1. A3G756 also activated p38 mitogen-activated protein kinase (p38 MAPK) and extracellular signal-related kinase (Erk). Studies with specific inhibitors of MAPKs showed that p38 MAPK activation was necessary for both IL-1 beta and MMP-1 induction, but Erk activation was required only for MMP-1 induction. In fibroblasts, IL-1 receptor antagonist did not block A3G756-mediated induction of MMP-1. These results indicated that induction of MMP-1 by alpha 3 LG4 is mediated through the IL-1 beta autocrine loop in keratinocytes but the mechanism of the induction in fibroblasts is different. Our study suggests that the laminin alpha 3 LG4 module may play an important role in tissue remodeling by inducing MMP-1 expression during wound healing.  相似文献   

20.
Laminin alpha chains (alpha1-alpha5 chains) have diverse chain-specific biological functions. The LG4 modules of laminin alpha chains consist of a 14-stranded beta-sheet (A-N) sandwich structure. Several biologically active sequences have been identified in the connecting loop regions. Here, we evaluated the biological activities of the loop regions of the E and F strands in the LG4 modules using five homologous peptides from each of the mouse alpha chains (EF-1: DYATLQLQEGRLHFMFDLG, alpha1 chain 2747-2765; EF-2: DFGTVQLRNGFPFFSYDLG, alpha2 chain 2808-2826; EF-3: RDSFVALYLSEGHVIFALG, alpha3 chain 2266-2284; EF-4: DFMTLFLAHGRLVFMFNVG, alpha4 chain 1511-1529; EF-5: SPSLVLFLNHGHFVAQTEGP, alpha5 chain 3304-3323). These homologous peptides showed chain-specific cell attachment and neurite outgrowth activities. Well organized actin stress fibers and focal contacts with vinculin accumulation were observed in fibroblasts attached on EF-1, whereas fibroblasts on EF-2 and EF-4 showed filopodia with ruffling. Fibroblast attachment to EF-2 and EF-4 was mediated by syndecan-2. In contrast, EF-1 promoted alpha2beta1 integrin-mediated fibroblast attachment and inhibited fibroblast attachment to a recombinant laminin alpha1 chain LG4-5. The receptors for EF-3 and EF-5 are unknown. Further, when the active core sequence of EF-1 was cyclized, utilizing two additional cysteine residues at both the N and C termini through a disulfide bridge, the cyclic peptide significantly enhanced integrin-mediated cell attachment. These results indicate that integrin-mediated cell attachment to the EF-1 sequence is conformation-dependent and that the loop structure is important for the activity. The homologous peptides, which promote either integrin- or syndecan-mediated cell attachment, may be useful for understanding the cell type- and chain-specific biological activities of the laminins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号