首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
青藏高原白垩纪双壳类生物地理   总被引:3,自引:1,他引:2  
青藏高原白垩纪沉积见于6条东西向延伸的条带内。双壳类主要发育于这些条带的Berriasian,Aptian-Albian,Cenomanian-Turonian,Coniacian-Santonian和Campanian-Maastrichtian5个时期的地层。雅鲁藏布江缝合线为白垩纪双壳类地理分布的主要控制界线。早白垩世期间,雅鲁藏布江缝合带以南的喜马拉雅地区的双壳类Petroceramus,  相似文献   

2.
Aim  To analyse the worldwide distribution patterns of Turonian marine biotas using a panbiogeographical approach.
Location  Turonian localities of southern and north-eastern Brazil, Mexico, Canada, central Europe, England and Morocco.
Method  Panbiogeographical track analysis.
Results  Nine generalized tracks and six nodes were found. The generalized tracks comprise two vicariant track patterns (one northern and one mid-southern) across the Atlantic.
Main conclusions  The generalized tracks show clearly two separate marine biotas, which were associated with the proto-South Atlantic and the proto-North Atlantic oceans. These generalized tracks, as well as the two vicariant track clusters between the north and south Atlantic, are identified by vicariant relationships shared by most of the taxa analysed, and illustrate the final break up of the Gondwana and Laurasia supercontinents and the consequences of vicariant events for the biogeography of the Atlantic Ocean.  相似文献   

3.
Biogeographic patterns and the evolution of eureptantic nemerteans   总被引:1,自引:0,他引:1  
The origin and evolution of the eureptantic nemerteans is discussed from a biogeographic point of view. It is most likely that East Indian Ocean was part of the ancestral distribution of the Eureptantia. The area cladogram estimated by Brooks parsimony analysis (BPA) is to a high degree congruent with a vicariance explanation of the evolution of the Eureptantia and suggests an ancestral distribution concordant with the Tethys Sea. A general area cladogram based on a combined BPA analysis of eureptantic nemerteans and acanthuroid fishes is reconstructed and suggested as a hypothesis of the relationships between east Indian Ocean, west Indian Ocean, west Pacific Ocean, east Adantic Ocean, west Atlantic Ocean, and the Mediterranean. This tree is compared with cladograms from the same areas based on other taxa.  相似文献   

4.
Four palaeogeographical reconstructions are presented for the southern Cape covering the period Late Permian to Late Cretaceous. This time spans the commencement to an advanced stage of breakup of Gondwanaland, during which the area moved from a mid-continental, high latitude, to an ocean-dominated, middle latitude position. These movements can be traced in facies changes and erosional cycles associated with the rift between West Gondwana and Antarctica (proto southwest Indian Ocean) and the later rift between South America and Africa (proto southeast Atlantic Ocean).  相似文献   

5.
《Comptes Rendus Palevol》2018,17(3):158-165
During the Jurassic two main marine pathways might act as dispersion routes for vertebrates and invertebrates between Laurasia and Gondwana: the Caribbean Seaway (between North and South America) and the Trans-Erythraean Seaway (splitting Africa from India, Madagascar). The former has proven to be of relevance as a dispersion route for marine vertebrates and invertebrates between the Tethys and Pacific margin of Gondwana. Nevertheless, little is known about the role of the Trans-Erythraean Seaway as a vertebrate dispersion pathway. The Trans-Erythraean Seaway divides the eastern and western South of Gondwana landmasses in the so-called break-up of Gondwana and connects the Tethys Sea with the Palaeo-Pacific. We describe a newly recovered plesiosaur specimen from the Ameghino (= Nordensköld) Formation, Antarctic Peninsula, the first Jurassic plesiosaur from Antarctica. We discuss the importance of this record regarding the hypothesis of marine vertebrate dispersion through the Trans-Erythraean Seaway.  相似文献   

6.
Aim The distributions of many New Caledonian taxa were reviewed in order to ascertain the main biogeographical connections with other areas. Location Global. Methods Panbiogeographical analysis. Results Twenty‐four areas of endemism (tracks) involving New Caledonia and different areas of Gondwana, Tethys and the central Pacific were retrieved. Most are supported by taxa of lower and higher plants, and lower and higher animals. Main conclusions Although parts of New Caledonia were attached to Gondwana for some time in the mid‐Cretaceous, most of the New Caledonian terranes formed as oceanic island arcs and sections of sea floor bearing seamounts. The flora and fauna have evolved and survived for tens of millions of years as metapopulations on ephemeral islands. Later, the biotas were juxtaposed and fused during terrane accretion. This process, together with the rifting of Gondwana, explains the biogeographical affinities of New Caledonia with parts of Gondwana, Tethys and the Pacific.  相似文献   

7.
The palm tribe Chamaedoreeae reaches its higher diversity in Central America, however, its distribution ranges from the north eastern part of Mexico to Bolivia with a disjunction to the Mascarene Islands in the Indian Ocean. The disjunct distribution of Chamaedoreeae is generally considered a result of Gondwana vicariance and extinction from Africa and/or Madagascar. However, latitudinal migrations and their role in shaping the distribution of this tribe in the Americas have been largely overlooked. In this study we used seven plastid and two nuclear DNA regions to investigate the phylogenetic relationships and biogeography of the Chamaedoreeae. The resulting phylogeny fully resolved the generic relationships within the tribe. The exact area of origin of the tribe remains uncertain, but dating analyses indicated an initial diversification of the Chamaedoreeae during the Early Eocene, followed by long distance dispersion to the Mascarene Islands in the late Miocene. The radiation of Hyophorbe could have taking place on islands in the Indian Ocean now submerged, but its former presence in Africa or Madagascar cannot be ruled out. At least two independent migrations between North and South America predating the rise of the Panama isthmus need to be postulated to explain the distribution of Chamaedoreeae, one during the Middle Eocene and a second during the Miocene. Whereas the traditional interpretation of distribution of Chamaedoreeae species assumes a west Gondwana origin of the group, the findings presented in this paper make it equally possible to interpret the group as a primarily boreotropical element.  相似文献   

8.
The Tethys Ocean existed between the continents of Gondwana and Laurasia from the Triassic to the Pliocene. Analyses of multiple biogeographic and phylogenetic histories reveal that the subsequent breakup of the Tethys greatly influenced the distributions of many species. The ancestral Tethyan realm broke into five biogeographic provinces, including the present‐day East Pacific, West Atlantic, East Atlantic, Mediterranean Sea, and Indo‐West Pacific. Palaeogeographic maps illustrate the Mesozoic Atlantic opening, the Cenozoic closure of the Tethys, the Messinian Salinity Crisis, the mid‐Miocene closure of the Central American Seaway, and Quaternary geological changes. Further, we consider Cenozoic sea‐level changes and the formation of freshwater habitats. These reconstructions allow assessment of patterns of aquatic diversification for marine and freshwater animals, and comparison of vicariance and dispersal processes. Estimated divergence times indicate that fragmentation of the Tethys was responsible for the vicariant speciation of aquatic animals because these dates are consistent with associated tectonic events. The opening of the Atlantic Ocean during the Cretaceous is responsible for the earliest isolation between the West and East Atlantic. The mid‐Miocene closure of the Tethys, which blocked global equatorial currents, appears to have isolated the Atlantic/Mediterranean Sea and Indo‐West Pacific. Finally, formation of the Isthmus of Panama isolated East Pacific and West Atlantic marine organisms. Dispersals related to the Messinian Salinity Crisis and Quaternary sea‐level changes influenced population structuring. Tethyan changes affected marine habitats, created new freshwater habitats, inland caves and ancient lakes along the Alps and Himalayas, and influenced anchialine caves at the edge of the ancient sea. The extensive new habitats provided opportunities for colonisation and rapid diversification. Future work should focus on testing the biological impact of the series of Tethyan changes.  相似文献   

9.
Evidence for initial opening of the Pacific ocean in the Jurassic   总被引:1,自引:0,他引:1  
An argument is presented for the east-west initial opening of the pacific Ocean during Early Jurassic times, on paleontological, biogeograhical, and geological grounds. A new reconstruction of the continents bordering the Pacific Ocean is proposed, based chiefly upon trans-Pacific, terrestrial biotic links that are not reflected in regions bordering the Atlantic. A new Arctic Ocean reconstruction is also proposed. Since the Atlantic and Indian Oceans were closed in the Early Jurassic as well, an expanding-earth model is adopted, instead of a Pangaen reconstruction on a present-sized earth. The model prposed here is also compatible with geological evidence for a narrow, epicontinental Tethys Sea. Sea-floor subduction along the perimeter of the Pacific appears to be actively taking place and in the past was much more extensive along the eastern border than on the western side. The tectonics of Antarctica, the Southwest Pacific, Indonesia, Japan, the Arctic region, western North America, Baja California, the Carribean, and the Gulf of Mexico are discussed in terms of the proposed model. The Pacific sea-floor spreading history is outlined and related to the initial opening of the North Atlantic 180 million years ago (Early Jurassic). The South Pacific and Indian Ocean are both considered to have opened some 155 million years ago (Late Jurassic). The original and present positions of the Jurassic equator are determined.  相似文献   

10.

Background

Understanding the limits and population dynamics of closely related sibling species in the marine realm is particularly relevant in organisms that require management. The crown-of-thorns starfish Acanthaster planci, recently shown to be a species complex of at least four closely related species, is a coral predator infamous for its outbreaks that have devastated reefs throughout much of its Indo-Pacific distribution.

Methodology/Principal Findings

In this first Indian Ocean-wide genetic study of a marine organism we investigated the genetic structure and inferred the paleohistory of the two Indian Ocean sister-species of Acanthaster planci using mitochondrial DNA sequence analyses. We suggest that the first of two main diversification events led to the formation of a Southern and Northern Indian Ocean sister-species in the late Pliocene-early Pleistocene. The second led to the formation of two internal clades within each species around the onset of the last interglacial. The subsequent demographic history of the two lineages strongly differed, the Southern Indian Ocean sister-species showing a signature of recent population expansion and hardly any regional structure, whereas the Northern Indian Ocean sister-species apparently maintained a constant size with highly differentiated regional groupings that were asymmetrically connected by gene flow.

Conclusions/Significance

Past and present surface circulation patterns in conjunction with ocean primary productivity were identified as the processes most likely to have shaped the genetic structure between and within the two Indian Ocean lineages. This knowledge will help to understand the biological or ecological differences of the two sibling species and therefore aid in developing strategies to manage population outbreaks of this coral predator in the Indian Ocean.  相似文献   

11.
Many higher groups of plants and animals show distributional patterns which have been shown or have at some point in time been suggested to be correlated with plate tectonics and the ancient supercontinents Laurasia and Gondwana. Here, we study the family of squeak beetles (Coleoptera: Adephaga: Hygrobiidae) and its enigmatic distribution pattern, with one species in the Western Palearctic, one in China and four in Australia. We present a molecular phylogeny including five of the six extant species, showing the monophyly of the Australian radiation. We use a molecular clock approach, which indicates that Hygrobiidae is an ancient group dating back to the breakup of Pangea and discuss the possibility of vicariance as explanation for its current distribution.  相似文献   

12.
We constructed a phylogenetic hypothesis for western Indian Ocean sunbirds (Nectarinia) and used this to investigate the geographic pattern of their diversification among the islands of the Indian Ocean. A total of 1309 bp of mitochondrial sequence data was collected from the island sunbird taxa of the western Indian Ocean region, combined with sequence data from a selection of continental (African and Asian) sunbirds. Topological and branch length information combined with estimated divergence times are used to present hypotheses for the direction and sequence of colonization events in relation to the geological history of the Indian Ocean region. Indian Ocean sunbirds fall into two well-supported clades, consistent with two independent colonizations from Africa within the last 3.9 million years. The first clade contains island populations representing the species Nectarinia notata, while the second includes Nectarinia souimanga, Nectarinia humbloti, Nectarinia dussumieri, and Nectarinia coquereli. With respect to the latter clade, application of Bremer's [Syst. Biol. 41 (1992) 436] ancestral areas method permits us to posit the Comoros archipelago as the point of initial colonization in the Indian Ocean. The subsequent expansion of the souimanga clade across its Indian Ocean range occurred rapidly, with descendants of this early expansion remaining on the Comoros and granitic Seychelles. The data suggest that a more recent expansion from Anjouan in the Comoros group led to the colonization of Madagascar by sunbirds representing the souimanga clade. In concordance with the very young geological age of the Aldabra group, the sunbirds of this archipelago have diverged little from the Madagascar population; this is attributed to colonization of the Aldabra archipelago in recent times, in one or possibly two or more waves originating from Madagascar. The overall pattern of sunbird radiation across Indian Ocean islands indicates that these birds disperse across ocean barriers with relative ease, but that their subsequent evolutionary success probably depends on a variety of factors including prior island occupation by competing species.  相似文献   

13.
Geographical variation in measurements and colouration among populations and subspecies of White-tailed Tropicbirds Phaethon lepturus , including birds from Europa Island (southern Mozambique Channel] was examined worldwide. Two groups were distinguished: the 'large subspecies' (lepturus and fulvus from the Indian Ocean, catesbyi from the western Atlantic Ocean) and the 'small subspecies' (ascensionis from the central and eastern Atlantic Ocean, dorotheae from the Pacific Ocean, and the birds from Europa Island). No clinal variation was found in the Indian Ocean, the birds from Europa Island being the only 'small' ones. This population also had a high frequency of golden morphs, a feature that does not exist elsewhere in the western Indian Ocean. These results indicate that Europa's population is isolated from all nearby colonies in the Indian Ocean, and does not belong to any of the two previously known subspecies of the area. It also differs from the birds of the two small subspecies by the frequency of the colour morphs and the distribution. Consequently, we propose to treat this population as a previously undescribed subspecies, endemic to Europa Island, for which we propose the name Phaethon lepturus europae. Geographical isolation of Europa Island and oceanic conditions in the Mozambique Channel are discussed to explain the isolation of this population.  相似文献   

14.
Although humpback whales are among the best-studied of the large whales, population boundaries in the Southern Hemisphere (SH) have remained largely untested. We assess population structure of SH humpback whales using 1,527 samples collected from whales at fourteen sampling sites within the Southwestern and Southeastern Atlantic, the Southwestern Indian Ocean, and Northern Indian Ocean (Breeding Stocks A, B, C and X, respectively). Evaluation of mtDNA population structure and migration rates was carried out under different statistical frameworks. Using all genetic evidence, the results suggest significant degrees of population structure between all ocean basins, with the Southwestern and Northern Indian Ocean most differentiated from each other. Effective migration rates were highest between the Southeastern Atlantic and the Southwestern Indian Ocean, followed by rates within the Southeastern Atlantic, and the lowest between the Southwestern and Northern Indian Ocean. At finer scales, very low gene flow was detected between the two neighbouring sub-regions in the Southeastern Atlantic, compared to high gene flow for whales within the Southwestern Indian Ocean. Our genetic results support the current management designations proposed by the International Whaling Commission of Breeding Stocks A, B, C, and X as four strongly structured populations. The population structure patterns found in this study are likely to have been influenced by a combination of long-term maternally directed fidelity of migratory destinations, along with other ecological and oceanographic features in the region.  相似文献   

15.
Today, the only surviving wild population of giant tortoises in the Indian Ocean occurs on the island of Aldabra. However, giant tortoises once inhabited islands throughout the western Indian Ocean. Madagascar, Africa, and India have all been suggested as possible sources of colonization for these islands. To address the origin of Indian Ocean tortoises (Dipsochelys, formerly Geochelone gigantea), we sequenced the 12S, 16S, and cyt b genes of the mitochondrial DNA. Our phylogenetic analysis shows Dipsochelys to be embedded within the Malagasy lineage, providing evidence that Indian Ocean giant tortoises are derived from a common Malagasy ancestor. This result points to Madagascar as the source of colonization for western Indian Ocean islands by giant tortoises. Tortoises are known to survive long oceanic voyages by floating with ocean currents, and thus, currents flowing northward towards the Aldabra archipelago from the east coast of Madagascar would have provided means for the colonization of western Indian Ocean islands. Additionally, we found an accelerated rate of sequence evolution in the two Malagasy Pyxis species examined. This finding supports previous theories that shorter generation time and smaller body size are related to an increase in mitochondrial DNA substitution rate in vertebrates.  相似文献   

16.
A new gastropod fauna of Burdigalian (early Miocene) age is described from the Iranian part of Makran. The fauna comprises 19 species and represents three distinct assemblages from turbid water coral reef, shallow subtidal soft-bottom and mangrove-fringed mudflat environments in the northern Indian Ocean. Especially the reef-associated assemblage comprises largely new species. This is explained by the rare occurrence of reefs along the northern margin of the Miocene Indian Ocean and the low number of scientific studies dealing with the region. In terms of paleobiogeography, the fauna corresponds well to coeval faunas from the Pakistani Balochistan and Sindh provinces and the Indian Kathiawar, Kutch and Kerala provinces. During the early Miocene, these constituted a discrete biogeographic unit, the Western Indian Province, which documents the near complete biogeographic isolation from the Proto-Mediterranean Sea. Some mudflat taxa might represent examples of vicariance following the Tethys closure. The fauna also displays little connection with coeval faunas from Indonesia, documenting a strong provincialism within the Indo-West Pacific Region during early Miocene times. Neritopsis gedrosiana sp. nov., Calliostoma irerense sp. nov., Calliostoma mohtatae sp. nov. and Trivellona makranica sp. nov. are described as new species.  相似文献   

17.
Shallow marine gastropod assemblages from Chattian, Aquitanian and Burdigalian sections in the Indian Kutch Basin are described. They provide insight into the composition and biogeographic relations of the gastropod assemblages at this junction between the Western Tethys and Proto-Indo-Pacific Ocean. For the first time, an improved biostratigraphy allows a clear separation of the assemblages, especially for the hitherto undifferentiated Early Miocene faunas. Throughout the Oligocene, about one-third of the species are also frequently found in the Western Tethys, documenting a passable Tethyan Seaway for nearshore molluscs. A considerable provincialism is evident as well. The expected turnover during the Early Miocene, due to the closing of the Tethyan Seaway, is reflected in the Miocene assemblages. Surprisingly, however, the cut appears very early, i.e. already during the Aquitanian, when the West–East interrelation drops to zero despite the passage having been open during this interval. In contrast, the Burdigalian assemblages witness a minor re-appearance of Western Tethys taxa, suggesting the re-establishment of rather ineffective migration pathways prior to the final closure of the Tethyan Seaway. Cerithium bermotiense and Lyria (Indolyria) maniyaraensis are introduced as new species.  相似文献   

18.
The population structure of the giant mottled eel, Anguilla marmorata, was investigated with mitochondrial and microsatellite DNA analyses using 449 specimens from 13 localities throughout the species range. Control region F-statistics indicated the North Pacific (Japan, Taiwan, Philippines, Sulawesi), South Pacific (Tahiti, Fiji, New Caledonia, Papua New Guinea), eastern Indian Ocean (Sumatra), western Indian Ocean (Réunion, Madagascar), Ambon, and Guam regions were significantly different (Phi(ST) = 0.131-0.698, P < 0.05) while only a few differences were observed between localities within the South Pacific. These regions were roughly clustered in the neighbour-joining tree, although Ambon individuals were mainly divided into North and South Pacific groups. Analysis with eight microsatellite loci showed almost identical results to those of the control region, except no genetic difference was observed between the western and eastern Indian Ocean (F(ST) = 0.009, P > 0.05). The Bayesian cluster analysis of the microsatellite data detected two genetic groups. One included four North Pacific localities, and the other included eight localities in the South Pacific, Indian Ocean, and Guam, but Ambon individuals were evenly assigned to these two groups. These results showed that A. marmorata has four genetically different populations (North Pacific, South Pacific, Indian Ocean, Guam region). The North Pacific population is fully panmictic whereas the South Pacific and Indian Ocean populations have a metapopulation structure. Interestingly, Guam was suggested to be inhabited by a reproductive population restricted to that region, and the individuals from the North and South Pacific populations co-exist in Ambon.  相似文献   

19.
Patterns of mitochondrial DNA (mtDNA) variation were used to analyse the population genetic structure of southwestern Indian Ocean green turtle (Chelonia mydas) populations. Analysis of sequence variation over 396 bp of the mtDNA control region revealed seven haplotypes among 288 individuals from 10 nesting sites in the Southwest Indian Ocean. This is the first time that Atlantic Ocean haplotypes have been recorded among any Indo-Pacific nesting populations. Previous studies indicated that the Cape of Good Hope was a major biogeographical barrier between the Atlantic and Indian Oceans because evidence for gene flow in the last 1.5 million years has yet to emerge. This study, by sampling localities adjacent to this barrier, demonstrates that recent gene flow has occurred from the Atlantic Ocean into the Indian Ocean via the Cape of Good Hope. We also found compelling genetic evidence that green turtles nesting at the rookeries of the South Mozambique Channel (SMC) and those nesting in the North Mozambique Channel (NMC) belong to separate genetic stocks. Furthermore, the SMC could be subdivided in two different genetic stocks, one in Europa and the other one in Juan de Nova. We suggest that this particular genetic pattern along the Mozambique Channel is attributable to a recent colonization from the Atlantic Ocean and is maintained by oceanic conditions in the northern and southern Mozambique Channel that influence early stages in the green turtle life cycle.  相似文献   

20.
Origins of mangrove ecosystems and the mangrove biodiversity anomaly   总被引:7,自引:0,他引:7  
1. Mangrove species richness declines dramatically from a maximum in the Indo-West Pacific (IWP) to a minimum in the Caribbean and Western Atlantic. Explaining this ‘anomalous’ biogeographic pattern has been a focus of discussion for most of this century. 2. Two hypotheses have been put forward to explain the mangrove biodiversity anomaly. The ‘centre-of-origin hypothesis’ asserts that all mangrove taxa originated in the IWP and subsequently dispersed to other parts of the world. The ‘vicariance hypothesis’ asserts that mangrove taxa evolved around the Tethys Sea during the Late Cretaceous, and regional species diversity resulted from in situ diversification after continental drift. 3. Five lines of evidence are used to test between these two hypotheses. First, we review the mangrove fossil record. Second, we compare modern and fossil distributions of mangroves and eight genera of gastropods that show high fidelity to the mangrove environment. Third, we describe species-area relationships of mangroves and associated gastropods with respect to area of available habitat. Fourth, we analyse patterns of nestedness of individual plant and gastropod communities in mangrove forests. Fifth, we analyse patterns of nestedness of individual plant and gastropod species. 4. All five lines of evidence support the vicariance hypothesis. The first occurrences in the fossil record of most mangrove genera and many genera of gastropods associated with mangrove forests appear around the Tethys Sea from the Late Cretaceous through the Early Tertiary. Globally, species richness in any given mangrove forest is tightly correlated with available area. Patterns of nestedness at the community and species-level both point towards three independent regions of diversification of mangrove ecosystems: South-east Asia, the Caribbean and Eastern Pacific, and the Indian Ocean region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号