首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ceramide-1-phosphate (C1P) is emerging as a new addition to the family of bioactive sphingolipid metabolites. At low concentrations, C1P enhanced survival of NIH 3T3 fibroblasts and A549 lung cancer cells, while at high concentrations, it reduced survival and induced apoptosis. Apoptosis correlated with degradation of C1P to pro-apoptotic ceramide. To examine the role of endogenous C1P, expression of ceramide kinase, the enzyme that produces C1P, was downregulated, which reduced cellular proliferation, progression into S phase and enhanced apoptosis induced by serum starvation. Our results suggest that ceramide kinase determines the balance between pro-apoptotic ceramide and anti-apoptotic C1P to regulate cell fate, reminiscent of its function in plants.  相似文献   

2.
3.
Whilst the role of ceramide, a second messenger of the sphingolipid family, in the initiation of receptor-mediated apoptosis is controversial, a growing body of evidence is emerging for a role of ceramide in the amplification of apoptosis via mitochondrial perturbations that culminate in the activation of execution caspases. Treatment of Jurkat T cells with the cell-permeable analog, C2-ceramide, resulted in the rapid onset of apoptosis as evidenced by Annexin V-FITC staining of externalised phosphatidylserine residues. Cells bearing this early apoptotic marker had a reduced mitochondrial transmembrane potential (m) that was preceded by the release of cytochrome c from mitochondria. Subsequent activation of caspase-3 provides the link between these ceramide-induced mitochondrial changes and execution caspases that ultimately result in the physical destruction of the cell. Collectively these results demonstrate that ceramide signalling results in caspase-mediated apoptosis via mitochondrial cytochrome c release and are further supportive of the role of ceramide in the amplification of apoptosis.  相似文献   

4.
5.

Background

Dihydroartemisinin (DHA), a semi-synthetic derivative of artemisinin, isolated from the traditional Chinese herb Artemisia annua, is recommended as the first-line anti-malarial drug with low toxicity. DHA has been shown to possess promising anticancer activities and induce cancer cell death through apoptotic pathways, although the molecular mechanisms are not well understood.

Methods

In this study, cell counting kit (CCK-8) assay was employed to evaluate the survival of DHA-treated ASTC-a-1 cells. The induction of apoptosis was detected by Hoechst 33258 and PI staining as well as flow cytometry analysis. Collapse of mitochondrial transmembrane potential (ΔΨm) was measured by dynamic detection under a laser scanning confocal microscope and flow cytometry analysis using Rhodamine123. Caspase-3 activities measured with or without Z-VAD-fmk (a broad spectrum caspase inhibitor) pretreatment by FRET techniques, caspase-3 activity measurement, and western blotting analysis.

Results

Our results indicated that DHA induced apoptotic cell death in a dose- and time-dependent manner, which was accompanied by mitochondrial morphology changes, the loss of ΔΨm and the activation of caspase-3.

Conclusion

These results show for the first time that DHA can inhibit proliferation and induce apoptosis via caspase-3-dependent mitochondrial death pathway in ASTC-a-1 cells. Our work may provide evidence for further studies of DHA as a possible anticancer drug in the clinical treatment of lung adenocarcinoma.  相似文献   

6.
Previously we found that 3,4-(methylenedioxy)-1-(2',3'-epoxypropyl)-benzene (safrole oxide) induced a typical apoptosis in A549 human lung cancer cells. In this study, we further investigated which caspases were activated by safrole oxide during the apoptosis. The data showed that the activity of caspase-3, -8, and -9 was significantly enhanced by the compound, which suggested that safrole oxide might be used as a caspase promoter to initiate lung cancer cell apoptosis.  相似文献   

7.
The gene for proteasome subunit alpha type-7 (PSMA7) is located in chromosomal 20q13.33, a region frequently amplified in tumor. In this study, we employed A549 human lung adenocarcinoma cells and showed that PSMA7 inhibits the proliferation, tumorigenicity and invasion of A549 cells in vitro. Moreover, both gain and loss of function studies demonstrated that PSMA7 modulates the tumorigenicity of A549 cells in a xenograft nude mice model. In conclusion, these results identify inhibitory effects associated with PSMA7 that affect the tumorigenicity of A549 cells, suggesting PSMA7 as a potential tumor biomarker.  相似文献   

8.
Ceramide induces neuronal apoptosis through the caspase-9/caspase-3 pathway   总被引:9,自引:0,他引:9  
C(2)-ceramide, a cell-permeable analog of ceramide, caused cell death in cultured rat cortical neuronal cells. C(2)-ceramide-induced neuronal loss was accompanied by upregulation of caspase-3 activity, measured by cleavage of its fluorogenic substrate Ac-DEVD-AMC. Similar results were obtained when cortical neuronal cultures were treated with sphingomyelinase, an enzyme responsible for ceramide formation in the cell. Morphological evaluation of C(2)-ceramide-treated cortical neurons showed nuclear condensation and fragmentation as visualized by Hoechst 33258 staining. Co-administration of the selective caspase-3 inhibitor z-DEVD-fmk or caspase-9 inhibitor z-LEHD-fmk significantly reduced C(2)-ceramide-induced cell death, while co-application of the caspase-8, inhibitor z-IETD-fmk, was without effect. Immunoblot analysis of protein extracts from C(2)-ceramide-treated cortical neuronal cultures revealed upregulation of active caspase-9 and caspase-3 protein levels, whereas presence of active caspase-8 immunoreactivity was undetectable in this system. Administration of C(2)-ceramide to SH-SY5Y human neuroblastoma cells also caused apoptotic cell death. Moreover, ceramide-induced cell death was significantly decreased in caspase-9 dominant-negative SH-SY5Y cells, while both caspase-8 dominant-negative cultures and mock-transfected cells showed equally high levels of cell death following C(2)-ceramide treatment. Taken together, these data suggest that neuronal death induced by ceramide may be linked to the caspase-9/caspase-3 regulated intrinsic pathway of cellular apoptosis.  相似文献   

9.
Non-small cell lung cancer (NSCLC) A549 cells are resistant to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. Therefore, combination therapy using sensitizing agents to overcome TRAIL resistance may provide new strategies for treatment of NSCLC. Here, we investigated whether lithium chloride (LiCl), a drug for mental illness, could sensitize A549 cells to TRAIL-induced apoptosis. We observed that LiCl significantly enhanced A549 cells apoptosis through up-regulation of death receptors DR4 and DR5 and activation of caspase cascades. In addition, G2/M arrest induced by LiCl also contributed to TRAIL-induced apoptosis. Concomitantly, LiCl strongly inhibited the activity of c-Jun N-terminal kinases (JNKs), and the inhibition of JNKs by SP600125 also induced G2/M arrest and augmented cell death caused by TRAIL or TRAIL plus LiCl. However, glycogen synthase kinase-3β (GSK3β) inhibition was not involved in TRAIL sensitization induced by LiCl. Collectively, these findings indicated that LiCl sensitized A549 cells to TRAIL-induced apoptosis through caspases-dependent apoptotic pathway via death receptors signaling and G2/M arrest induced by inhibition of JNK activation, but independent of GSK3β.  相似文献   

10.
11.
Based on our recent findings that resveratrol, a natural plant polyphenol found in red grape skins as well as other food products, induces apoptosis via a caspase-independent intrinsic pathway in human lung adenocarcinoma cells, this study is designed to explore whether SB203580, a p38 inhibitor, potentiates the resveratrol-induced apoptosis of human lung adenocarcinoma (A549) cells. We found that pretreatment with SB203580 enhanced the resveratrol-induced apoptosis by accelerating the intrinsic apoptotic pathway including Bax activation, loss of mitochondrial membrane potential, and activation of both caspase-9 and -3. Although treatment with resveratrol alone did not induce caspase-8 activation, cotreatment with both SB203580 and resveratrol not only enhanced FasL cleavage but also activated caspase-8, indicating that the extrinsic apoptotic pathway may be involved in the synergistic effect. Collectively, we for the first time demonstrate that SB203580 synergistically enhances the resveratrol-induced apoptosis by accelerating Bax-mediated intrinsic pathway and initiating extrinsic pathway, suggesting a possible alternative therapeutic strategy for human lung cancer.  相似文献   

12.
The role of individual eicosanoids of the arachidonic acid (AA) cascade in the growth control of A549 human lung adenocarcinoma cells has been studied. Cyclooxygenase and lipoxygenase metabolites of [14C]AA incorporated were actively synthesized in the cultures of tumor cells with full confluence unaccomplished. In such cultures inhibitors of AA metabolism (indomethacin and esculetin) and also a lipoxygenase metabolite of AA, 15-hydroxyeicosatetraenoic acid (15-HETE), significantly suppressed the incorporation of [3H]thymidine and biosynthesis of prostaglandin E2(PGE2). Other lipoxygenase metabolites of AA (5-HETE and 12-HETE) had no effect on these parameters. The basic fibroblast growth factor (bFGF) had practically no affect on the growth of A549 cells and the PGE2 production in cultures with 5% fetal calf serum (FCS); however, in the presence of 0.5% FCS this factor significantly increased the number of tumor cells. The growth-stimulating effect of bFGF was completely abolished by a cyclooxygenase inhibitor indomethacin. The data suggest a key role of PGE2 in the growth control of A549 cells with an active synthesis of cyclooxygenase and lipoxygenase metabolites of AA, its importance in realization of the mitogenic effect of bFGF, and specific features of 15-HETE as a down-regulator of the PGE2-dependent proliferation.  相似文献   

13.
RGD motif-containing peptides have been used in various studies of cell adhesion and growth. We report that RGD triggered apoptosis at a concentration of 1 mmol/L, whereas RAD-containing peptides failed to induce apoptosis in HL-60 cells. RGD-treated cells revealed internucleosomal DNA fragmentation. Western blot reveals caspase-3 activation in RGD peptide-treated cells. A caspase-3 inhibitor z-VAD-FMK completely blocked the apoptosis, but a caspase-1 inhibitor (Ac-YVAD-CMK) and caspase-2 inhibitor (z-VDVAD-FMK) did not block the apoptosis, suggesting that caspase-3 might have a critical role in the execution process of apoptosis induced by RGD. RGD peptides have been used extensively to inhibit tumor metastasis. Our results should help in further understanding the RGD peptide-induced apoptosis, which is important since RGD peptides have a potential role in therapies of the future. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
15.
The anti-proliferative and apoptotic activities of new T-type calcium channel antagonist, 6e (BK10040) on human lung adenocarcinoma A549 cells were investigated. The MTT assay results indicated that BK10040 was cytotoxic against human lung adenocarcinoma (A549) and pancreatic cancer (MiaPaCa2) cells in a dose-dependent manner with IC50 of 2.25 and 0.93 μM, respectively, which is ca. 2-fold more potent than lead compound KYS05090 despite of its decreased T-type calcium channel blockade. As a mode of action for cytotoxic effect of BK10040 on lung cancer (A549) cells, this cancer cell death was found to have the typical features of apoptosis, as evidenced by the accumulation of positive cells for annexin V. In addition, BK10040 triggered the activations of caspases 3 and 9, and the cleavages of poly (ADP-ribose) polymerase (PARP). Moreover, the treatment with z-VAD-fmk (a broad spectrum caspase inhibitor) significantly prevented BK10040-induced apoptosis. Based on these results, BK10040 may be used as a potential therapeutic agent for human lung cancer via the potent apoptotic activity.  相似文献   

16.
Acrolein is a highly electrophilic alpha,beta-unsaturated aldehyde to which humans are exposed in various situations. In the present study, the effects of sublethal doses of acrolein on nuclear factor kappaB (NF-kappaB) activation in A549 human lung adenocarcinoma cells were investigated. Immediately following a 30-min exposure to 45 fmol of acrolein/cell, glutathione (GSH) and DNA synthesis and NF-kappaB binding were reduced by more than 80%. All parameters returned to normal or supranormal levels by 8 h post-treatment. Pretreatment with acrolein completely blocked 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced activation of NF-kappaB. Cells treated for 1 h with 1 mM diethyl maleate (DEM) showed a 34 and 53% decrease in GSH and DNA synthesis, respectively. DEM also reduced NF-kappaB activation by 64% at 2 h post-treatment, with recovery to within 22% of control at 8 h. Both acrolein and DEM decreased NF-kappaB function approximately 50% at 2 h after treatment with TPA, as shown by a secreted alkaline phosphatase reporter assay. GSH returned to control levels by 8 h after DEM treatment, but proliferation remained significantly depressed for 24 h. Interestingly, DEM caused a profound decrease in NF-kappaB binding, even at doses as low as 0.125 mM that had little effect on GSH. Neither acrolein nor DEM had any effect on the levels of phosphorylated or nonphosphorylated inhibitor kappaB-alpha (IkappaB-alpha). Furthermore, acrolein decreased NF-kappaB activation in cells depleted of IkappaB-alpha by TPA stimulation in the presence of cycloheximide, demonstrating that the decrease in NF-kappaB activation was not the result of increased binding by the inhibitory protein. This conclusion was further supported by the finding that acrolein modified NF-kappaB in the cytosol prior to chemical dissociation from IkappaB with detergent. Together, these data support the conclusion that the inhibition of NF-kappaB activation by acrolein and DEM is IkappaB-independent. The mechanism appears to be related to direct modification of thiol groups in the NF-kappaB subunits.  相似文献   

17.
TRAIL induces apoptosis in many malignant cell types. In this study, we used the human papilloma virus (HPV) 16 E6 protein as a molecular tool to probe the TRAIL pathway in HCT116 colon carcinoma cells and U2OS osteosarcoma cells. Intriguingly, we found that while E6 protected HCT116 cells from TRAIL, U2OS cells expressing E6 remained sensitive to TRAIL. Furthermore, silencing FADD and procaspase-8 expression with siRNA did not prevent TRAIL-induced apoptosis in U2OS cells. However, siBid provided significant protection from TRAIL, and the cleavage kinetics of Bid and caspase-8 revealed that Bid was cleaved prior to the activation of caspase-8. Cathepsin B activity in U2OS cells was significantly activated shortly after exposure to TRAIL, and the cathepsin B inhibitor, CA074Me, inhibited both TRAIL- and anti-DR5-mediated apoptosis and delayed the cleavage of Bid. These findings suggest that TRAIL activates a pathway dependent on Bid, but largely independent of FADD and caspase-8, in U2OS cells.  相似文献   

18.
Lysophosphatidic acid (LPA) is enriched in the serum and malignant effusion of cancer patients and plays a key role in tumorigenesis and metastasis. LPA-activated mesenchymal stem cells promote tumorigenic potentials of cancer cells through a paracrine mechanism. LPA-conditioned medium (LPA CM) from human adipose tissue-derived mesenchymal stem cells (hASCs) elicited adhesion and proliferation of A549 human lung adenocarcinoma cells. To identify proteins involved in the LPA-stimulated paracrine functions of hASCs, we analyzed the LPA CM using liquid-chromatography tandem mass spectrometry-based shotgun proteomics. We identified βig-h3, an extracellular matrix protein that is implicated in tumorigenesis and metastasis, as an LPA-induced secreted protein in hASCs. LPA-induced βig-h3 expression was abrogated by pretreating hASCs with the LPA receptor(1/3) inhibitor Ki16425 or small interfering RNA-mediated silencing of endogenous LPA(1). LPA-induced βig-h3 expression was blocked by treating the cells with the Rho kinase inhibitor Y27632, implying that LPA-induced βig-h3 expression is mediated by the LPA(1)- Rho kinase pathway. Immunodepletion or siRNA-mediated silencing of βig-h3 abrogated LPA CM-stimulated adhesion and proliferation of A549 cells, whereas retroviral overexpression of βig-h3 in hASCs potentiated it. Furthermore, recombinant βig-h3 protein stimulated the proliferation and adhesion of A549 human lung adenocarcinoma cells. These results suggest that hASC-derived βig-h3 plays a key role in tumorigenesis by stimulating the adhesion and proliferation of cancer cells and it can be applicable as a biomarker and therapeutic target for lung cancer.  相似文献   

19.
The protein phosphatase inhibitor okadaic acid (OA) dose-dependently induced apoptosis in CHP-100 neuroepithelioma cells when administered for 24 h at concentrations ranging from 10 - 100 nM. Apoptosis was largely, albeit not completely, dependent on cystein protease (caspase) activation. CPP32 processing and poly(ADP-ribose) polymerase (PARP) cleavage started to be observed only at 20 nM OA; moreover, the caspase inhibitor Z-Val-Ala-DL-Asp-fluoromethylketone (Z-VAD.fmk) (100 microM) had negligible effect on apoptosis induced by 10 nM OA, but rescued from death an increasing cell fraction as OA concentration was raised from 20 - 100 nM. Cell treatment for 24 h with OA induced ceramide accumulation; the phenomenon started to be evident at 20 nM OA and reached its maximum at 50 - 100 nM OA. In cells exposed to 50 nM OA, ceramide was already elevated by 5 h; at this time, however, PARP cleavage and apoptosis were not yet observed. Z-VAD.fmk (100 microM) had no effect on ceramide elevation induced by 50 nM OA within 5 h, but markedly reduced ceramide accumulation as the incubation was prolonged to 24 h. The latter phenomenon was accompanied by elevation of glucosylceramide levels, thus suggesting that a caspase-dependent reduction of glucosylceramide synthesis might contribute to late ceramide accumulation. Short-chain ceramide (30 microM) induced apoptosis in CHP-100 cells and its effect was additive with that evoked by OA (10 - 20 nM). These results suggest that ceramide generation might be an important mechanism through which sustained protein phosphatase inhibition induces caspase activation and apoptosis in CHP-100 cells.  相似文献   

20.
Although it is conventionally regarded as an inflammatory caspase, recent studies have shown that caspase-4 plays a role in induction of apoptosis by endoplasmic reticulum (ER) stress. We report here that activation of caspase-4 is also involved in induction of apoptosis by TNF-related apoptosis-inducing ligand (TRAIL) in human melanoma cells. Treatment with TRAIL resulted in activation of caspase-4. This appeared to be mediated by caspase-3, in that caspase-4 was activated later than caspase-8, -9, and -3, and that inhibition of caspase-3 blocked TRAIL-induced caspase-4 activation. Notably, TRAIL triggered ER stress in melanoma cells as shown by up-regulation of the GRP78 protein and the spliced form of XBP-1 mRNA. This seemed to be necessary for activation of caspase-4, as activation of caspase-3 by agents that did not trigger ER stress did not cause activation of caspase-4. Importantly, inhibition of caspase-4 also partially blocked caspase-3 activation, suggesting that activation of caspase-4 may be positive feed-back mechanism to further enhance caspase-3 activation. Collectively, these results show that activation of caspase-4 contributes to TRAIL-induced apoptosis and is associated with induction of ER stress by TRAIL in melanoma cells, and may have important implications for improving therapeutic efficacies of TRAIL in melanoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号