共查询到20条相似文献,搜索用时 15 毫秒
1.
A nuclear genetic lesion affecting Saccharomyces cerevisiae mitochondrial translation is complemented by a homologous Bacillus gene. 总被引:1,自引:0,他引:1 下载免费PDF全文
S I Kim N Stange-Thomann O Martins K W Hong D Sll T D Fox 《Journal of bacteriology》1997,179(17):5625-5627
A novel Bacillus gene was isolated and characterized. It encodes a homolog of Saccharomyces cerevisiae Pet112p, a protein that has no characterized relative and is dispensable for cell viability but required for mitochondrial translation. Expression of the Bacillus protein in yeast, modified to ensure mitochondrial targeting, partially complemented the phenotype of the pet112-1 mutation, demonstrating a high degree of evolutionary conservation for this as yet unidentified component of translation. 相似文献
2.
Molecular cloning and genetic mapping of the PET494 gene of Saccharomyces cerevisiae 总被引:8,自引:0,他引:8
Summary The activity of the nuclear gene PET494 is required to allow expression of the yeast mitochondrial gene oxi2. To aid the study of the mechanism of action of PET494 we have isolated this gene from yeast DNA. A clone bank of yeast DNA fragments in a yeast-E. coli shuttle vector was screened by transformation for a plasmid able to complement the pet494-1 amber mutation. A complementing plasmid was obtained that contained a unique 4.4 kb yeast sequence. This 4.4 kb sequence contains the PET494 gene. Integration of a plasmid containing it into chromosomal DNA by homologous recombination, and subsequent genetic analysis, demonstrated that the 4.4 kb fragment was tightly linked to the pet494-1 mutation. In addition, the corresponding 4.4 kb sequence isolated from a pet494-1 mutant failed to complement the mutation. A 2 kb fragment, subcloned from the original plasmid retained the ability to complement the mutation. The pet494-1 mutation maps to chromosome XIV between rna2 and lys9, approximately 2.4 cm from lys9. 相似文献
3.
4.
Role of nuclear genes in expression of a mitochondrial tRNA gene in Saccharomyces cerevisiae. 下载免费PDF全文
In yeast mitochondria, most of the isoaccepting species of tyrosyl tRNA are coded by a mitochondrial gene, tyrA. A particular isoaccepting species is coded by a second mitochondrial gene, tyrB. This gene is not expressed in certain strains of yeast which show no deficient phenotype. Genetic crosses between strains expressing or not expressing the tyrB gene demonstrate that expression is controlled by specific nuclear genes and that a mutation of the tyrA gene can be bypassed when the tyrB gene is operative. 相似文献
5.
The nuclear genome of eukaryotes is colonized by DNA fragments of mitochondrial origin, called NUMTs. These insertions have been associated with a variety of germ-line diseases in humans. The significance of this uptake of potentially dangerous sequences into the nuclear genome is unclear. Here we provide functional evidence that sequences of mitochondrial origin promote nuclear DNA replication in Saccharomyces cerevisiae. We show that NUMTs are rich in key autonomously replicating sequence (ARS) consensus motifs, whose mutation results in the reduction or loss of DNA replication activity. Furthermore, 2D-gel analysis of the mrc1 mutant exposed to hydroxyurea shows that several NUMTs function as late chromosomal origins. We also show that NUMTs located close to or within ARS provide key sequence elements for replication. Thus NUMTs can act as independent origins, when inserted in an appropriate genomic context or affect the efficiency of pre-existing origins. These findings show that migratory mitochondrial DNAs can impact on the replication of the nuclear region they are inserted in. 相似文献
6.
7.
mRNA structures influencing translation in the yeast Saccharomyces cerevisiae. 总被引:20,自引:9,他引:20 下载免费PDF全文
The mRNA sequence and structures that modify and are required for translation of iso-1-cytochrome c in the yeast Saccharomyces cerevisiae were investigated with sets of CYC1 alleles having alterations in the 5' leader region. Measurements of levels of CYC1 mRNA and iso-1-cytochrome c in strains having single copies of altered alleles with nested deletions led to the conclusion that there is no specific sequence adjacent to the AUG initiator codon required for efficient translation. However, the nucleotides preceding the AUG initiator codon at positions -1 and -3 slightly modified the efficiency of translation to an order of preference similar to that found in higher cells. In contrast to large effects observed in higher eucaryotes, the magnitude of this AUG context effect in S. cerevisiae was only two- to threefold. Furthermore, introduction of hairpin structures in the vicinity of the AUG initiator codon inhibited translation, with the degree of inhibition related to the stability and proximity of the hairpin. These results with S. cerevisiae and published findings on other organisms suggest that translation in S. cerevisiae is more sensitive to secondary structures than is translation in higher eucaryotes. 相似文献
8.
9.
Saccharomyces cerevisiae positive regulatory gene PET111 encodes a mitochondrial protein that is translated from an mRNA with a long 5'' leader. 总被引:6,自引:3,他引:6 下载免费PDF全文
The yeast nuclear gene PET111 is required specifically for translation of the mitochondrion-coded mRNA for cytochrome c oxidase subunit II. We have determined the nucleotide sequence of a 3-kilobase segment of DNA that carries PET111. The sequence contains a single long open reading frame that predicts a basic protein of 718 amino acids. The PET111 gene product is a mitochondrial protein, since a hybrid protein which includes the amino-terminal 154 amino acids of PET111 fused to beta-galactosidase is specifically associated with mitochondria. PET111 is translated from a 2.9-kilobase mRNA which, interestingly, has an extended 5'-leader sequence containing four short open reading frames upstream of the long open reading frame. These open reading frames exhibit an interesting pattern of overlap with each other and with the PET111 reading frame. 相似文献
10.
11.
Translational regulation of mitochondrial gene expression by nuclear genes of Saccharomyces cerevisiae 总被引:3,自引:0,他引:3
T D Fox M C Costanzo C A Strick D L Marykwas E C Seaver J K Rosenthal 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》1988,319(1193):97-105
12.
13.
14.
15.
Regulation of nuclear genes encoding mitochondrial proteins in Saccharomyces cerevisiae. 总被引:1,自引:0,他引:1 下载免费PDF全文
Selection for mutants which release glucose repression of the CYB2 gene was used to identify genes which regulate repression of mitochondrial biogenesis. We have identified two of these as the previously described GRR1/CAT80 and ROX3 genes. Mutations in these genes not only release glucose repression of CYB2 but also generally release respiration of the mutants from glucose repression. In addition, both mutants are partially defective in CYB2 expression when grown on nonfermentable carbon sources, indicating a positive regulatory role as well. ROX3 was cloned by complementation of a glucose-inducible flocculating phenotype of an amber mutant and has been mapped as a new leftmost marker on chromosome 2. The ROX3 mutant has only a modest defect in glucose repression of GAL1 but is substantially compromised in galactose induction of GAL1 expression. This mutant also has increased SUC2 expression on nonrepressing carbon sources. We have also characterized the regulation of CYB2 in strains carrying null mutation in two other glucose repression genes, HXK2 and SSN6, and show that HXK2 is a negative regulator of CYB2, whereas SSN6 appears to be a positive effector of CYB2 expression. 相似文献
16.
At least two nuclear gene products are specifically required for translation of a single yeast mitochondrial mRNA. 总被引:21,自引:4,他引:21 下载免费PDF全文
Mitochondrial translation of the oxi2 mRNA, encoding yeast cytochrome c oxidase subunit III (coxIII), has previously been shown to specifically require the mitochondrially located protein product of the nuclear gene PET494. We show here that this specific translational activation involves at least one other newly identified gene termed PET54. Mutations in PET54 cause an absence of the coxIII protein despite the presence of normal levels of its mRNA. pet494 mutations are known to be suppressible by mitochondrial gene rearrangements that replace the normal 5'-untranslated leader of the oxi2 mRNA with the leaders of other mitochondrial mRNAs. In this study we show that pet54, pet494 double mutants are suppressed by the same mitochondrial gene rearrangements, showing that the PET54 product is specifically required, in addition to the PET494 protein, for translation of the oxi2 mRNA. Since, as we show here, PET54 is not an activator of PET494 gene expression, our results suggest that the products of both of these genes may act together to stimulate coxIII translation. 相似文献
17.
Summary Sporulation of S. cerevisiae MAT/MATa was accompanied by a novel pattern of protein synthesis as shown by the disappearance of some mitotic polypeptides and by the appearance of a new set of meiotic polypeptides. Inhibition of mitochondrial protein synthesis by erythromycin within the 1st h caused the disappearance of several meiotic polypeptides. These meiotic polypeptides were also sensitive to cycloheximide and were localized in the cytosol, demonstrating that they were not mitochondrial translational products. Since erythromycin affected neither protein synthesis nor sporulation in a mitochondrially inherited er
y
mutant, we conclude that mitochondrial protein synthesis is needed for the expression of some nuclear genes during sporulation. 相似文献
18.
19.
Pentamidine inhibits mitochondrial intron splicing and translation in Saccharomyces cerevisiae 总被引:3,自引:0,他引:3 下载免费PDF全文
Pentamidine inhibits in vitro splicing of nuclear group I introns from rRNA genes of some pathogenic fungi and is known to inhibit mitochondrial function in yeast. Here we report that pentamidine inhibits the self-splicing of three group I and two group II introns of yeast mitochondria. Comparison of yeast strains with different configurations of mitochondrial introns (12, 5, 4, or 0 introns) revealed that strains with the most introns were the most sensitive to growth inhibition by pentamidine on glycerol medium. Analysis of blots of RNA from yeast strains grown in raffinose medium in the presence or absence of pentamidine revealed that the splicing of seven group I and two group II introns that have intron reading frames was inhibited by the drug to varying extents. Three introns without reading frames were unaffected by the drug in vivo, and two of these were inhibited in vitro, implying that the drug affects splicing by acting directly on RNA in vitro, but on another target in vivo. Because the most sensitive introns in vivo are the ones whose splicing depends on a maturase encoded by the intron reading frames, we tested pentamidine for effects on mitochondrial translation. We found that the drug inhibits mitochondrial but not cytoplasmic translation in cells at concentrations that inhibit mitochondrial intron splicing. Therefore, pentamidine is a potent and specific inhibitor of mitochondrial translation, and this effect explains most or all of its effects on respiratory growth and on in vivo splicing of mitochondrial introns. 相似文献
20.
We describe a collection of nuclear respiratory-defective mutants (pet mutants) of Saccharomyces cerevisiae consisting of 215 complementation groups. This set of mutants probably represents a substantial fraction of the total genetic information of the nucleus required for the maintenance of functional mitochondria in S. cerevisiae. The biochemical lesions of mutants in approximately 50 complementation groups have been related to single enzymes or biosynthetic pathways, and the corresponding wild-type genes have been cloned and their structures have been determined. The genes defined by an additional 20 complementation groups were identified by allelism tests with mutants characterized in other laboratories. Mutants representative of the remaining complementation groups have been assigned to one of the following five phenotypic classes: (i) deficiency in cytochrome oxidase, (ii) deficiency in coenzyme QH2-cytochrome c reductase, (iii) deficiency in mitochondrial ATPase, (iv) absence of mitochondrial protein synthesis, and (v) normal composition of respiratory-chain complexes and of oligomycin-sensitive ATPase. In addition to the genes identified through biochemical and genetic analyses of the pet mutants, we have cataloged PET genes not matched to complementation groups in the mutant collection and other genes whose products function in the mitochondria but are not necessary for respiration. Together, this information provides an up-to-date list of the known genes coding for mitochondrial constituents and for proteins whose expression is vital for the respiratory competence of S. cerevisiae. 相似文献