首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Non‐biting midges of the genus Labrundinia (Chironomidae: Tanypodinae) are minute dipterans with immature stages living in a variety of unpolluted water bodies, from small streams and ponds to lakes and bays. Extensively recorded in ecological studies, the genus comprises 39 species, all except one described from areas outside the Palearctic region. Internal structure among Labrundinia species was postulated by S. S. Roback, who recognized four species groups based on morphological characters of immature stages. We examined phylogenetic relationships among known Labrundinia species using partial DNA sequences of the nuclear protein‐coding gene CAD and morphological characters. Both analyses with Bayesian inference and parsimony methods recovered the monophyly of Labrundinia, strongly supported by five morphological synapomorphies. Internal relationships within the genus partly supported Roback's species groups with the addition of later described species. Biogeographical inferences were obtained by applying Bayesian binary MCMC (BBM) analysis and favoured a scenario where Labrundinia had its initial diversification in the Neotropical region and that current presence in the Nearctic region and southern South America is due to subsequent dispersal.  相似文献   

2.
3.
The genus Gephyromantis is a clade within the Malagasy-Comoroan family Mantellidae composed of rainforest frogs that live and breed to varying degrees independently from water. Based on DNA sequences of five mitochondrial and five nuclear genes we inferred the phylogeny of these frogs with full taxon coverage at the species level. Our preferred consensus tree from a partitioned Bayesian analysis of 5843 base pairs of 51 nominal and candidate species supports various major clades within the genus although the basal relationships among these remain unresolved. The data provide strong evidence for the monophyly of the subgenera Gephyromantis (after exclusion of Gephyromantis klemmeri), Laurentomantis, Vatomantis, and Phylacomantis. Species assigned to the subgenus Duboimantis belong to two strongly supported clades of uncertain relationships. G. klemmeri, previously in the subgenus Gephyromantis, was placed with high support sister to the Laurentomantis clade, and the Laurentomantis + G. klemmeri clade was sister to Vatomantis. A reconstruction of ancestral distribution areas indicates a diversification of several subgenera in the northern biogeographic regions of Madagascar and the dispersal out of northern Madagascar for several clades.  相似文献   

4.
The Anopheles genus is a member of the Culicidae family and consists of approximately 460 recognized species. The genus is composed of 7 subgenera with diverse geographical distributions. Despite its huge medical importance, a consensus has not been reached on the phylogenetic relationships among Anopheles subgenera. We assembled a comprehensive dataset comprising the COI, COII and 5.8S rRNA genes and used maximum likelihood and Bayesian inference to estimate the phylogeny and divergence times of six out of the seven Anopheles subgenera. Our analysis reveals a monophyletic group composed of the three exclusively Neotropical subgenera, Stethomyia, Kerteszia and Nyssorhynchus, which began to diversify in the Late Cretaceous, at approximately 90 Ma. The inferred age of the last common ancestor of the Anopheles genus was ca. 110 Ma. The monophyly of all Anopheles subgenera was supported, although we failed to recover a significant level of statistical support for the monophyly of the Anopheles genus. The ages of the last common ancestors of the Neotropical clade and the Anopheles and Cellia subgenera were inferred to be at the Late Cretaceous (ca. 90 Ma). Our analysis failed to statistically support the monophyly of the Anopheles genus because of an unresolved polytomy between Bironella and A. squamifemur.  相似文献   

5.
Phylogenetic relationships between two New World Syrphinae taxa (Diptera, Syrphidae), i.e. the highly diverse genus Ocyptamus and the large genus Toxomerus, were analysed based on molecular characters. The monophyly of both taxa was tested and the taxonomic status of included subgenera and species groups was examined. Toxomerus constitutes the monogeneric tribe Toxomerini with more than 140 described species, while Ocyptamus (tribe Syrphini) is a very diverse genus (over 300 spp.) with multiple recognised subgenera and species groups. Sequence data from three gene regions were used: the mitochondrial protein-coding gene cytochrome c oxidase subunit I (COI) and the nuclear 28S and 18S ribosomal RNA genes. The secondary structure of two expansion segments (D2, D3) of the ribosomal 28S RNA gene is presented for the family Syrphidae and used for the first time in a multiple sequence alignment. Molecular data were analysed using parsimony, maximum likelihood and Bayesian inference. Toxomerus was always recovered as monophyletic within Ocyptamus, and relationships to other New World taxa such as Salpingogaster (Eosalpingogaster) were well-supported. Only the subgenera and species groups of Ocyptamus were consistently recovered as monophyletic lineages, thus the apparent non-monophyly of Ocyptamus demands reclassification of this clade.  相似文献   

6.
We investigated the phylogenetic relationships and estimated the history of species diversification and biogeography in the bufonid genus Ansonia from Southeast Asia, a unique organism with tadpoles adapted to life in strong currents chiefly in montane regions and also in lowland rainforests. We estimated phylogenetic relationships among 32 named and unnamed taxa using 2461 bp sequences of the mitochondrial 12S rRNA, tRNAval, and 16S rRNA genes with equally-weighted parsimony, maximum likelihood, and Bayesian methods of inference. Monophyletic clades of Southeast Asian members of the genus Ansonia are well-supported, allowing for the interpretation of general biogeographic conclusions. The genus is divided into two major clades. One of these contains two reciprocally monophyletic subclades, one from the Malay Peninsula and Thailand and the other from Borneo. The other major clade primarily consists of Bornean taxa but also includes a monophyletic group of two Philippine species and a single peninsular Malaysian species. We estimated absolute divergence times using Bayesian methods with external calibration points to reconstruct the relative timing of faunal exchange between the major landmasses of Southeast Asia.  相似文献   

7.
《Mycological Research》2007,111(2):154-162
Phylogenetic analyses of DNA sequences from protein coding and ribosomal nuclear loci support the placement of a number of marine fungal species associated with a well-supported clade containing fungicolous species of Melanospora and wood inhabiting Coronophorales. Three subclades containing marine species were recovered including Torpedospora radiata plus T. ambispinosa, Swampomyces species plus Juncigena adarca, and two Etheirophora species plus additional Swampomyces species. The monophyly of these three subclades, as well as a subclade containing representatives of Coronophorales and Melanospora, is well supported statistically. However, relationships among the different subclades remain largely unresolved. A sister relationship for this group with Hypocreales is significantly supported by Bayesian and ML methods. In addition to the Halospheariales and Lulworthiales, this clade, which is characterized by considerable morphological and ecological diversity, represents a third major clade of marine Sordariomycetes.  相似文献   

8.
GlyptothoraxBlyth (1860) is the most species-diverse and widely-distributed genus in the Sisoridae, but few studies have examined monophyly of the genus and phylogenetic relations within it. We used the nuclear RAG2 gene and mitochondrial COI and Cyt b genes from 50 of the approximately 70 species to examine monophyly of Glyptothorax and phylogenetic relationships within the genus. Molecular phylogenetic trees were constructed using maximum parsimony, maximum likelihood and Bayesian inference methods. All methods strongly supported monophyly of Glyptothorax, with Bagarius as its sister group. Both analyses of two- and three-gene datasets recovered nine major subclades of Glyptothorax, but some internal nodes remained poorly resolved. The phylogenetic relationships within the genus and existing taxonomic problems are discussed.  相似文献   

9.
Phylogenetic studies addressing relationships among chrysidid wasps have been limited. There are no hypotheses proposed for the Neotropical lineages of Chrysidini other than the classic cladogram published in the 1990s by Kimsey and Bohart. Herein we present a cladistic analysis based on 64 morphological characters coded for 54 species of Chrysidini, 32 of them being Ipsiura and 22 representing Caenochrysis, Chrysis, Exochrysis, Gaullea, Neochrysis, and Pleurochrysis. The species of Ipsiura were recovered as monophyletic and as the sister clade of Neochrysis in all most parsimonious trees. We discuss the high plasticity of some morphological characters as evidenced by their high homoplasy in the phylogenetic results, and we clarify the main morphological changes inferred on the phylogenetic tree for this genus. The effects of the inferred homoplasy were evaluated under an implied weighting cladistic analysis, and from a probabilistic perspective with Bayesian inference. Those alternative strategies did not alter the general conclusions about the monophyly of Ipsiura or the generic relationships in Chrysidini (changes were noticed in the species‐level relationships within certain parts of Ipsiura, where low branch support was common across all approaches). Among the species groups proposed by Linsenmaier (1985), only the marginalis group was recovered as monophyletic. We also evaluated the convoluted biogeographic history of the group. The resulting historical reconstructions indicate a complicated scenario of diversification of these wasps in the Neotropics, and a close association with forested biomes is discussed.  相似文献   

10.
We investigated the phylogeny and biogeographic history of the Holarctic harvestmen genus Sabacon, which shows an intercontinental disjunct distribution and is presumed to be a relatively old taxon. Molecular phylogenetic relationships of Sabacon were estimated using multiple gene regions and Bayesian inference for a comprehensive Sabacon sample. Molecular clock analyses, using relaxed clock models implemented in BEAST, are applied to date divergence events. Biogeographic scenarios utilizing S-DIVA and Lagrange C++ are reconstructed over sets of Bayesian trees, allowing for the incorporation of phylogenetic uncertainty and quantification of alternative reconstructions over time. Four primary well-supported subclades are recovered within Sabacon: (1) restricted to western North America; (2) eastern North American S. mitchelli and sampled Japanese taxa; (3) a second western North American group and taxa from Nepal and China; and (4) eastern North American S. cavicolens with sampled European Sabacon species. Three of four regional faunas (wNA, eNA, East Asia) are thereby non-monophyletic, and three clades include intercontinental disjuncts. Molecular clock analyses and biogeographic reconstructions support nearly simultaneous intercontinental dispersal coincident with the Eocene–Oligocene transition. We hypothesize that biogeographic exchange in the mid-Tertiary is likely correlated with the onset of global cooling, allowing cryophilic Sabacon taxa to disperse within and among continents. Morphological variation supports the divergent genetic clades observed in Sabacon, and suggests that a taxonomic revision (e.g., splitting Sabacon into multiple genera) may be warranted.  相似文献   

11.
Thum  Ryan A. 《Hydrobiologia》2004,519(1-3):135-141
The phylogenetic relationships among the numerous genera of diaptomid copepods remain elusive due to difficulties in obtaining sufficient numbers of phylogenetically informative morphological characters for cladistic analysis. Molecular phylogenetic techniques offer high potential to resolve phylogenetic relationships in the absence of sufficient morphological characters because of the ease in which many characters can be unambiguously coded. I present the first molecular phylogeny for diaptomid copepod genera using 18S rDNA. Specifically, I test Light’s (1939) hypothesis regarding the interrelationships among the North American diaptomid genera. The 18S phylogeny is remarkably consistent with Light’s hypothesis. The endemic North American genera represent a monophyletic group exclusive of the non-endemic genera. Moreover, his hypothesized basal genus for the North America genera, Hesperodiaptomus, is the basal genus in this analysis. However, his Leptodiaptomus group is not reciprocally monophyletic with his Hesperodiaptomus group, but is rather a derived member of the latter group. Finally, the genus Mastigodiaptomus is found to be more closely allied with the non-endemic genera, as Light suggested. This phylogeny contributes heavily to the understanding of phylogenetic relationships among North American diaptomids and has large implications for the systematics of diaptomids in general. The use of 18S rDNA sequences in phylogenetic analyses of diaptomid copepods can be used to confirm the monophyly of recognized genera, the interrelationships among genera, and subsequent biogeographic interpretation of the family’s diversification. The use of molecular data, such as 18S rDNA sequences, to test phylogenetic hypotheses based on a very limited number of morphological characters will be a particularly useful approach to phylogenetic analysis in this system.  相似文献   

12.
In this study, we used sequences of two mitochondrial genes, cytochrome c oxidase I (COI) and 16S rRNA, and one nuclear gene, 28S rRNA, to test the monophyly of the sea star genus Echinaster, and understand the phylogenetic relationships among species and subgenera within this genus. Phylogenetic analyses based on Bayesian inference and maximum likelihood methods revealed three clades with high values of genetic divergence among them (K2P distances for COI over 23%). One of the clades grouped all Echinaster (Othilia) species, and the other two clades included Echinaster (non‐Othilia) species and Henricia species, respectively. Although the relationships among Henricia, Othilia, and Echinaster could not be completely clarified, the Othilia clade was a well‐supported group with shared diagnostic morphological characters. Moreover, the approximately unbiased test applied to the phylogenetic reconstruction rejected the hypothesis of the genus Echinaster as a monophyletic group. According to these results, we suggest the revalidation of Othilia as a genus instead of a subgenus within Echinaster. Our study clarifies important points about the phylogenetic relationships among species of Echinaster. Other important systematic questions about the taxonomic classification of Echinaster and Henricia still remain open, but this molecular study provides bases for future research on the topic.  相似文献   

13.
The phylogeny of the family Sciaridae is reconstructed, based on maximum likelihood, maximum parsimony, and Bayesian analyses of 4809 bp from two mitochondrial (COI and 16S) and two nuclear (18S and 28S) genes for 100 taxa including the outgroup taxa. According to the present phylogenetic analyses, Sciaridae comprise three subfamilies and two genus groups: Sciarinae, Chaetosciara group, Cratyninae, and Pseudolycoriella group + Megalosphyinae. Our molecular results are largely congruent with one of the former hypotheses based on morphological data with respect to the monophyly of genera and subfamilies (Sciarinae, Megalosphyinae, and part of postulated “new subfamily”); however, the subfamily Cratyninae is shown to be polyphyletic, and the genera Bradysia, Corynoptera, Leptosciarella, Lycoriella, and Phytosciara are also recognized as non-monophyletic groups. While the ancestral larval habitat state of the family Sciaridae, based on Bayesian inference, is dead plant material (plant litter + rotten wood), the common ancestors of Phytosciara and Bradysia are inferred to living plants habitat. Therefore, shifts in larval habitats from dead plant material to living plants may have occurred within the Sciaridae at least once. Based on the results, we discuss phylogenetic relationships within the family, and present an evolutionary scenario of development of larval habitats.  相似文献   

14.
The Neotropical broad-nosed bats, genus Platyrrhinus, represent a well-defined monophyletic group of 14 recognized species. A recent study of morphological characters confirmed Platyrrhinus monophyly and species diagnosis, but offered little support to their intra-specific relationships. We conducted phylogenetic analyses of the genus, using dense taxonomic sampling in combination with four gene sequences representing both mitochondrial and nuclear DNA transmission systems. Our aim was to elucidate the phylogenetic structure among species, using the resulting 3341 bp of DNA. Maximum parsimony, maximum likelihood, and Bayesian inference analyses produced similar topologies that confirm the monophyly of the genus Platyrrhinus and strongly support many previously unrecognized groups. Paraphyly of Platyrrhinus helleri and the unclear position of P. brachycephalus in the clades were also apparent in the data. Our biogeographical analysis suggests a Brazilian Shield origin for Platyrrhinus, followed by subsequent radiations of lineages in the Amazon Basin and Andes. Secondary dispersal from Amazonian and Andean centers is responsible for the Platyrrhinus inhabiting the Guianan Shield and the Pacific lowlands and Central America, respectively.  相似文献   

15.
The genus Jesogammarus contains 16 species in two subgenera, Jesogammarus and Annanogammarus. To examine relationships among species in the genus, a molecular phylogenetic study including eight species of the former subgenus and four of the latter was conducted using partial DNA sequences of the mitochondrial COI and 12S rRNA genes. MP, NJ, and ML trees based on the combined COI and 12S data indicated monophyly of the subgenus Annanogammarus, though the monophyly of Jesogammarus was left unresolved. Consistent with few morphological differences, Jesogammarus (A.) naritai and J. (A.) suwaensis showed low genetic differentiation and did not show reciprocal monophyly, which suggests a close affinity of these taxa.  相似文献   

16.
The genus Ixchela Huber is composed of 20 species distributed from north‐eastern Mexico to Central America, including the five new species described here from Mexico: I xchela azteca sp. nov. , I xchela jalisco sp. nov. , I xchela mendozai sp. nov. , I xchela purepecha sp. nov. and I xchela tlayuda sp. nov. We test the monophyly and investigate the phylogenetic relationships among species of the genus Ixchela using morphological and molecular data. Parsimony (PA) analysis of 24 taxa and 40 morphological characters with equal and implied weights supported the monophyly of Ixchela with eight morphological synapomorphies. The PA analyses with equal and implied weights, and separate Bayesian inference (BI) analyses for the CO1 gene (506 characters), concatenated gene fragments CO1 + 16S (885 characters), morphology + CO1 (546 characters) and the combined evidence data set (morphology + CO1 + 16S) (925 characters) support the monophyly of Ixchela. Our preferred topology shows two large clades; clade 1 has a natural distribution in the Mesoamerican biotic component, whereas clade 2 predominates in the Mexican Montane biotic component. The genus Ixchela diverged in the late Miocene, and the divergence between the internal clades in the genus occurred in the late Pliocene; by contrast, most of the speciation events seem to have occurred mainly during the Pleistocene, where climatic changes brought on by repeated glaciations played an important role in the diversification of the genus. © 2015 The Linnean Society of London  相似文献   

17.
Abstract. The ant subfamily Pseudomyrmecinae comprises three genera of hyperoptic, arboreal ants, widely distributed in tropical and subtropical regions: Pseudomyrmex (∼200 species, New World), Myrcidris (two species, South America) and Tetraponera (∼100 species, Palaeotropics). The phylogenetic relationships among these ants were investigated using DNA sequence data (∼5.2 kb from 18S rDNA, 28S rDNA, wingless, abdominal-A, and long-wavelength rhodopsin genes) and 144 morphological characters, both separately and in combination. Data were gathered from a representative set of forty-nine pseudomyrmecine species, plus eighteen species from various outgroups. There was substantial agreement among the results obtained from different datasets, and from different methods of phylogenetic inference (parsimony, Bayesian inference). The monophyly of the following groups is strongly supported (100% bootstrap support and 1.00 posterior probability in the molecular dataset): Pseudomyrmecinae, Pseudomyrmex, and Pseudomyrmex + Myrcidris. The status of the genus Tetraponera is less clear: the DNA sequence data indicate that the genus is paraphyletic, but morphological features and a unique insertion in the 28S gene support the monophyly of this taxon. Seven of nine Pseudomyrmex species groups, established previously on the basis of morphology alone, are strongly upheld, but monophyly is rejected for the P. pallens group and the P. viduus group. In the latter case, molecular evidence indicates the existence of two independent clades, associated with the ant-plants Triplaris and Tachigali, respectively, whose convergent morphological features had caused them to be placed erroneously in the same species group. The present results confirm an earlier assertion that obligate associations with domatia-bearing plants have arisen at least twelve times in the subfamily. Molecular and morphological data support the hypothesis of a sister-group relationship between Pseudomyrmecinae and Myrmeciinae (84% parsimony bootstrap, combined dataset), which implies a Cretaceous origin of the stem-group pseudomyrmecines in the southern hemisphere. Pseudomyrmecines appear to have arisen in the Palaeotropics and later dispersed from Africa to South America, where they experienced a pronounced burst of diversification.  相似文献   

18.
Euphrasia includes perennial or annual green parasitic plants, and has a disjunct bipolar distribution except for one transtropical connection across the high mountains of Oceania. The disjunction is coupled with strikingly contrasting patterns of morphological diversity between the southern and northern hemispheres, making it an exciting model to study processes of evolutionary diversification which shaped present floras. We inferred the relationships among 51 species representing 14 of the 15 sections of the genus based on nrDNA ITS and cpDNA trnL intron, trnL-trnF and atpB-rbcL intergenic spacers. Maximum parsimony and Bayesian inference support monophyly of the genus and of several intrageneric groups characterized by morphology, ploidy level, and geographic range. Molecular phylogenetic dating using Bayesian “relaxed” clock methods suggests that the earliest Euphrasia radiations occurred minimum 11–8 Mya with bipolarity being achieved 7–5 Mya. Biogeographic analyses using explicit model-based approach inferred Eurasia as an ancestral area for the genus. The most parsimonious reconstruction found by a dispersal-vicariance analysis requires 17 dispersals to account for the current biogeographic pattern and supports Eurasian origin for Euphrasia. Both long-distance dispersal and across land vicariance can be invoked to explain the diversification in the genus, which experienced rapid radiations driven by new ecological opportunities of the late Pliocene and Pleistocene but also retained a set of local endemic or relict species of an earlier origin.  相似文献   

19.
Cognato, A. I., Hulcr, J., Dole, S. A. & Jordal, B. H. (2010). Phylogeny of haplo‐diploid, fungus‐growing ambrosia beetles (Curculionidae: Scolytinae: Xyleborini) inferred from molecular and morphological data. —Zoologica Scripta, 40, 174–186. The ambrosia beetle tribe Xyleborini currently contains 30 genera and approximately 1200 species which are distributed throughout worldwide forests with most diversity located in the tropics. They also represent the most invasive scolytines in North America. Despite economic concerns and biological curiosity with this group, a comprehensive understanding of generic boundaries and the evolutionary relationship among species is lacking. In this study, we include 155 xyleborine species representing 23 genera in parsimony and Bayesian analyses using 3925 nucleotides from mitochondrial (COI) and nuclear genomes (28S, ArgK, CAD, EF‐1α) and 39 morphological characters. The phylogenies resulting from the parsimony analyses, which treated gap positions either as missing or fifth character states, and the Bayesian analysis were generally similar. Clades with high support or posterior probabilities were found in all trees, while those with low support were not recovered by all analyses. Fourteen of the 23 genera were monophyletic although not all relationships among the genera were resolved. We show monophyly of several species groups associated with particular morphological and biological characters and suggest recognition of these groups as genera. Most interesting was the monophyly of South and Central American species representing several genera. This finding suggests recent and fast radiation of xyleborines in the New World accompanied by morphological and biological diversification.  相似文献   

20.
? Premise of the study: Dryopteris is a large, cosmopolitan fern genus ideal for addressing questions about diversification, biogeography, hybridization, and polyploidy, which have historically been understudied in ferns. We constructed a highly resolved, well-supported phylogeny for New World Dryopteris and used it to investigate biogeographic patterns and divergence times. ? Methods: We analyzed relationships among 97 species of Dryopteris, including taxa from all major biogeographic regions, with analyses based on 5699 aligned nucleotides from seven plastid loci. Phylogenetic analyses used maximum parsimony, maximum likelihood, and Bayesian inference. We conducted divergence time analyses using BEAST and biogeographic analyses using maximum parsimony, maximum likelihood, Bayesian, and S-DIVA approaches. We explored the monophyly of subgenera and sections in the most recent generic classification and of geographic groups of taxa using Templeton tests. ? Key results: The genus Dryopteris arose ca. 42 million years ago (Ma). Most of the Central and South American species form a well-supported clade which arose 32 Ma, but the remaining New World species are the result of multiple, independent dispersal and vicariance events involving Asia, Europe, and Africa over the last 15 Myr. We identified six long-distance dispersal events and three vicariance events in the immediate ancestry of New World species; reconstructions for another four lineages were ambiguous. ? Conclusions: New World Dryopteris are not monophyletic; vicariance has dominated the history of the North American species, while long-distance dispersal prevails in the Central and South American species, a pattern not previously seen in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号