首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The purpose of this study was to assess and quantify the health outcomes associated with a moderate-intensity (50% VO2R) exercise program designed to achieve the American College of Sports Medicine net caloric expenditure guideline of 1,000 kcal x wk(-1). Fifteen apparently healthy but sedentary premenopausal women with the baseline characteristics (mean +/- SD age, height, weight, body composition, and VO2max: 37.4 +/- 6.3 yr, 166.2 +/- 6.2 cm, 72.1 +/- 11.2 kg, 32.5 +/- 5.8%, and 34.8 +/- 5.8 mL x kg(-1) x min(-1), respectively) participated in and completed the study. Exercise training was performed 3-4 days per week for 10 weeks in a progressive manner at moderate intensity (50% VO2R). There were significant (P < 0.05) improvements in VO2max (+2.5 mL x kg(-1) x min(-1)), systolic (-13.7 mm Hg) and diastolic (-6.4 mm Hg) blood pressure, high-density lipoprotein cholesterol (+3.2 mg x dL(-1)), fasting blood glucose (-4.9 mg x dL(-1)), and percent body fat (-1.6%). Although the American College of Sports Medicine specifies that the energy expenditure goal should be a net caloric expenditure of 1,000 kcal x wk(-1) and classifies relative moderate intensity as 40-59% of heart rate reserve or VO2R, we are unaware of any previous investigations that have examined the specific health outcomes associated with an exercise program fulfilling these requirements. Results indicate that significant health benefits will be conferred to previously sedentary, premenopausal women who engage in a moderate-intensity, 10-week exercise program designed to fulfill the net energy expenditure guideline of 1,000 kcal x wk(-1).  相似文献   

2.
VO2 VE, and heart rates (fH) were measured in 61 Colombian sugarcane cutters while harvesting cane in the AM and PM and in the laboratory during a VO2max test. Productivity and sweat rates were also measured in the field. The subjects had an estimated dietary intake of 2,970 kcal/day, which was lower than calculated daily energy expenditure. During the work measurements the VO2 was 1.5 1/min, VE 48 1/min, and fH 135 beats/min; there were no differences between AM and PM values. The subjects sustained about 35% of VO2max during the 8 h workday, but worked at 57% of VO2max during the tests. Measured energy cost was 7.4 +/- 1.5 kcal/min during the workday. Sweat rates were higher PM than AM (5 KG/8 h day). Grouping of the men according to productivity demonstrated that taller, heavier men were better producers and had lower calculated heart rates at VO2 1.51/min. Efficiency of cane cutting was higher (9%) PM.  相似文献   

3.
Eighteen trained volunteers (12 men and 6 women: age = 22.0 +/- 2.8 years, height = 170.79 +/- 7.67 cm, weight = 71.54 +/- 12.63 kg) participated in 2-minute, randomized fitness boxing trials, wearing 0.34-kg punching gloves, at various tempos (60, 72, 84, 96, 108, and 120 b.min(-1)). During each trial, oxygen uptake (VO(2)), heart rate (HR), and ventilation (VE) were measured continuously. A rating of perceived exertion (RPE) was attained at the conclusion of each trial. Subjects were able to attain VO(2) values ranging from 26.83 to 29.75 ml.kg(-1).min(-1), which correspond to 67.7-72.5% of VO(2)max. The HR responses yielded results ranging from 167.4 to 182.2 b.min(-1), or 85 to 93% of HRmax. No significant difference (p > 0.05) was seen with VO(2) between trials, although a significant difference (p < 0.05) was observed with HR, VE, and RPE. It appears that boxing speed is associated with increased VE, HR response, and perceived effort but not with VO(2). Energy expenditure values ranged from 9.8 to 11.2 kcal.min(-1) for the boxing trials. These results suggest that fitness boxing programs compare favorably with other exercise modalities in cardiovascular response and caloric expenditure.  相似文献   

4.
Aerobic dance has been purported to help with weight management; however, it is not known if various forms of dance are as effective as traditional modalities. This study estimated energy expenditure by heart rate for 28 women participating in 4 modes of aerobic dance (Bodycombat [i.e., TAEBO]; Pump; Step; and RPM [i.e., spinning]) compared to 2 running speeds. Pump had significantly (p < 0.01) lower energy expenditure (8.0 +/- 1.6 kcal.min(-1)) compared to the other classes (RPM: 9.9 +/- 1.9 kcal.min(-1); Step: 9.6 +/- 1.8 kcal.min(-1); and Bodycombat: 9.7 +/- 2.0 kcal.min(-1)) and running at 8.05 km.h(-1) (9.16 +/- 1.53 kcal.min(-1)). Also, Step (p < 0.01), Bodycombat (p < 0.01), and RPM (p < 0.01) had significantly higher caloric expenditures than running at 8.05 km.h(-1) but significantly lower than running at 8.37 km.h(-1) (10.30 +/- 1.72 kcal.min(-1)). In conclusion, RPM, Bodycombat, and Step aerobics were equally as effective as jogging between 8.05 and 8.37 km.h(-1), and they met American College of Sports Medicine guidelines for weight modification and maintenance. Additionally, heart rate assessment provided a quantitative method for estimating energy expenditure and the effectiveness of different aerobic programs.  相似文献   

5.
Our laboratory recently showed that six sessions of sprint interval training (SIT) over 2 wk increased muscle oxidative potential and cycle endurance capacity (Burgomaster KA, Hughes SC, Heigenhauser GJF, Bradwell SN, and Gibala MJ. J Appl Physiol 98: 1895-1900, 2005). The present study tested the hypothesis that short-term SIT would reduce skeletal muscle glycogenolysis and lactate accumulation during exercise and increase the capacity for pyruvate oxidation via pyruvate dehydrogenase (PDH). Eight men [peak oxygen uptake (VO2 peak)=3.8+/-0.2 l/min] performed six sessions of SIT (4-7x30-s "all-out" cycling with 4 min of recovery) over 2 wk. Before and after SIT, biopsies (vastus lateralis) were obtained at rest and after each stage of a two-stage cycling test that consisted of 10 min at approximately 60% followed by 10 min at approximately 90% of VO2 peak. Subjects also performed a 250-kJ time trial (TT) before and after SIT to assess changes in cycling performance. SIT increased muscle glycogen content by approximately 50% (main effect, P=0.04) and the maximal activity of citrate synthase (posttraining: 7.8+/-0.4 vs. pretraining: 7.0+/-0.4 mol.kg protein -1.h-1; P=0.04), but the maximal activity of 3-hydroxyacyl-CoA dehydrogenase was unchanged (posttraining: 5.1+/-0.7 vs. pretraining: 4.9+/-0.6 mol.kg protein -1.h-1; P=0.76). The active form of PDH was higher after training (main effect, P=0.04), and net muscle glycogenolysis (posttraining: 100+/-16 vs. pretraining: 139+/-11 mmol/kg dry wt; P=0.03) and lactate accumulation (posttraining: 55+/-2 vs. pretraining: 63+/-1 mmol/kg dry wt; P=0.03) during exercise were reduced. TT performance improved by 9.6% after training (posttraining: 15.5+/-0.5 vs. pretraining: 17.2+/-1.0 min; P=0.006), and a control group (n=8, VO2 peak=3.9+/-0.2 l/min) showed no change in performance when tested 2 wk apart without SIT (posttraining: 18.8+/-1.2 vs. pretraining: 18.9+/-1.2 min; P=0.74). We conclude that short-term SIT improved cycling TT performance and resulted in a closer matching of glycogenolytic flux and pyruvate oxidation during submaximal exercise.  相似文献   

6.
The present investigation aimed to establish whether noncompetitive rock climbing fulfills sports medicine recommendations for maintaining a good level of aerobic fitness. The physiological profile of 13 rock climbers, 8 men (age, 43 +/- 8 years) and 5 women (age, 31 +/- 8 years) was assessed by means of laboratory tests. Maximal aerobic power (VO2peak) and ventilatory threshold (VT) were assessed using a cycloergometer incremental test. During outdoor rock face climbing, VO2 and heart rate (HR) were measured with a portable metabolimeter and the relative steady-state values (VO2 and HR during rock climbing) were computed. Blood lactate was measured during recovery. All data are presented as mean +/- SD. VO2 was 39.1 +/- 4.3 mL.kg.min in men and 39.7 +/- 5 mL.kg.min in women, while VT was 29.4 +/- 3.0 mL.kg.min in men and 28.8 +/- 4.6 mL.kg.min in women. The VO2 during rock climbing was 28.3 +/- 1.5 mL.kg.min in men and 27.5 +/- 3.7 mL.kg.min in women. The HR during rock climbing was 144 +/- 16 b.min in men and 164 +/- 13 b.min in women. The aerobic profile was classified from excellent to superior in accordance with the standards of the American College of Sports Medicine (ACSM). The exercise intensity (VO2 during rock climbing expressed as a percentage of VO2peak) was 70 +/- 6% in men and 72 +/- 8% in women. Moreover, the energy expenditure was 1000-1500 kcal per week. In conclusion, noncompetitive rock climbing has proved to be a typical aerobic activity. The intensity of exercise is comparable to that recommended by the American College of Sports Medicine to maintain good cardiorespiratory fitness.  相似文献   

7.
A follow-up study was conducted to re-evaluate a group of obese middle-aged women (n = 13), eight of whom had completed an 18-wk supervised (3 d/wk) plus unsupervised (2 d/wk) conditioning intervention program (at least 90 min per day) as the exercise plus diet group; while five of the remainder served as the control group. Each session had included a 25- to 45-min jog/run at intensities between the heart rate (HR) corresponding to lactate threshold (LT) and that slightly above the HR @ LT. During 1 year following the program, the women participated in self-controlled training such as running, aerobic dancing, or jazz dancing 2.6 +/- 1.1 d/wk. Dietary intake averaged approximately 1736 +/- 152 kcal/d at the pre-treatment, 1404 +/- 124 kcal/d at the post-treatment, and 1645 +/- 147 kcal/d 1 year after the post-treatment. Interestingly however, oxygen uptake corresponding to LT (VO2 @ LT), maximal oxygen uptake (VO2max), weight, systolic blood pressure, and the ratio of high-density lipoprotein cholesterol to total cholesterol (HDLC/TC) observed 1 year after the post-treatment were significantly different from the original pre-treatment and/or mid-treatment values. For instance, the significant 42% increase (14.7 +/- 2.4----21.3 +/- 4.2 ml/kg/min) in VO2 @ LT and 18% increase (0.284 +/- 0.106----0.335 +/- 0.093) in HDLC/TC from the pre-test to post-test were maintained throughout the 1-year follow-up period, suggesting no detrimental effect either on a cardiorespiratory fitness factor or on an anti-atherogenic factor. These findings indicate that physiologic status of obese middle-aged women engaged in a conditioning intervention program may not regress to pre-treatment status for at least one year after completion; provided they continue to participate in a 2.6-d/wk self-controlled training program with dietary intake of 1600-1700 kcal/d. Another interesting finding was that significant relationships existed between individual changes (delta) in training frequency and individual changes (delta) in physiologic variables (i.e., delta VO2max, delta VO2 @ LT, delta WT, delta fat, and delta HDLC/TC) during the follow-up study. It is concluded that, although the improved physiologic status of obese women can be maintained fairly well during 1 year following the conditioning program; continuation of training (3 d/wk or more) should be critical, either supervised or self-controlled, for successful maintenance of lost weight (8.2 +/- 2.9 kg) and improved fitness.  相似文献   

8.
9.
Junkyard training involves heavy, cumbersome implements and nontraditional movement patterns for unique training of athletes. This study assessed the metabolic demands of pushing and pulling a 1,960-kg motor vehicle (MV) 400 m in an all-out maximal effort. Six male, strength-trained athletes (29 +/- 5 years; 89 +/- 12 kg) completed 3 sessions. Sessions 1 and 2 were randomly assigned and entailed either pushing or pulling the MV. Oxygen consumption (VO(2)) and heart rate (HR) were measured continuously. Blood lactate was sampled immediately prior to and 5 minutes after sessions 1 and 2. Vertical jump was assessed immediately prior to and after sessions 1 and 2. During session 3 a treadmill VO(2)max test was conducted. No significant differences (p < 0.05) in VO(2), HR, or blood lactate occurred between pushing and pulling efforts. VO(2) and HR peaked in the first 100 m, and from 100 m on, VO(2) and HR averaged 65% and 96% of treadmill maximum values (VO(2)max = 50.3 ml x kg(-1) x min(-1); HRmax = 194 b x min(-1)). Blood lactate response from the push and pull averaged 15.6 mmol.L(-1), representing 131% of the maximal treadmill running value. Vertical jump decreased significantly pre to post in both conditions (mean = -10.1 cm, 17%). All subjects experienced dizziness and nausea. In conclusion, a 400-m MV push or pull is an exhausting training technique that requires a very high anaerobic energy output and should be considered an advanced form of training. Strength coaches must be aware of the ultra-high metabolic and neuromuscular stresses that can be imposed by this type of training and take these factors into consideration when plotting individualized training and recovery strategies.  相似文献   

10.
Pulmonary clearance of 99mTc-DTPA: influence of background activity   总被引:4,自引:0,他引:4  
To study the effects of circulatory occlusion on the time course and magnitude of postexercise O2 consumption (VO2) and blood lactate responses, nine male subjects were studied twice for 50 min on a cycle ergometer. On one occasion, leg blood flow was occluded with surgical thigh cuffs placed below the buttocks and inflated to 200 mmHg. The protocol consisted of a 10-min rest, 12 min of exercise at 40% peak O2 consumption (VO2 peak), and a 28-min resting recovery while respiratory gas exchange was determined breath by breath. Occlusion (OCC) spanned min 6-8 during the 12-min work bout and elicited mean blood lactate of 5.2 +/- 0.8 mM, which was 380% greater than control (CON). During 18 min of recovery, blood lactate after OCC remained significantly above CON values. VO2 was significantly lower during exercise with OCC compared with CON but was significantly higher during the 4 min of exercise after cuff release. VO2 was higher after OCC during the first 4 min of recovery but was not significantly different thereafter. Neither total recovery VO2 (gross recovery VO2 with no base-line subtraction) nor excess postexercise VO2 (net recovery VO2 above an asymptotic base line) was significantly different for OCC and CON conditions (13.71 +/- 0.45 vs. 13.44 +/- 0.61 liters and 4.93 +/- 0.26 vs. 4.17 +/- 0.35 liters, respectively). Manipulation of exercise blood lactate levels had no significant effect on the slow ("lactacid") component of the recovery VO2.  相似文献   

11.
Snowshoeing is currently ranked as one of the top 20 participatory sports in the United States, and the number of participants almost tripled, from 440,000 to 1.2 million in 1998. Despite this large increase in participation, no scientific evidence exists to quantify any physiologic response to the activity. Therefore, the purpose of this investigation was to assess the energy expenditure of snowshoeing at selected low-level speeds and evaluate its acceptability as a form of aerobic conditioning exercise. Ten habitually active subjects (7 men, 3 women, mean age = 24 +/- 3.9 years, mass = 76.6 +/- 14.5 kg, height = 173.7 +/- 9.6 cm) were recruited. Steady state heart rate data were determined from 2 treadmill tests at 4 and 6 mph. Steady state heart rates at 4 mph and 6 mph from treadmill speeds were then reproduced outdoors under 2 snow conditions, packed, and unpacked snow, while caloric expenditure and speed were determined. Expired gases were collected in Douglas bags for both snowshoe and treadmill trials and then analyzed and corrected indoors for the fractional concentrations of carbon dioxide and oxygen. Data analyses indicate that caloric expenditure during snowshoeing may be considerably higher than previously reported. Snowshoeing on packed snow at 2.95 mph elicited a similar heart rate and energy expenditure response as walking on a treadmill at 4 mph or snowshoeing in unpacked snow at 2.04 mph (Vo(2) = 18.18 +/- 0.8 ml x kg(-1) x min(-1)). Snowshoeing on packed snow at 3.97 mph elicited the same heart rate and energy expenditure response as walking on a treadmill at 6 mph or snowshoeing on unpacked snow at 2.87 mph (Vo(2) = 36.72 +/- 0.8 ml x kg(-1) x min(-1)). Furthermore, increasing walking speed on snow by just 1 mph at slow speeds (2 and 3 mph) resulted in approximately twice the energy expenditure. Our data indicate that current estimates of energy expenditure while snowshoeing underestimate by greater than 50%. Apparently the energy expenditure during snowshoeing is much higher than previously considered and varies considerably because of snow terrain. Furthermore, energy expenditure levels similar to walking can be achieved on snowshoes at much slower speeds. This study represents an original investigation into energy expenditure during snowshoeing.  相似文献   

12.
The purpose of this investigation was to relate the heart rate and lactate response during simulated cycling time trials to incremental laboratory tests. Subjects (N = 10) were tested for .V(O2)max (56.1 +/- 2.4 ml.kg(-1).min(-1) ) and lactate threshold during incremental tests to exhaustion. Power output and heart rate (HR) at threshold was assessed by 3 methods: lactate deflection point (LaT), onset of blood lactate accumulation (OBLA), and the point on the lactate curve at maximal distance from a line connecting starting and finishing power output (Dmax). Power output determined at these thresholds was 282.1 +/-4.2, 302.5 +/-1.3, and 296.0 +/- 1.8 W, respectively, whereas HR was determined to be 88.6 +/- 0.01, 92.2 +/- 0.01, and 91.0 +/- 0.01% of maximum, respectively. Power output and HR were significantly lower for LaT than for the other 2 methods (p < 0.05). On separate visits, cyclists were instructed to perform maximum efforts for 30 and 60 minutes (30TT and 60TT). Lactate, HR, perceived exertion (RPE), and metabolic variables were measured during the time trials. During the 30TT, participants sustained a significantly higher lactate level (5.29 +/- 0.3 vs. 3.43 +/- 0.3 mmol.L(-1), p < 0.001), percentage of maximum HR (%HRmax) (90.3 +/- 0.02 vs. 84.6 +/- 0.01, p = 0.009), and overall RPE (15.5 +/- 0.5 vs. 14.4 +/- 0.5, p = 0.009), than during the 60TT. .V(O2) was not significantly different between the time trials; however, .V(CO2) (p = 0.008), ventilation (p = 0.004), and respiratory exchange ratio (p = 0.02) were significantly higher during the 30TT. Correlations were found between HR at LaT (r = 0.78), OBLA (r = 0.78), and Dmax (r = 0.71) for the 60TT, but not for the 30TT. These data suggest that despite a large variability in blood lactate during time trial efforts of 30 and 60 minutes (from 1.8 to 10.8 mmol.L(-1)), HR was consistently 90% of maximum for the 30TT and 85% for the 60TT. HR during the 30TT was approximated by HR corresponding to OBLA and Dmax, whereas HR during 60TT was approximated by LaT.  相似文献   

13.
The purpose of this study was to compare energy expenditure of resistance and aerobic exercise matched for total time and relative intensity. Ten trained men (24.3 +/- 3.8 years) performed 30 minutes of intermittent free-weight squatting at 70% of 1 repetition maximum and continuous cycling at 70% of Vo(2)max, in a crossover design. Vo(2), kilocalories (kcal), work, respiratory exchange ratio (RER), V(E), heart rate (HR), and rating of perceived exertion (RPE) data were recorded. Cycling resulted in greater total Vo(2) (87 +/- 3 vs. 53 +/- 3 L, mean +/- SEM), kcal expenditure (441 +/- 17 vs. 269 +/- 13), and work (335 +/- 11 vs. 128 +/- 11 kJ) than squatting did. The mean RER was greater during squatting (1.03 +/- 0.01 vs. 0.94 +/- 0.01), and the V(E) values were greater during cycling (82 +/- 3 vs. 70 +/- 3 L.min(-1)). The HR response was nearly identical between exercise modes (160 +/- 5 vs. 160 +/- 4 bpm), whereas the RPE was greater during squatting (16.96 +/- 0.41 vs. 14.88 +/- 0.42). These data suggest that although lower than similarly matched aerobic exercise, resistance exercise resulted in an energy cost that would meet the recommendations for kcal expenditure as suggested by the American College of Sports Medicine, if performed 4-5 days per week. These findings should be considered by coaches and trainers working with individuals mutually interested in muscular development and weight management, because programs of structured resistance exercise may assist with both.  相似文献   

14.
The effect of warm-up exercise on energy metabolism and muscle glycogenolysis during sprint exercise (Spr) was examined in six fit Standardbred horses exercised at 115% of maximal O(2) consumption (VO(2 max)) until fatigued, 5 min after each of three protocols: 1) no warm-up (NWU); 2) 10 min at 50% of VO(2 max) [low-intensity warm-up (LWU)]; and 3) 7 min at 50% VO(2 max) followed by 45-s intervals at 80, 90, and 100% VO(2 max) [high-intensity warm-up (HWU)]. Warm-up increased (P < 0.0001) muscle temperature (T(m)) at the onset of Spr in LWU (38.3 +/- 0.2 degrees C) and HWU (40.0 +/- 0. 3 degrees C) compared with NWU (36.6 +/- 0.2 degrees C), and the rate of rise in T(m) during Spr was greater in NWU than in LWU and HWU (P < 0.01). Peak VO(2) was higher and O(2) deficit lower (P < 0. 05) when Spr was preceded by warm-up. Rates of muscle glycogenolysis were lower (P < 0.05) in LWU, and rates of blood and muscle lactate accumulation and anaerobic ATP provision during Spr were lower in LWU and HWU compared with NWU. Mean runtime (s) in LWU (173 +/- 10 s) was greater than HWU (142 +/- 11 s) and NWU (124 +/- 4 s) (P < 0. 01). Warm-up was associated with augmentation of aerobic energy contribution to total energy expenditure, decreased glycogenolysis, and longer run time to fatigue during subsequent sprint exercise, with no additional benefit from HWU vs. LWU.  相似文献   

15.
We studied glucose oxidation (Glu(ox)) and glycogen degradation during 140 min of constant-load [steady-state (SS)] and variable-intensity (VI) cycling of the same average power output, immediately followed by a 20-km performance ride [time trial (TT)]. Six trained cyclists each performed four trials: two experimental bouts (SS and VI) in which muscle biopsies were taken before and after 140 min of exercise for determination of glycogen and periodic acid-Schiff's staining; and two similar trials without biopsies but incorporating the TT. During two of the experimental rides, subjects ingested a 5 g/100 ml [U-(14)C]glucose solution to determine rates of Glu(ox). Values were similar between SS and VI trials: O(2) consumption (3.08 +/- 0.02 vs. 3.15 +/- 0.03 l/min), energy expenditure (901 +/- 40 vs. 904 +/- 58 J x kg(-1) x min(-1)), heart rate (156 +/- 1 vs. 160 +/- 1 beats/min), and rating of perceived exertion (12.6 +/- 0.6 vs. 12.7 +/- 0.7). However, the area under the curve for plasma lactate concentration vs. time was significantly greater during VI than SS (29.1 +/- 3.9 vs. 24.6 +/- 3. 7 mM/140 min; P = 0.03). VI resulted in a 49% reduction in total muscle glycogen utilization vs. 65% for SS, while total Glu(ox) was higher (99.2 +/- 5.3 vs. 83.9 +/- 5.2 g/140 min; P < 0.05). The number of glycogen-depleted type I muscle fibers at the end of 140 min was 98% after SS but only 59% after VI. Conversely, the number of type II fibers that showed reduced periodic acid-Schiff's staining was 1% after SS vs. 10% after VI. Despite these metabolic differences, subsequent TT performance was similar (29.14 +/- 0.9 vs. 30.5 +/- 0.9 min for SS vs. VI). These results indicate that whole body metabolic and cardiovascular responses to 140 min of either SS or VI exercise at the same average intensity are similar, despite differences in skeletal muscle carbohydrate metabolism and recruitment.  相似文献   

16.
Between-set rest intervals (RIs) may influence accumulated fatigue, work volume, and therefore oxygen uptake (VO2) and energy expenditure (EE) during resistance training. The study investigated the effects of different RIs on VO2 and EE in resistance exercises performed with multiple sets and recruiting large and small-muscle mass. Ten healthy men performed 4 randomized protocols (5 sets of 10 repetitions with 15 repetition maximum workloads in either horizontal leg press [LP] or chest fly [CF] with an RI of 1 and 3 minutes). The VO2 was measured at rest, within sets, and during 90-minute postexercise recovery (excess postexercise oxygen consumption [EPOC]). The EE was estimated from VO2net (total VO2 - rest VO2). The VO2 increased in all protocols, being higher within the exercises and during EPOC in the LP than in the CF regardless of the RI. The 1-minute RI induced higher accumulated VO2 during LP (p < 0.05) but not during CF. The EPOC lasted approximately 40 minutes after LP1, LP3, and CF1, being longer than after CF3 (20 minutes, p < 0.05). Total EE was mainly influenced by muscle mass (p < 0.001) (LP3 = 91.1 ± 13.5 kcal ~ LP1 = 88.7 ± 18.4 kcal > CF1 = 50.3 ± 14.4 kcal ~ CF3 = 54.1 ± 12.0 kcal). In conclusion, total VO2 was always higher in LP than in CF. Shortening RI enhanced the accumulated fatigue throughout sets only in LP and increased VO2 in the initial few minutes of EPOC, whereas it did not influence total VO2 and EE in both exercises. Therefore, (a) the role of RI in preventing early fatigue seems to be more important when large-muscle groups are recruited; (b) resistance exercises recruiting large-muscle mass induce higher EE because of a greater EPOC magnitude.  相似文献   

17.
The purpose of this study was to determine the metabolic equivalents (METs) for scooter exercise (riding a scooter, scootering) and to examine the energy expenditure and the heart rate response, so that the results can be used in health promotion activities. Eighteen young adults (10 males and 8 females) participated in scootering on a treadmill at three different speeds for six minutes each. Before, during, and after the exercise, pulmonary ventilation, oxygen uptake (VO(2)), carbon dioxide product, respiratory exchange ratio (R), and heart rate (HR) were measured. These measurements kept steady states from the 3rd to 6th minute of each different speed session. The MET values acquired during scootering at 80 m.min(-1), 110 m.min(-1), and 140 m.min(-1) were 3.9, 4.3, and 5.0, respectively. Calculated using VO(2) (ml.kg(-1).min(-1))x[4.0+R], the energy consumption for scootering at each speed was 67.0+/-10.6, 73.3+/-10.2, and 84.8+/-7.9 cal.kg(-1).min(-1), respectively. The regression equation between scootering speed (X, m.min(-1)) and VO(2) (Y, ml.kg(-1).min(-1)) is Y=0.062X+8.655, and the regression equation between HR (X, beats.min(-1)) and VO(2)reserve (Y, %) is Y=0.458X-11.264. These equations can be applied to both females and males. Thus, scootering at 80 to 140 m.min(-1) might not be sufficient to improve the cardiorespiratory fitness of young male adults similar to the participants, but it may contribute many healthy benefits to most female adults and even male adults, and improve their health and fitness at the faster speeds.  相似文献   

18.
Increased availability of circulating free fatty acids (FFA) inhibits the rate of glycolysis in heart and resting skeletal muscle (Randle effect). Whether elevated FFA may play a role in decreasing carbohydrate oxidation during prolonged exercise in humans is more controversial. Using respiratory exchange measurements, we measured substrate utilization during 2.5 h of exercise at approximately 44 +/- 1% maximal O2 uptake (VO2 max) in the presence or absence of elevated FFA levels. After 30 min of base-line determinations, 1,000 U heparin was given intravenously and a 3-h constant infusion of Intralipid 10% (150 g/h) and heparin (500 U/h) was started. After an additional 30 min of rest, subjects exercised for 2.5 h (study 1, n = 6). In another five subjects (study 2) 100 g glucose was ingested after 30 min of exercise. The same protocols (studies 1 and 2) were also performed during a 0.9%-saline infusion. During exercise, without glucose ingestion, higher FFA concentrations prevailed during the Intralipid infusion (1,122 +/- 40 vs. 782 +/- 65 mumol/l), but the relative contributions of carbohydrate (49 +/- 4 vs. 50 +/- 4%) or lipid (49 +/- 4 vs. 47 +/- 6%) oxidation to the total energy expenditure were different only during the first 30 min of exercise. Similarly, higher FFA levels (1,032 +/- 62 vs. 568 +/- 46 mumol/l) did not alter the relative contributions of carbohydrate (62 +/- 4 vs. 69 +/- 2%) or lipid (36 +/- 4 vs. 29 +/- 2%) oxidation to the total energy expenditure after glucose feeding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Despite the popularity of resistance training (RT), an accurate method for quantifying its metabolic cost has yet to be developed. We applied indirect calorimetry during bench press (BP) and parallel squat (PS) exercises for 5 consecutive minutes at several steady state intensities for 23 (BP) and 20 (PS) previously trained men. Tests were conducted in random order of intensity and separated by 5 minutes. Resultant steady state VO2 data, along with the independent variables load and distance lifted, were used in multiple regression to predict the energy cost of RT at higher loads. The prediction equation for BP was Y' = 0.132 + (0.031)(X1) + (0.01)(X2), R2 = 0.728 and S(xy) = 0.16; PS can be predicted by Y' = -1.424 + (0.022)(X1) + (0.035)(X2), R2 = 0.656 and S(xy) = 0.314; where Y' is VO2 X1 is the load measured in kg and X2 is the distance in cm. Based on a respiratory exchange ratio (RER) of 1.0 and a caloric equivalent of 5.05 kcal x L(-1), VO2 was converted to caloric expenditure (kcal x min(-1)). Using those equations to predict caloric cost, our resultant values were significantly larger than caloric costs of RT reported in previous investigations. Despite a potential limitation of our equations to maintain accuracy during very high-intensity RT, we propose that they currently represent the most accurate method for predicting the caloric cost of bench press and parallel squat.  相似文献   

20.
Cardiorespiratory and blood lactate (La) responses to prolonged submaximal running at an intensity relative to lactate threshold (LT) were examined in 15 recreational runners, aged 19 to 32. In test 1 where treadmill speed was progressively incremented by 10-20m/min until exhaustion, oxygen uptake at the LT (VO2 @ LT: 2.34 +/- 0.331/min or 41.6 +/- 5.7 ml/kg/min) and VO2max (3.58 +/- 0.341/min or 63.6 +/- 5.5 ml/kg/min) were measured. In test 2, the subject was required to run on the treadmill for 1 hour at a fixed velocity (Vt) which corresponded to his Vt @ LT. As expected, mean VO2 ranged during the 1-h submaximal running from 2.31 +/- 0.411/min or 63.0 +/- 7.8% VO2max at min 10-20 to 2.52 +/- 0.351/min or 69.2 +/- 6.2% VO2max at min 50-60, both of which were close to VO2 @ LT (65.2 +/- 4.4% VO2max). The slight decrease in blood La was found from min 20 to min 60, and this was accompanied by a parallel decline in respiratory exchange ratio. Shifts in the energy substrate toward a reliance on fat oxidation may occur during the course of 1-h running at Vt @t LT. The small oxygen debt observed after the 1-h running may confirm the assumption that prolonged running at Vt at LT would be performed in an almost fully aerobic steady state. We conclude that prolonged running at Vt @ LT may possibly maximize health-related benefits in the healthy adult.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号