首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
为了鉴定pucBA基因表达受氧调控的顺式调节位点,通过PCR和多聚核苷酸定点、突变的体外操作,在puc转录子5'上游非编码区产生了7个不同突变和5个不同10bP缺失序列。构建了含有各种顺式突变的puc上游区、puc启动子和报告基因lacZ的转录融合子。通过融合子β-半乳糖苷酶活性分析,发现位于puc启动子上游二元对称结构的突变使得puc基因在有氧条件下去阻遏表达。IHF束缚位点的突变可使β-半乳糖苷酶活性提高。  相似文献   

2.
The atpHAGDC operon of Rhodobacter capsulatus, containing the five genes coding for the F1 sector of the ATP synthase, has been cloned and sequenced. The promoter region has been defined by primer extension analysis. It was not possible to obtain viable cells carrying atp deletions in the R. capsulatus chromosome, indicating that genes coding for ATP synthase are essential, at least under the growth conditions tested. We were able to circumvent this problem by combining gene transfer agent transduction with conjugation. This method represents an easy way to construct strains carrying mutations in indispensable genes.  相似文献   

3.
4.
5.
6.
The genome of Rhodobacter capsulatus has been completely sequenced. It consists of a single chromosome containing 3.5 Mb and a circular plasmid of 134 kb. This effort, started in 1992, began with a fine-structure restriction map of an overlapping set of cosmids that covered the genome. Cosmid sequencing led to a gapped genome that was filled by primer walking on the chromosome and by using lambda clones. Methods had to be developed to handle strong stops in the high GC (68%) inserts. Annotation was done with the ERGO system at Integrated Genomics, as was the reconstruction of the cell's metabolism. It was possible to recognize 3709 orfs of which functional assignments could be made with high confidence to 2392 (65%). Unusual features include the presence of numerous cryptic phage genomes embedded in the chromosome. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
The primary structure of the integral membrane protein porin from the purple bacterium Rhodobacter capsulatus was determined. The protein was cleaved with trypsin, CNBr and Asp-N protease. The peptides were isolated, sequenced and aligned to a total length of 301 residues with an Mr of 31,536. The low isoelectric point of 3.9 is confirmed by the high excess of 34 Asp and 17 Glu (16.9%) over 10 Lys, 7 Arg and 2 His (6.3%). Overall sequence similarity to other porins is not evident when using sequence alignment programs. However, a partial relationship to Neisseria porins seems to exist. The established sequence has been used as the basis for a three-dimensional structure determination by X-ray diffraction at 0.18-nm resolution. The arrangement of the sequence in the 16-stranded beta-barrel of porin is given. Some sequence-structure correlations are discussed.  相似文献   

8.
Rhodobacter capsulatus (formerly Rhodopseudomonas capsulata) could be cured of R plasmids of the P1 incompatibility group, including derivatives used as cloning vectors, by repeated subculturing in a growth medium containing only yeast extract and peptone (YP medium). Loss of R plasmid material from the cells was complete, as shown by agarose gel electrophoresis, and by the absence of hybridization between total DNA and radioactively labelled R plasmid DNA. Prolonged subculturing in YP medium often resulted in the accumulation of auxotrophs, and led to the appearance of strains containing chromosomal insertions of plasmid DNA.  相似文献   

9.
The phototrophic bacterium Rhodobacter capsulatus E1F1 detoxifies 2,4-dinitrophenol by inducing an NAD(P)H-dependent iron flavoprotein that reduces this compound to the less toxic end product 2-amino-4-nitrophenol. This nitrophenol reductase was stable in crude extracts containing carotenes, but it became rapidly inactivated when purified protein was exposed to intense white light or moderate blue light intensities, especially in the presence of exogenous flavins. Red light irradiation had no effect on nitrophenol reductase activity. Photoinactivation of the enzyme was irreversible and increased under anoxic conditions. This photoinactivation was prevented by reductants such as NAD(P)H and EDTA and by the excited flavin quencher iodide. Addition of superoxide dismutase, catalase, tryptophan or histidine did not affect photoinactivation of nitrophenol reductase, thus excluding these reactive dioxygen species as the inactivating agent. Substantial protection by 2,4-dinitrophenol also took place when the enzyme was irradiated at a wavelength coinciding with one of the absorption peaks of this compound (365nm). These results suggest that the lability of nitrophenol reductase was due to the absorption of blue light by the flavin prosthetic group, thus producing an excited flavin that might irreversibly oxidize some functional group(s) necessary for enzyme catalysis. Nitrophenol reductase may be preserved in vivo from blue light photoinactivation by the high content of carotenes and excess of reducing equivalents in phototrophic growing cells.Abbreviations 2,4-DNP 2,4-dinitrophenol - ANP 2-amino-4-nitrophenol - EDTA ethylenediamine tetraacetic acid - MES 2-(N-Morpholino) ethanesulfonic acid - NPR nitrophenol reductase  相似文献   

10.
The ammonium uptake system of Rhodobacter capsulatus B100 was examined using the ammonium analog methylammonium. This analog was not transported when cells were grown aerobically on ammonium. When cultured on glutamate as a nitrogen source, or when nitrogen-starved, cells would take up methylammonium. Therefore, in cells grown under nitrogen-limiting conditions, a second system of ammonium uptake (or a modified form of the first) is present which is distinguished by its capacity for transporting the analog in addition to ammonium. The methylammonium uptake system exhibited saturation kinetics with a K m of 22 M and a V max of about 3 nmol per min · mg protein. Ammonium completely inhibited analog transport with a K i in the range of 1 M. Once inside the cell methylammonium was rapidly converted to -N-methylglutamine; however, a small concentration gradient of methylammonium could still be observed. Kinetic parameters reflect the effects of assimilation.The methylammonium uptake system was temperature and pH dependent, and inhibition studies indicated that energy was required for the system to be operative. A glutamine auxotroph (G29) lacking the structural gene for glutanime synthetase did not accumulate the analog, even when nitrogen starved. The Nif- mutant J61, which is unable to express nitrogenase structural genes, also did not transport methylammonium, regardless of the nitrogen source for growth. However, the mutant exhibited wild-type ammonium uptake and glutamine synthetase activity. These data suggest that transport of ammonium is required for growth on limited nitrogen and is under the control of the Ntr system in R. capsulatus.Abbreviations CCCP carbonyl cyanide-m-chlorophenyl hydrazone - CHES cyclohexylaminoethanesulfonic acid - DMSO dimethyl sulfoxide - GMAD -N-methylglutamine - GS glutamine synthetase - MES 2-(N-morpholino) ethanesulfonic acid - MSX methionine-Dl-sulfoximine - pCMB p-chloromercuribenzoate - Tricine N-tris(hydroxymethyl)methylglycine  相似文献   

11.
Electrochemically driven catalysis of the bacterial enzyme dimethyl sulfoxide (DMSO) reductase (Rhodobacter capsulatus) has been studied using the macrocyclic complex (trans-6,13-dimethyl-1,4,8,11-tetraazacyclotetradecane-6,13-diamine)cobalt(III) as a mediator. In the presence of both DMSO and DMSO reductase, the normal transient CoIII/II voltammetric response of the complex is transformed into an amplified and sigmoidal (steady-state) waveform characteristic of a catalytic EC′ mechanism. At low concentrations of DMSO (approximately K M) or high mediator concentrations (more than the concentration of DMSO reductase), the steady-state character of the voltammetric response disappears and is replaced by more complicated waveforms that are a convolution of transient and steady-state behavior as different steps within the catalytic cycle become rate limiting. Through digital simulation of cyclic voltammetry performed under conditions where the sweep rate, DMSO concentration, DMSO reductase concentration and mediator concentration were varied systematically, we were able to model all voltammograms with a single set of rate and equilibrium constants which provide new insights into the kinetics of the DMSO reductase catalytic mechanism that have hitherto been inaccessible from steady state or stopped flow kinetic studies.
Paul V. BernhardtEmail:
  相似文献   

12.
Siemann S  Schneider K  Oley M  Müller A 《Biochemistry》2003,42(13):3846-3857
In the phototrophic non-sulfur bacterium Rhodobacter capsulatus, the biosynthesis of the conventional Mo-nitrogenase is strictly Mo-regulated. Significant amounts of both dinitrogenase and dinitrogenase reductase were only formed when the growth medium was supplemented with molybdate (1 microM). During cell growth under Mo-deficient conditions, tungstate, at high concentrations (1 mM), was capable of partially (approximately 25%) substituting for molybdate in the induction of nitrogenase synthesis. On the basis of such conditions, a tungsten-substituted nitrogenase was isolated from R. capsulatus with the aid of anfA (Fe-only nitrogenase defective) mutant cells and partially purified by Q-sepharose chromatography. Metal analyses revealed the protein to contain an average of 1 W-, 16 Fe-, and less than 0.01 Mo atoms per alpha(2)beta(2)-tetramer. The tungsten-substituted (WFe) protein was inactive in reducing N(2) and marginally active in acetylene reduction, but it was found to show considerable activity with respect to the generation of H(2) from protons. The EPR spectrum of the WFe protein, recorded at 4 K, exhibited three distinct signals: (i) an S = 3/2 signal, which dominates the low-field region of the spectrum (g = 4.19, 3.93) and is indicative of a tungsten-substituted cofactor (termed FeWco), (ii) a marginal S = 3/2 signal (g = 4.29, 3.67) that can be attributed to residual amounts of FeMoco present in the protein, and (iii) a broad S = 1/2 signal (g = 2.09, 1.95, 1.86) arising from at least two paramagnetic species. Redox titrational analysis of the WFe protein revealed the midpoint potential of the FeWco (E(m) < -200 mV) to be shifted to distinctly lower potentials as compared to that of the FeMoco (E(m) approximately -50 mV) present in the native enzyme. The P clusters of both the WFe and the MoFe protein appear indistinguishable with respect to their midpoint potentials. EPR spectra recorded with the WFe protein under turnover conditions exhibited a 20% decrease in the intensity of the FeWco signal, indicating that the cofactor can be enzymatically reduced only to a small extent. The data presented in the current study demonstrate the pivotal role of molybdenum in optimal N(2) fixation and provides direct evidence that the inability of a tungsten-substituted nitrogenase to reduce N(2) is due to the difficulty to effectively reduce the FeW cofactor beyond its semi-reduced state.  相似文献   

13.
Mo K-edge X-ray absorption spectroscopy (XAS) has been used to probe the environment of Mo in dimethylsulfoxide (DMSO) reductase from Rhodobacter capsulatus in concert with protein crystallographic studies. The oxidised (MoVI) protein has been investigated in solution at 77?K; the Mo K-edge position (20006.4?eV) is consistent with the presence of MoVI and, in agreement with the protein crystallographic results, the extended X-ray absorption fine structure (EXAFS) is also consistent with a seven-coordinate site. The site is composed of one oxo-group (Mo=O 1.71?Å), four S atoms (considered to arise from the dithiolene groups of the two molybdopterins, two at 2.32?Å and two at 2.47?Å, and two O atoms, one at 1.92?Å (considered to be H-bonded to Trp 116) and one at 2.27?Å (considered to arise from Ser 147). The Mo K-edge XAS recorded for single crystals of oxidised (MoVI) DMSO reductase at 77?K showed a close correspondence to the data for the frozen solution but had an inferior signal:noise ratio. The dithionite-reduced form of the enzyme and a unique form of the enzyme produced by the addition of dimethylsulfide (DMS) to the oxidised (MoVI) enzyme have essentially identical energies for the Mo K-edge, at 20004.4?eV and 20004.5?eV, respectively; these values, together with the lack of a significant presence of MoV in the samples as monitored by EPR spectroscopy, are taken to indicate the presence of MoIV. For the dithionite-reduced sample, the Mo K-edge EXAFS indicates a coordination environment for Mo of two O atoms, one at 2.05?Å and one at 2.51?Å, and four S atoms at 2.36?Å. The coordination environment of the Mo in the DMS-reduced form of the enzyme involves three O atoms, one at 1.69?Å, one at 1.91?Å and one at 2.11?Å, plus four S atoms, two at 2.28?Å and two at 2.37?Å. The EXAFS and the protein crystallographic results for the DMS-reduced form of the enzyme are consistent with the formation of the substrate, DMSO, bound to MoIV with an Mo-O bond of length 1.92?Å.  相似文献   

14.
Abstract Repeated subculturing of Rhodobacter capsulatus strain BK5 under phototrophic conditions on a medium containing butyrate and nitrate led to the appearance of cultures that, unlike the original, produced gas. Isolation of a pure culture of the gas-forming organism revealed that it was a derivative of R. capsulatus BK5 that by virtue of expressing a nitrite reductase can catalyse the complete sequence of the denitrification reactions. The nitrite reductase is of the type that contains copper rather than haem.  相似文献   

15.
16.
A ferredoxin was purified anaerobically from Rhodobacter capsulatus grown photoheterotrophically with excess ammonia. This ferredoxin, called ferredoxin II (FdII), had a molecular weight of approximatively 15,000 by gel filtration and 14,000 by SDS polyacrylamide gel electrophoresis indicating that it is monomeric. Its absorption spectrum (oxidized form) exhibited maxima at 280 nm and 400 nm; the A400/A280 ratio had a calculated value of 0.55. Chemical determination of its iron and sulfur atom content, the value of the extinction coefficient at 400 nm (epsilon 400 = 26.8 mM-1 cm-1) and EPR spectra indicated that ferredoxin II contained one [3Fe-4S] and one [4Fe-4S] cluster. Upon reduction with excess dithionite only the [3Fe-4S] cluster became reduced. The reduction of both clusters was achieved by using 5-deazaflavin as photocatalyst. Ferredoxin II was also purified from bacteria grown under nitrogen limiting (nif derepressing) conditions. In in vitro assays, ferredoxin II catalyzed electron transport between illuminated chloroplasts and nitrogenase.  相似文献   

17.
Porin monomers of the phototrophic bacterium Rhodobacter capsulatus were purified. Crystals were obtained from a solution of porin solubilized with the detergent octyltetraoxyethylene within 5 days using the vapor phase equilibration technique. The crystals were rhombohedral with an edge length of 0.4 mm. The space group was trigonal R3 with unit cell constants of a = b = 95 A, c = 147 A. Reflexions were observed to 3.2 A.  相似文献   

18.
Boyd JM  Ensign SA 《Biochemistry》2005,44(23):8543-8553
Acetone carboxylase catalyzes the carboxylation of acetone to acetoacetate with concomitant hydrolysis of ATP to AMP and two inorganic phosphates. The biochemical, molecular, and genetic properties of acetone carboxylase suggest it represents a fundamentally new class of carboxylase. As the initial step in catalysis, an alpha-proton from an inherently basic (pK(a) = 20) methyl group is abstracted to generate the requisite carbanion for attack on CO(2). In the present study alpha-proton abstraction from acetone has been investigated by using gas chromatography/mass spectrometry to follow proton-deuteron exchange between D(6)-acetone and water. Acetone carboxylase-catalyzed proton-deuteron exchange was dependent upon the presence of ATP, Mg(2+), and a monovalent cation (K(+), Rb(+), NH(4)(+)), and produced mixtures of isotopomers, ranging from singly exchanged H(1)D(5)- to fully exchanged H(6)-acetone. The initial rate of isotopic exchange was higher than k(cat) for acetone carboxylation. The time course of isotopic exchange showed that multiple exchange events occur for each acetone-binding event, and there was a 1:1 stoichiometric relationship between molecules of ATP hydrolyzed and the sum of new acetone isotopomers formed. ADP rather than AMP was formed as the predominant product of ATP hydrolysis during isotopic exchange. The stimulation of H(+)(-)D(+) exchange and ATP hydrolysis by K(+) followed saturation kinetics, with apparent K(m) values of 13.6 and 14.2 mM for the two activities, respectively. The rate of H(+) exchange into D(6)-acetone was greater than the rate of D(+) exchange into H(6)-acetone. There was an observable solvent (H(2)O vs D(2)O) isotope effect (1.7) for acetone carboxylation but no discernible substrate (H(6)- vs D(6)-acetone) isotope effect. It is proposed that alpha-proton abstraction from acetone occurs in concert with transfer of the gamma-phosphoryl group of ATP to the carbonyl oxygen, generating phosphoenol acetone as the activated nucleophile for attack on CO(2).  相似文献   

19.
20.
Portions of the Rhodobacter capsulatus hemA gene have been cloned from a hemA::Tn5 insertion strain into the lambda bacteriophage derivative EMBL3. A cosmid containing the wild-type R. capsulatus hemA gene was isolated by complementation of the hemA::Tn5 mutant. The cosmid contains a 1.4-kilobase EcoRI fragment that spans the hemA::Tn5 insertion site. The entire hemA gene is contained in this fragment and the adjacent 0.6-kilobase EcoRI fragment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号