首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Little is known about the velocity-specific adaptations to training utilizing movement velocities in excess of 300 degrees x s(-1). The purpose of this investigation was to determine the effects of 4 weeks of slow (60 degrees x s(-1)) vs. fast (400 degrees x s(-1)) velocity training on rate of velocity development (RVD), peak torque (PT), and performance. Twenty male kinesiology students (22.0 years +/- 2.72; 178.6 cm +/- 7.1; 82.7 kg +/- 15.5) were tested, before and after 4 weeks of training, for PT production, RVD (at 60, 180, 300, 400, and 450 degrees x s(-1)), standing long jump (SLJ) distance, and 15- and 40-m sprint times. All participants underwent 8 training sessions, performing 5 sets of 5 repetitions of simultaneous, bilateral, concentric knee extension exercises on a Biodex System 3 isokinetic dynamometer at either 60 degrees or 400 degrees per second. Two 5 (speed) x 2 (time) x 2 (group) multivariate repeated measures analyses of variance revealed no significant differences between groups on any measure. Therefore, the groups were collapsed for analysis. There was a significant (p < 0.05) main effect for RVD by time and SLJ distance by time (pre- 227.1 cm +/- 21.2; post- 232.9 cm +/- 20.7) but no significant change in PT or 15- or 40-m sprint times. These results offer support for the suggestion that there is a significant neural adaptation to short-term isokinetic training performed by recreationally trained males, producing changes in limb acceleration and performance with little or no change in strength. Because results were independent of training velocity, it appears as though the intention to move quickly is sufficient stimulus to achieve improvements in limb RVD. Changes in SLJ distance suggest that open kinetic chain training may benefit the performance of a closed kinetic chain activity when movement pattern specificity is optimized.  相似文献   

2.
The purpose of this investigation was to examine the effects of 3 days of velocity-specific isokinetic training on peak torque (PT) and the electromyographic (EMG) signal. Thirty adult women were randomly assigned to a slow-velocity training (SVT), fast-velocity training (FVT), or control (CON) group. All subjects performed maximal, concentric, isokinetic leg extension muscle actions at 30 and 270 degrees .s(-1) for the determination of PT on visits 1 (pretest) and 5 (posttest). Electromyographic signals were recorded from the vastus lateralis, rectus femoris, and vastus medialis muscles during each test. The training groups performed 4 sets of 10 maximal repetitions at 30 degrees .s(-1) (SVT group) or 270 degrees .s(-1) (FVT group) on visits 2, 3, and 4. For the SVT group, PT increased from pretest to posttest at 30 and 270 degrees .s(-1). The increase in PT at 30 degrees .s(-1) was greater than at 270 degrees .s(-1). For the FVT group, PT increased at 270 degrees .s(-1) only. For the CON group, there were no changes in PT at either velocity. There were no pretest to posttest changes in EMG amplitude or mean power frequency (MPF) for any group at any velocity, with the exception of an increase in EMG MPF from the vastus medialis muscle at 270 degrees .s(-1) for the FVT group. The results indicated that 3 sessions of slow velocity (30 degrees .s(-1)) isokinetic training resulted in an increase in PT at slow and fast velocities (30 and 270 degrees .s(-1)), whereas training at the fast velocity (270 degrees .s(-1)) increased PT only at 270 degrees .s(-1). The lack of consistent increases in EMG amplitude or MPF suggested that the training-induced increases in leg extension PT were not caused by increased activation of the superficial muscles of the quadriceps femoris. The important implication for coaches, trainers, and physical therapists is that significant muscular performance gains may be achieved even after very short training periods, but determination of the specific physiological adaptation(s) underlying these performance gains requires further investigation.  相似文献   

3.
Isokinetic dynamometers have been measured for torque and force reliability in the past, but little research has been performed on rate of velocity development (RVD) measures. The purpose of this study was to determine the reliability of RVD measures on an isokinetic device at slow and fast speeds. Twenty volunteers performed 5 repetitions of concentric knee extension at 1.04 and 4.18 rad.s(-1) on a Kin-Com isokinetic dynamometer. Each subject was identically posttested 7 days later. Data were separated into 3 velocity range-of-motion (ROM) phases of RVD, load range (LR), and deceleration (DCCROM). Analyses of variance (ANOVAs) were performed to analyze the mean data between day 1 and day 2, while intraclass correlation coefficients (ICCs) were performed for reliability. Results at 1.04 rad.s(-1) demonstrated a low but significant (p < 0.05) ICC value (0.58) only for LR, while at 4.18 rad.s(-1) RVD (0.87), LR (0.83), and DCC (0.55) all exhibited significant ICC values. Percent error for high-speed testing ranged from 1.4-3.19%. No variable exhibited a significant mean difference between testing days. These results collectively point to moderate to high phase reliability for RVD measures at fast speeds of testing, while the slow speed showed very low reliability. Therefore, care should be exercised at slow speeds when comparing RVD measures from test to test.  相似文献   

4.
To achieve maximal force output, clinicians and coaches have been experimenting with upper extremity plyometric exercises for years, without sufficient scientific validation of this training method. The goal of this study was to examine the effects of an 8-week course of high volume upper extremity plyometric training on the isokinetic strength and throwing velocity of a group of intercollegiate baseball players. Twenty-four Division I collegiate baseball players (age: 19.7 +/- 1.3 years; height: 183.9 +/- 5.9 cm; mass: 90.7 +/- 10.5 kg) were recruited to participate in this study. Throwing velocity, isokinetic peak torque, isokinetic functional strength ratios, and time to peak torque were measured pre- and posttraining. Subjects were rank-ordered according to concentric internal rotation (IR) strength and were assigned randomly to either the plyometric training group (PLY) or the control group (CON). Training consisted of 6 upper extremity plyometric exercises ("Ballistic Six") performed twice per week for 8 weeks. Subjects assigned to CON performed regular off-season strength and conditioning activities, but did not perform plyometric activities. PLY demonstrated significant increases (p < 0.05) in throwing velocity following 8 weeks of training when compared with CON (83.15 mph [pre] vs. 85.15 mph [post]). There were no statistically significant differences in any of the isokinetic strength measurements between PLY and CON groups pre- to posttraining. Statistically significant differences were seen within PLY for concentric IR and eccentric external rotation (ER) isokinetic strength at 180 degrees x s(-1) and 300 degrees x s(-1); and within CON for eccentric ER isokinetic strength at 300 degrees x s(-1) and concentric IR isokinetic strength at 180 degrees x s(-1). The Ballistic Six training protocol can be a beneficial supplement to a baseball athlete's off-season conditioning by improving functional performance and strengthening the rotator cuff musculature.  相似文献   

5.
Previous studies have demonstrated increases in peak torque (PT) and decreases in acceleration time (ACC) after only 2 days of resistance training, and other studies have reported improvements in isokinetic performance after 5 days of creatine supplementation. Consequently, there may be a combined benefit of creatine supplementation and short-term resistance training for eliciting rapid increases in muscle strength, which may be important for short-term rehabilitation and return-to-play for previously injured athletes. The purpose of this study, therefore, was to examine the effects of 3 days of isokinetic resistance training combined with 8 days of creatine monohydrate supplementation on PT, mean power output (MP), ACC, surface electromyography (EMG), and mechanomyography (MMG) of the vastus lateralis muscle during maximal concentric isokinetic leg extension muscle actions. Twenty-five men (mean age +/- SD = 21 +/- 3 years, stature = 177 +/- 6 cm, and body mass = 80 +/- 12 kg) volunteered to participate in this 9-day, double-blind, placebo-controlled study and were randomly assigned to either the creatine (CRE; n = 13) or placebo (PLA; n = 12) group. The CRE group ingested the treatment drink (280 kcal; 68 g carbohydrate; 10.5 g creatine), whereas the PLA group received an isocaloric placebo (70 g carbohydrate). Two servings per day (morning and afternoon) were administered in the laboratory on days 1-6, with only 1 serving on days 7-8. Before (pre; day 1) and after (post; day 9) the resistance training, maximal voluntary concentric isokinetic leg extensions at 30, 150, and 270 degrees x s(-1) were performed on a calibrated Biodex System 3 dynamometer. Three sets of 10 repetitions at 150 degrees x s(-1) were performed on days 3, 5, and 7. Peak torque increased (p = 0.005; eta(2) = 0.296), whereas ACC decreased (p < 0.001; eta(2) = 0.620), from pretraining to posttraining for both the CRE and PLA groups at each velocity (30, 150, and 270 degrees x s(-1)). Peak torque increased by 13% and 6%, whereas ACC decreased by 42% and 34% for the CRE and PLA groups, respectively, but these differences were not statistically significant (p > 0.05). There were no changes in MP, EMG, or MMG amplitude; however, EMG median frequency (MDF) increased, and MMG MDF increased at 30 degrees x s(-1), from pretraining to posttraining for both the CRE and PLA groups. These results indicated that 3 days of isokinetic resistance training was sufficient to elicit small, but significant, improvements in peak strength (PT) and ACC for both the CRE and PLA groups. Although the greater relative improvements in PT and ACC for the CRE group were not statistically significant, these findings may be useful for rehabilitation or strength and conditioning professionals who may need to rapidly increase the strength of a patient or athlete within 9 days.  相似文献   

6.
The purpose of this study was to examine the effects of 2 days of isokinetic training of the forearm flexors and extensors on strength and electromyographic (EMG) amplitude for the agonist and antagonist muscles. Seventeen men (mean +/- SD age = 21.9 +/- 2.8 years) were randomly assigned to 1 of 2 groups: (a) a training group (TRN; n = 8), or (b) a control group (CTL; n = 9). The subjects in the TRN group were tested for maximal isometric and concentric isokinetic (randomly ordered velocities of 60, 180, and 300 degrees x s(-1)) torque of the dominant forearm flexors and extensors before (pretest) and after (posttest) 2 days of isokinetic strength training. Each training session involved 6 sets of 10 maximal concentric isokinetic muscle actions of the forearm flexors and extensors at a velocity of 180 degrees x s(-1). The subjects in the CTL group were also tested for strength but did not perform any training. Surface EMG signals were detected from the biceps brachii and triceps brachii muscles during the strength testing. The results indicated that there were no significant (p > 0.05) pre- to post-test changes in forearm flexion and extension torque or EMG amplitude for the agonist and antagonist muscles. Thus, unlike previous studies of the quadriceps femoris muscles, these findings for the forearm flexors and extensors suggested that 2 days of isokinetic training may not be sufficient to elicit significant increases in strength. These results may have implications for the number of visits that are required for rehabilitation after injury, surgery, or both.  相似文献   

7.
The purpose of this study was to investigate the effect of weighted jump squat training with and without eccentric braking. Twenty male subjects were divided into two groups (n = 10 per group), Non-Braking Group and Braking Group. The subjects were physically active, but not highly trained. The program for Non-Braking Group consisted of 6 sets of 6 repetitions of weighted jump squats without reduction of eccentric load for 8 weeks. The training program for the Braking Group consisted of the same sets and repetitions, but eccentric load was reduced by using an electromagnetic braking mechanism. Jump and reach, countermovement jump, static jump, drop jump, one repetition maximum half squat, weighted jump squat, and isometric/isokinetic knee extension/flexion at several different positions/angular velocities were tested pre- and posttraining intervention. The Non-Braking Group exhibited greater improvement in peak torque during isokinetic concentric knee flexion at 300 degrees/s [Non-Braking Group: (mean +/- SD) 124.0 +/- 22.6 Nm at pre- and 134.1 +/- 18.4 Nm at posttraining, and Braking Group: 118.5 +/- 32.7 Nm at pre- and 113.2 +/- 26.7 Nm at posttraining]. Braking Group exhibited superior adaptations in peak power relative to body mass during weighted jump squat [Non-Braking Group: (mean +/- SD) 49.1 +/- 8.6 W/kg at pre- and 50.9 +/- 6.2 W/kg at posttraining, and Braking Group: 47.9 +/- 6.9 W/kg at pre- and 53.7 +/- 7.3 W/kg at posttraining]. It appears that power output in relatively slow movement (weighted jump squat) was improved more in the Braking Group, however strength in high velocity movements (isokinetic knee flexion at 300 degrees/s) was improved more in Non-Braking Group. This study supports load and velocity specific effects of weighted jump squat training.  相似文献   

8.
Falls may occur because of a deficiency in the ability to rapidly step in the desired direction. Previous models developed to predict rapid step ability have been based on balance, video analysis, or uniplanar isokinetic performance. The purpose of this investigation was to determine the effects of multiplanar velocity-spectrum training of the hip. Seven males (23.14 years) and 16 females (23.75 years) were tested for peak torque, peak power, and rate of velocity development and on rapid step test (RST) measurements. Participants in the training group went through 8 training sessions over 4 weeks, consisting of unilateral hip flexion/extension and hip abduction/adduction of each leg, while the control group maintained regular activity throughout the 4-week span. Exercises were performed on a Biodex System 3 isokinetic dynamometer beginning at a speed of 60 degrees x sec(-1), gradually increasing in speed every week up to 180, 300, and 400 degrees x s(-1), respectively. Analysis of the data revealed no significant (p < 0.05) differences between groups on any measure. However, the data showed a significant improvement in RST time (pre: 50.87 +/- 4.41 seconds; post: 49.20 +/- 4.28 seconds) and number of errors (pre: 4.13 +/- 2.87 errors; post: 2.75 +/- 1.81 errors), implying that a learning effect took place on the RST for all individuals. Additionally, short-term isokinetic training did not translate into significant results. It was concluded that 4 weeks of velocity-spectrum training of the hip did not lead to improvements on the ability to rapidly step, as measured by the RST. Therefore, the open-kinetic-chain training should not be done for improvements on a functional, closed-kinetic-chain activity.  相似文献   

9.
The purpose of this study was to show that velocity-specific training may be implicated in modifications in the level of coactivation of agonist and antagonist muscles. Healthy males (n = 20) were randomly placed in to two groups: one group trained using concentric contractions (n = 12), the other was an untrained control group (n = 8). The training group underwent unilateral resistance training at a level of 35 (5)% of a one-repetition maximal contraction of the elbow flexors, executed at maximal angular velocity. Training sessions consisted of six sets of eight consecutive elbow flexions, three times per weak for a total of seven weeks. The velocity of the ballistic movements executed during training were measured using an optoelectronic measuring device (Elite), both at the beginning and at the end of the training period. Subjects were tested pre- and post-training during isokinetic maximal elbow flexions with constant angular torque (CAT) at 90 degrees (0 degrees = full extension), and at different velocities (60, 120, 180, 240 and 300 degrees x s(-1)) for concentric actions, and -60 and -30 degrees x s(-1) for eccentric and isometric contractions at 90 degrees. In order to verify the levels of activation of the agonist biceps brachii (BB) muscles and antagonist triceps brachii (TB) muscles during maximal voluntary activation, their myoelectrical activities were recorded and quantified as root mean square (RMS) amplitudes, between angles of 75 and 105 degrees . The results show that mean angular velocities between elbow angles of 75 and 105 degrees were similar before [302 (32) degrees x s(-1)] and after [312 (27) degrees x s(-1)] the training period. CAT significantly increased measures at angular velocities of 240 and 300 degrees x s(-1) by 18.7% and 23.5%, respectively. The RMS activity of BB agonist muscles was not significantly modified by training. Post-training normalized RMS amplitudes of TB antagonist muscles were inferior to those observed at pre-training, but values were only significantly different at 300 x s(-1). In conclusion, in this study we attempted to show that an increase of CAT to 240 and 300 degrees x s(-1), though velocity-specific training, may be due, in part, to a lowering of the level of coactivation.  相似文献   

10.
We performed two studies to determine the effect of a resistive training program comprised of fast vs. slow isokinetic lengthening contractions on muscle fiber hypertrophy. In study I, we investigated the effect of fast (3.66 rad/s; Fast) or slow (0.35 rad/s; Slow) isokinetic high-resistance muscle lengthening contractions on muscle fiber and whole muscle cross-sectional area (CSA) of the elbow flexors was investigated in young men. Twelve subjects (23.8 +/- 2.4 yr; means +/- SD) performed maximal resistive lengthening isokinetic exercise with both arms for 8 wk (3 days/wk), during which they trained one arm at a Fast velocity while the contralateral arm performed an equivalent number of contractions at a Slow velocity. Before (Pre) and after (Post) the training, percutaneous muscle biopsies were taken from the midbelly of the biceps brachii and analyzed for fiber type and CSA. Type I muscle fiber size increased Pre to Post (P < 0.05) in both Fast and Slow arms. Type IIa and IIx muscle fiber CSA increased in both arms, but the increases were greater in the Fast- vs. the Slow-trained arm (P < 0.05). Elbow flexor CSA increased in Fast and Slow arms, with the increase in the Fast arm showing a trend toward being greater (P = 0.06). Maximum torque-generating capacity also increased to a greater degree (P < 0.05) in the Fast arm, regardless of testing velocity. In study II, we attempted to provide some explanation of the greater hypertrophy observed in study I by examining an indicator of protein remodeling (Z-line streaming), which we hypothesized would be greater in the Fast condition. Nine men (21.7 +/- 2.4 yr) performed an acute bout (n = 30, 3 sets x 10 repetitions/set) of maximal lengthening contractions at Fast and Slow velocities used in the training study. Biopsies revealed that Fast lengthening contractions resulted in more (185 +/- 1 7%; P < 0.01) Z-band streaming per millimeter squared muscle vs. the Slow arm. In conclusion, training using Fast (3.66 rad/s) lengthening contractions leads to greater hypertrophy and strength gains than Slow (0.35 rad/s) lengthening contractions. The greater hypertrophy seen in the Fast-trained arm (study I) may be related to a greater amount of protein remodeling (Z-band streaming; study II).  相似文献   

11.
Strength augmentation has been demonstrated in resistance-trained men subsequent to 4 days of training abstinence. However, this phenomenon was exhibited in an unusual circumstance in which the exercise test (seated heel raise) primarily involved an isolated skeletal muscle (soleus) that is normally comprised almost exclusively of 1 fiber type. It is unclear if similar results would be found for aggregate muscle actions. Therefore, a comparable study was designed with this in mind. Subjects were apparently healthy, young, strength-trained men (n = 25). All performed various tests of bench press strength at the beginning of their last standardized dynamic constant external resistance (DCER) training session. Subjects were subsequently randomly assigned to 1 of 4 groups and repeated the identical tests at intervals of either 2, 3, 4, or 5 days with no intervening training. Strength tests consisted of 1 repetition maximum (1RM) concentric-only isokinetic bench presses performed at 1.49 and 0.37 m.s(-1) as well as a 1RM DCER bench press. Measures of peak force and power were obtained from the isokinetic tests and maximum load from the DCER test. Results were expressed in both absolute and relative (to body weight) terms. Subsequent to the 4 abstinence intervals, groups performed similarly (p > 0.05) for all dependent variables. Concurrently, however, a small effect size (ES) was found for the group having a 4-day respite for both absolute and relative expressions of peak force and power at the slowest isokinetic bench press velocity. A small ES was also identified for the group having 2 days of rest for relative peak force at the slowest isokinetic test velocity and for relative DCER strength. Therefore, modest and transient strength augmentation appears likely in aggregate muscle actions following 2-4 days of training abstinence in resistance-trained men, but only at relatively slow velocities.  相似文献   

12.
We hypothesized that resistance training with combined eccentric and concentric actions, and concentric action only, should yield similar changes in muscular strength. Subjects in a free weight group trained three times a week for 12 wk with eccentric and concentric actions (FW, n = 16), a second group trained with concentric-only contractions using hydraulic resistance (HY; n = 12), and a control group did not train (n = 11). Training for FW and HY included five sets of supine bench press and upright squat at an intensity of 1-6 repetition maximum (RM) plus five supplementary exercises at 5-10 RM for a total of 20 sets per session for approximately 50 min. Testing at pre-, mid-, and posttraining included 1) 1 RM bench press and squat with and 2) without prestretch using free weights; 3)isokinetic peak force and power for bench press and squat at 5 degrees/s, and isotonic peak velocity and power for bench press with 20-kg load and squat with 70-kg load; 4) hydraulic peak bench press force and power, and peak knee extension torque and power at fast and slow speeds; and 5) surface anthropometry (fatfolds and girths to estimate upper arm and thigh volume and muscle area). Changes in overall fatness, muscularity, and muscle + bone cross-sectional area of the limbs did not differ between groups (P greater than 0.05). Improvements in free weight bench press and squat were similar (P greater than 0.05) in FW (approximately 24%) and HY (approximately 22%, P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The purpose was to test the hypothesis that twice daily, short-term, variable intensity isotonic and intermittent high-intensity isokinetic leg exercise would maintain peak O2 uptake (VO2) and muscular strength and endurance, respectively, at or near ambulatory control levels during 30 days of -6 degrees head-down bed rest (BR) deconditioning. Nineteen men (aged 32-42 yr) were divided into no exercise control (peak VO2 once/wk, n = 5), isokinetic (Lido ergometer, n = 7), and isotonic (Quinton ergometer, n = 7) groups. Exercise training was conducted in the supine position for two 30-min periods/day for 5 days/wk. Isotonic training was at 60-90% of peak VO2, and isokinetic training (knee flexion-extension) was at 100 degrees/s. Mean (+/- SE) changes (P less than 0.05) in peak VO2 (ml.m-1.kg-1) from ambulatory control to BR day 28 were 44 +/- 4 to 36 +/- 3, -18.2% (3.27-2.60 l/m) for no exercise, 39 +/- 4 to 40 +/- 3, +2.6% (3.13-3.14 l/min) for isotonic, and 44 +/- 3 to 40 +/- 2, -9.1% (3.24-2.90 l/min) for isokinetic. There were no significant changes in any groups in leg peak torque (right knee flexion or extension), leg mean total work, arm total peak torque, or arm mean total work. Mean energy costs for the isotonic and isokinetic exercise training were 446 kcal/h (18.8 +/- 1.6 ml.min-1.kg-1) and 214 kcal/h (8.9 +/- 0.5 ml.m-1.kg-1), respectively. Thus near-peak, variable intensity, isotonic leg exercise maintains peak VO2 during 30 days of BR, while this peak, intermittent, isokinetic leg exercise protocol does not.  相似文献   

14.
This study compared resistance-trained and untrained men for changes in commonly used indirect markers of muscle damage after maximal voluntary eccentric exercise of the elbow flexors. Fifteen trained men (28.2 +/- 1.9 years, 175.0 +/- 1.6 cm, and 77.6 +/- 1.9 kg) who had resistance trained for at least 3 sessions per week incorporating exercises involving the elbow flexor musculature for an average of 7.7 +/- 1.4 years, and 15 untrained men (30.0 +/- 1.5 years, 169.8 +/- 7.4 cm, and 79.9 +/- 4.4 kg) who had not performed any resistance training for at least 1 year, were recruited for this study. All subjects performed 10 sets of 6 maximal voluntary eccentric actions of the elbow flexors of one arm against the lever arm of an isokinetic dynamometer moving at a constant velocity of 90 degrees .s. Changes in maximal voluntary isometric and isokinetic torque, range of motion, upper arm circumference, plasma creatine kinase activity, and muscle soreness before, immediately after, and for 5 days after exercise were compared between groups. The trained group showed significantly (P < 0.05) smaller changes in all of the measures except for muscle soreness and faster recovery of muscle function compared with the untrained group. For example, muscle strength of the trained group recovered to the baseline by 3 days after exercise, where the untrained group showed approximately 40% lower strength than baseline. These results suggest that resistance-trained men are less susceptible to muscle damage induced by maximal eccentric exercise than untrained subjects.  相似文献   

15.
Research has previously been divided on whether performing resistance training with a single set per training session is as effective for increasing strength as training with multiple sets. The purpose of this study was to determine the effect of single sets versus multiple sets on strength. Forty subjects were randomly assigned into 1 of 3 groups: control (C; n = 8), single set (SS; n = 14), or multiple sets (MS; n = 18) to perform 8 maximal knee extensions at 60 degrees .s(-1) on a Biodex System 3 isokinetic dynamometer twice a week for 8 weeks. The SS group performed 1 set while the MS group performed 3 sets. All groups were pre-, mid- (4 weeks), and posttested at 60 degrees x s(-1). Strength was expressed as peak torque (PT). A 3 x 3 x 2 (time x group x sex) mixed factor repeated measures analysis of variance (ANOVA) revealed no interaction involving sex, but there was an interaction of group by time. The MS group exhibited a significant (p < 0.05) increase in PT (pre = 171.39 +/- 61.98 Nm; mid = 193.08 +/- 66.23 Nm) between the pretest and the midtest while the SS (pre = 163.45 +/- 56.37 Nm; mid = 172.60 +/- 61.78 Nm) and C groups (pre = 135.997 +/- 54.31 Nm; mid = 127.66 +/- 53.12 Nm) did not change. Strength did not change between the midtest and the posttest for any group. It was concluded that performing 3 sets of isokinetic knee extensions was more effective than performing a single set for increasing peak torque. These results seem to indicate that for increasing strength of the quadriceps, performing multiple sets is superior to performing a single set of resistance exercise.  相似文献   

16.
Twenty young men trained the right knee extensors and flexors on an isokinetic dynamometer three times weekly over a 10-week period. During each session, 10 men in the slow training group completed three sets of 8 maximal contractions at a rate of 1.05 rad s-1, whereas the other 10, the fast group, completed three sets of 20 contractions at a rate of 4.19 rad s-1. Subjects wer pre- and post-tested for peak torque and power on an isokinetic dynamometer at 1.05, 3.14, and 4.19 rad s-1. Proportions of muscle fibre-types and fibre cross-sectional areas were determined from biopsy specimens taken before and after training from the right vastus lateralis. When testing was conducted at 1.05 rad s-1, the slow group improved (P less than 0.05) peak torque by 24.5 N m (8.5%), but no change was noted for the fast group. Power increased (P less than 0.05) by 32.7 W (13.6%) in the slow group and 5.5 W (2.5%) in the fast. At 3.14 rad s-1, both groups increased (P less than 0.05) peak torque and power. At 4.19 rad s-1, the fast group increased (P less than 0.05) peak torque by 30.0 N m (19.7%), whereas no training effect was observed in the slow group. There was no significant change in power in either group at 4.19 rad s-1. No significant changes were observed over the 10-week training period in percentages of type I, IIa and IIb fibres, but both groups showed significant increases (P less than 0.05) in type I and IIa fibre areas.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The purpose of this investigation was to determine the influence of contraction velocity on the eccentric (ECC) and concentric (CON) torque production of the biceps brachii. After performing warm-up procedures, each male subject (n = 11) completed 3 sets of 5 maximal bilateral CON and ECC isokinetic contractions of the biceps at speeds of 90, 180, and 300 degrees x s(-1) on a Biodex System 3 dynamometer. The men received a 3-minute rest between sets and the order of exercises was randomized. Peak torque (Nm) values were obtained for CON and ECC contractions at each speed. Peak torque scores (ECC vs. CON) were compared using a t-test at each speed. A repeated measures analysis of variance was used to determine differences between speeds. ECC peak torque scores were greater than CON peak torque scores at each given speed: 90 degrees x s(-1), p = 0.0001; 180 degrees x s(-1), p = 0.0001; and 300 degrees x s(-1), p = 0.0001. No differences were found between the ECC peak torque scores (p = 0.62) at any of the speeds. Differences were found among the CON scores (p = 0.004). Post hoc analysis revealed differences between 90 degrees x s(-1) (114.61 +/- 23) and 300 degrees x s(-1) (94.17 +/- 18). These data suggest that ECC contractions of the biceps brachii were somewhat resistant to a force decrement as the result of an increase in velocity, whereas CON muscular actions of the biceps brachii were unable to maintain force as velocity increased.  相似文献   

18.
The purpose of this experiment was to examine the effects of concurrent endurance and explosive strength training on electromyography (EMG) and force production of leg extensors, sport-specific rapid force production, aerobic capacity, and work economy in cross-country skiers. Nineteen male cross-country skiers were assigned to an experimental group (E, n = 8) or a control group (C, n = 11). The E group trained for 8 weeks with the same total training volume as C, but 27% of endurance training in E was replaced by explosive strength training. The skiers were measured at pre- and post training for concentric and isometric force-time parameters of leg extensors and EMG activity from the vastus lateralis (VL) and medialis (VM) muscles. Sport-specific rapid force production was measured by performing a 30-m double poling test with the maximal velocity (V(30DP)) and sport-specific endurance economy by constant velocity 2-km double poling test (CVDP) and performance (V(2K)) by 2-km maximal double poling test with roller skis on an indoor track. Maximal oxygen uptake (Vo(2)max) was determined during the maximal treadmill walking test with the poles. The early absolute forces (0-100 ms) in the force-time curve in isometric action increased in E by 18 +/- 22% (p < 0.05), with concomitant increases in the average integrated EMG (IEMG) (0-100 ms) of VL by 21 +/- 21% (p < 0.05). These individual changes in the average IEMG of VL correlated with the changes in early force (r = 0.86, p < 0.01) in E. V(30DP) increased in E (1.4 +/- 1.6%) (p < 0.05) but not in C. The V(2K) increased in C by 2.9 +/- 2.8% (p < 0.01) but not significantly in E (5.5 +/- 5.8%, p < 0.1). However, the steady-state oxygen consumption in CVDP decreased in E by 7 +/- 6% (p < 0.05). No significant changes occurred in Vo(2)max either in E or in C. The present concurrent explosive strength and endurance training in endurance athletes produced improvements in explosive force associated with increased rapid activation of trained leg muscles. The training also led to more economical sport-specific performance. The improvements in neuromuscular characteristics and economy were obtained without a decrease in maximal aerobic capacity, although endurance training was reduced by about 20%.  相似文献   

19.
The purpose of this study was to examine the acute effects of static stretching on peak torque (PT) and the joint angle at PT during maximal, voluntary, eccentric isokinetic muscle actions of the leg extensors at 60 and 180 degrees x s(-1) for the stretched and unstretched limbs in women. Thirteen women (mean age +/- SD = 20.8 +/- 0.8 yr; weight +/- SD = 63.3 +/- 9.5 kg; height +/- SD = 165.9 +/- 7.9 cm) volunteered to perform separate maximal, voluntary, eccentric isokinetic muscle actions of the leg extensors with the dominant and nondominant limbs on a Cybex 6000 dynamometer at 60 and 180 degrees x s(-1). PT (Nm) and the joint angle at PT (degrees) were recorded by the dynamometer software. Following the initial isokinetic assessments, the dominant leg extensors were stretched (mean stretching time +/- SD = 21.2 +/- 2.0 minutes) using 1 unassisted and 3 assisted static stretching exercises. After the stretching (4.3 +/- 1.4 minutes), the isokinetic assessments were repeated. The statistical analyses indicated no changes (p > 0.05) from pre- to poststretching for PT or the joint angle at PT. These results indicated that static stretching did not affect PT or the joint angle at PT of the leg extensors during maximal, voluntary, eccentric isokinetic muscle actions at 60 and 180 degrees x s(-1) in the stretched or unstretched limbs in women. In conjunction with previous studies, these findings suggested that static stretching may affect torque production during concentric, but not eccentric, muscle actions.  相似文献   

20.
The purpose of this study was to determine the impact of a very slow (VS) velocity and a self-selected volitional (VOL) velocity at varying intensities on repetition number, peak force, peak power, and total volume in the squat and shoulder press exercises. On separate testing days, 9 resistance trained men (age: 23.9 +/- 2.5 years; height: 174.8 +/- 6.5 cm; body mass: 80.1 +/- 12.4 kg) performed a squat (SQ) and shoulder press (SP) exercise at 60 or 80% of 1 repetition maximum (1RM) at either VOL or VS (10-second eccentric and 10-second concentric actions) velocity for as many repetitions as possible. Force, power, and volume (repetitions x kg) were also determined. Subjects performed significantly fewer repetitions (p < or = 0.05) in the VS exercises (60% VS SQ 5 +/- 1 vs. VOL SQ 24 +/- 2; 80% VS SQ 2 +/- 0 vs. VOL SQ 12 +/- 1; 60% VS SP 4 +/- 1 vs. VOL SP 14 +/- 2; 80% VS SP 1 +/- 0 vs. VOL SP 6 +/- 1). Peak force and power were significantly higher at the VOL speed (peak force [in newtons]: 60% VS SQ 564.4 +/- 77.3 vs. VOL SQ 1229.0 +/- 134.9 N; 80% VS SQ 457.3 +/- 27.9 vs. VOL SQ 1059.3 +/- 104.7 N; 60% VS SP 321.6 +/- 37.8 vs. VOL SP 940.7 +/- 144.8 N; 80% VS SP 296.5 +/- 24.7 vs. VOL SP 702.5 +/- 57.7 N; and peak power [in watts]: 60% VS SQ 271.2 +/- 40.1 vs. VOL SQ 783.2 +/- 129.1 W; 80% VS SQ 229.3 +/- 49.5 vs. VOL SQ 520.2 +/- 85.8 W; 60% VS SP 91.3 +/- 21.9 vs. VOL SP 706.6 +/- 151.4 W; 80% VS SP 78.1 +/- 19.8 vs. VOL SP 277.6 +/- 46.4 W). VOL speed elicited higher total volume than the VS velocity. The results of this study indicate that a VS velocity may not elicit appropriate levels of force, power, or volume to optimize strength and athletic performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号