首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experiments were conducted to delineate the vascular effector systems that contribute to setting mesenteric vascular tone in swine during the first postnatal month. Terminal mesenteric arteries (TMA), which function as resistance vessels, were studied in vitro with a microvascular perfusion system allowing independent pressure and flow manipulation. When pressure was varied 0-100 mmHg in the absence of flow, TMA from 1-day-old animals demonstrated myogenic vasoconstriction, whereas TMA from 40-day-old animals did not. In 1- but not 40-day-old TMA, the endothelin A (ET(A)) receptor antagonist BQ-610 shifted the pressure-diameter curve upward, whereas the ET(B) receptor antagonist BQ-788 and the L-arginine analog N(G)-monomethyl-L-arginine (L-NMMA) shifted the curve downward; in all instances, myogenic vasoconstriction was preserved. Flow eliminated myogenic vasoconstriction in 1-day-old TMA, i.e., diameter increased as a function of pressure. The effect of BQ-610 was lost under flow conditions; however, BQ-788 and N-acyl-L-Trp-3,5-bis-(trifluoromethyl) benzyl ester, an antagonist specific to the substance P neurokinin-1 (NK(1)) receptor, shifted the pressure-diameter curve downward in the presence of flow, whereas L-NMMA restored myogenic vasoconstriction. Adding flow had no effect on the pressure-diameter relationship in 40-day-old TMA. Other blocking agents, including prazosin, losartan, indomethacin, and charybdotoxin, had no effect on the pressure-diameter relationship in either age group under flow or no-flow conditions. Constitutive production of nitric oxide (NO) and endothelin-1 participates in setting resistance in 1-day-old TMA, and important stimulants to NO production include flow and activation of ET(B) and NK(1) receptors. In contrast, 40-day-old TMA act as passive conduits in which the elastic properties of the vessel are the primary determinant of diameter.  相似文献   

2.
Mammalian small arteries exhibit pressure-dependent myogenic behaviour characterised by an active constriction in response to an increased transmural pressure or an active dilatation in response to a decreased transmural pressure. This study aimed to determine whether pressure-dependent myogenic responses are a functional feature of amphibian arteries. Mesenteric and skeletal muscle arteries from the common European frog (Rana temporaria) were cannulated at either end with two fine glass micropipettes in the chamber of an arteriograph. Arterial pressure-diameter relationships (5-40 mmHg) were determined in the presence and absence of Ca2+. All arteries dilated passively with increasing pressure in the absence of Ca2+. In the presence of Ca2+ proximal mesenteric branches and tibial artery branches dilated with increasing transmural pressure but tone (p < 0.05) was evident in both arteries. A clear myogenic response to a step increase or decrease in pressure was observed in small distal arteries (6 of 13 mesenteric and 7 of 10 sciatic branches) resulting in significantly (p < 0.05) narrower diameters in Ca2+ in the range 10-40 mmHg in mesenteric and 20-40 mmHg in sciatic arteries, respectively. The results demonstrate that arteries of an amphibian can generate spontaneous pressure-dependent tone. This is the first study to demonstrate myogenic contractile behaviour in arteries of nonmammalian origin.  相似文献   

3.
Mechanisms of mechanically induced venous tone and its interaction with the endothelium and key vasoactive neurohormones are not well established. We investigated the contribution of the endothelium, l-type voltage-operated calcium channels (L-VOCCs), and PKC and Rho kinase to myogenic reactivity in mesenteric vessels exposed to increasing transmural pressure. The interaction of myogenic reactivity with norepinephrine (NE) and endothelin-1 (ET-1) was also investigated. Pressure myography was used to study isolated, cannulated, third-order rat mesenteric small veins and arteries. NE and ET-1 concentration response curves were constructed at low, intermediate, and high transmural pressures. Myogenic reactivity was not altered by nitric oxide synthase inhibition with N(ω)-nitro-L-arginine (L-NNA; 100 μM) or endothelium removal in both vessels. L-VOCCs blockade (nifedipine, 1 μM) completely abolished arterial tone, while only partially reducing venous tone. PKC (chelerythrine, 2.5 μM) and Rho kinase (Y27632, 3 μM) inhibitors largely abolished venous and arterial myogenic reactivity. There was no significant difference in the sensitivity of NE or ET-1-induced contractions within vessels. However, veins were more sensitive to NE and ET-1 when compared with corresponding arteries at low, intermediate, and high transmural pressures, respectively. These results suggest that 1) myogenic factors are important contributors to net venous tone in mesenteric veins; 2) PKC and Rho activation are important in myogenic reactivity in both vessels, while l-VOCCs play a limited role in the veins vs. the arteries, and the endothelium does not appear to modulate myogenic reactivity in either vessel type; and 3) mesenteric veins maintain an enhanced sensitivity to NE and ET-1 compared with the arteries when studied under conditions of changing transmural distending pressure.  相似文献   

4.
The objectives of this study were to evaluate the myogenic behavior of blood vessels and their interaction within the coronary arterial tree and to evaluate the possible role of the myogenic response in autoregulation. The model consists of 10 compartments in series, each representing a class of vessel sizes. Diameter and resistance in each class are determined by their value at full dilation (d(p,) R(p)) and by the myogenic response. Three distributions of R(p) and three distributions of myogenic strength, M(i) (slope of pressure-diameter curve, range -0.05 to -0.4%/mmHg) were evaluated (9 cases). It was found that larger vessels attenuate the myogenic activity of smaller vessels and that myogenic responsiveness is sufficient to achieve autoregulation. When M(i) has a maximum in vessels of 84 microm, the maximum effect of perfusion pressure on active diameter occurs in vessels between 123 and 181 microm, depending on the distribution of R(p). Distribution of resistance and control mechanisms in the coronary arterial tree are important for interpretation of individual vessel responses as observed in vivo.  相似文献   

5.
Microgravity is associated with an impaired cardiac output response to orthostatic stress. Mesenteric veins are critical in modulating cardiac filling through venoconstriction. The purpose of this study was to determine the effects of simulated microgravity on the capacitance of rat mesenteric small veins. We constructed pressure-diameter relationships from vessels of 21-day hindlimb-unweighted (HLU) rats and control rats by changing the internal pressure and measuring the external diameter. Pressure-diameter relationships were obtained both before and after stimulation with norepinephrine (NE). The pressure-diameter curves of HLU vessels were shifted to larger diameters than control vessels. NE (10(-4) M) constricted veins from control animals such that the pressure-diameter relationship was significantly shifted downward (i.e., to smaller diameters at equal pressure). NE had no effect on vessels from HLU animals. These results indicate that, after HLU, unstressed vascular volume may be increased and can no longer decrease in response to sympathetic stimulation. This may partially underlie the mechanism leading to the exaggerated fall in cardiac output and stroke volume seen in astronauts during an orthostatic stress after exposure to microgravity.  相似文献   

6.
Exercise capacity and skeletal muscle blood flow during exercise are reduced with advancing age. This reduction in blood flow capacity may be related to increased reactivity of skeletal muscle resistance vessels to vasoconstrictor stimuli. The purpose of this study was to test the hypothesis that aging results in increased vasoconstrictor responses of skeletal muscle resistance arterioles. First-order (1A) arterioles (90-220 microm) from the gastrocnemius and soleus muscles of young (4 mo) and aged (24 mo) Fischer-344 rats were isolated, cannulated, and pressurized via hydrostatic reservoirs. Vasoconstriction in response to increases in norepinephrine (NE; 1 x 10(-9)-1 x 10(-4) M) and KCl (20-100 mM) concentrations and increases in intraluminal pressure (10-130 cmH(2)O) were evaluated in the absence of flow. Responses to NE and KCl were similar in both soleus and gastrocnemius muscle arterioles from young and aged rats. In contrast, active myogenic responses to changes in intraluminal pressure were diminished in soleus and gastrocnemius arterioles from aged rats. To assess whether alterations in the mechanical properties of resistance arterioles underlie altered myogenic responsiveness, passive diameter responses to pressure and mechanical stiffness were evaluated. There was no effect of age on the structural behavior (passive pressure-diameter relationship) or stiffness of arterioles from either the soleus or gastrocnemius muscles. These results suggest that aging does not result in a nonspecific decrease in vasoconstrictor responsiveness of skeletal muscle arterioles. Rather, aging-induced adaptations of vasoreactivity of resistance arterioles appear to be limited to mechanisms that are uniquely involved in the signaling of the myogenic response.  相似文献   

7.
To determine whether simulated microgravity in rats is associated with vascular dysfunction, we measured responses of isolated, pressurized mesenteric resistance artery segments (157- to 388-microm ID) to vasoconstrictors, pressure, and shear stress after 28-day hindlimb suspension (HS). Results indicated no differences between HS and control (C) groups in 1) sensitivity or maximal responses to vasoconstrictors (norepinephrine, phenylephrine, serotonin, KCl); 2) ID, external diameter, or ratio of wall thickness to ID; 3) distensibility; or 4) vasodilatory responses to shear stress. Myogenic tone was attenuated (P < 0.05) in HS arteries vs. C, as evidenced by 1) decreased magnitude of tone in larger vessels (second-order branch off superior mesenteric artery, 261- to 388-microm ID) at pressures >/=40 mmHg in the presence of phenylephrine (10(-7) M) and 2) decreased magnitude of tone in smaller vessels (third-order branch off superior mesenteric artery, 157- to 277-microm ID), which exhibited spontaneous tone, at pressures > or =70 mmHg. This attenuation of myogenic tone after HS could contribute to orthostatic intolerance because myogenic tone contributes to the overall tone of resistance arteries.  相似文献   

8.
In the rat, the spleen is a major site of fluid efflux out of the blood. By contrast, the mesenteric vasculature serves as a blood reservoir. We proposed that the compliance and myogenic responses of these vascular beds would reflect their different functional demands. Mesenteric and splenic arterioles ( approximately 150-200 microm) and venules (<250 microm) from rats anesthetized with pentobarbital sodium were mounted in a pressurized myograph. Mesenteric arterial diameter decreased from 146 +/- 6 to 133 +/- 6 microm on raising intraluminal pressures from 80 to 120 mmHg. This response was enhanced in the presence of N(omega)-nitro-l-arginine methyl ester (l-NAME; 139 +/- 6 to 112 +/- 7 microm). There was no such myogenic response in the splenic arterioles, except in the presence of l-NAME (194 +/- 4 to 164 +/- 4.2 microm). We propose that, whereas mesenteric arterioles exhibit myogenic responses, this is normally masked by NO-mediated dilation in the splenic vessels. The mesenteric venules were highly distensible (active, 184 +/- 15 to 320 +/- 30.9 microm; passive in Ca(2+)-free media, 209 +/- 31 to 344 +/- 27 microm; 4-8 mmHg) compared with the splenic vessels (active, 169 +/- 11 to 184 +/- 16 microm; passive, 187 +/- 12 to 207 +/- 17 microm). We conclude that, in response to an increase in perfusion pressure, mesenteric arterial diameter would decrease to limit the changes in flow and microvascular pressure. In addition, mesenteric venous capacitance would increase. By contrast, splenic arterial diameter would increase, while there would be little change in venous diameter. This would enhance the increase in intrasplenic microvascular pressure and increase fluid extravasation.  相似文献   

9.
The mechanisms underlying vascular adaptations in pregnancy remain to be fully elucidated. One of the contributory mechanisms for reduced vascular tone may be a reduction of myogenic tone. Myogenic tone was assessed as the difference between internal diameter in the presence and absence of external calcium at different intramural pressure steps (60-100 mmHg). Myogenic responses were reduced in resistance-sized mesenteric and main uterine arteries in late pregnant compared with nonpregnant C57BL/6J mice. In vessels from pregnant, but not nonpregnant mice, the myogenic response was enhanced by preincubation with nitric oxide (NO) synthase inhibitor N(G)-nitro-l-arginine methyl ester, was further elevated by the gap junction inhibitor 18-alpha glycyrrhetinic acid, but was unaltered by the prostaglandin H synthase inhibitor meclofenamate. Endothelium removal enhanced myogenic tone only in the vessels from pregnant animals, thus confirming the role of the endothelium in modulating myogenic tone in pregnancy. These results suggest that endothelium-derived NO as well as gap junction communications modulate myogenic tone in mouse pregnancy.  相似文献   

10.
Cerebral blood flow (CBF) is maintained constant despite changes in systemic blood pressure (BP) through multiple mechanisms of autoregulation such as vascular myogenic reactivity. Our aim was to determine myogenic characteristics of cannulated middle cerebral arteries (MCA) in male and female stroke-prone spontaneously hypertensive rats (SHRSP) and Wistar-Kyoto rats (WKY) at 12 wk of age under pressurised no-flow conditions. MCA pressure-diameter relationships (20-200 mmHg) were constructed in active (with calcium) and passive (without calcium) conditions, and myogenic and mechanical properties were determined. Myogenic reactivity in WKY (P < 0.05) and SHRSP (P < 0.05) males was impaired compared with their female counterparts. Comparison of SHRSP with WKY in males revealed similar myogenic reactivity, but in females SHRSP exhibited augmented myogenic reactivity (P < 0.05). In both sexes, myogenic tone yielded at lower pressure in SHRSP compared with WKY vessels (120-140 vs. 140-180 mmHg). Stress-strain relationships and elastic moduli in WKY rats showed that vessels were stiffer in females than in males. Conversely, in SHRSP, male vessels were stiffer than female vessels. Comparison of strains in males indicated that stiffness was increased in SHRSP compared with WKY vessels, whereas the converse was observed in females. These findings demonstrate that MCA myogenic and distensibility characteristics exhibit significant sex- and strain-dependent differences. Inappropriate myogenic adaptation and augmented vascular stiffness, particularly in male SHRSP, are potential limiting factors in blood flow autoregulation and may increase the predisposition for stroke-related cerebrovascular events.  相似文献   

11.
Communication between vascular smooth muscle (VSM) cells via low-resistance gap junctions may facilitate vascular function by synchronizing the contractile state of individual cells within the vessel wall. We hypothesized that inhibition of gap junctional communication would impair constrictor responses of mesenteric resistance arteries. Immunohistochemical experiments revealed positive staining for connexin 37 (Cx37) in both endothelium and smooth muscle of rat mesenteric arterioles, whereas connexin 43 (Cx43) immunoreactivity was not detected in the mesenteric vasculature. Administration of the gap junction inhibitory peptide Gap27, which targets Cx37 and Cx43, significantly diminished myogenic vasoconstriction (8.6 +/- 3.8% of passive diameter at 100 Torr) and changes in vessel wall intracellular [Ca2+] of mesenteric resistance arteries compared with vessels treated with either vehicle (physiological saline solution) (33.5 +/- 6.1%) or a control peptide (32.1 +/- 6.5%). Administration of 18alpha-glycyrrhetinic acid, structurally distinct from Gap27, also significantly attenuated myogenic constriction compared with its vehicle control (DMSO) (9.6 +/- 3.2% vs. 23.8 +/- 4.6%). In contrast, phenylephrine-induced vasoconstriction was not altered by gap junction blockers. Attenuated myogenic vasoconstriction resulting from inhibition of gap junctions persisted after disruption of the endothelium. In additional experiments, VSM cell membrane potential was recorded in mesenteric resistance arteries pressurized to 20 or 100 Torr. VSM membrane potential was depolarized at 100 Torr compared with 20 Torr. However, VSM cells in arteries treated with Gap27 were significantly hyperpolarized (-48.6 +/- 1.4 mV) at the higher pressure compared with vehicle (-41.4 +/- 1.5 mV) and Gap20-treated (-38.4 +/- 0.7 mV) vessels. Our findings suggest that inhibition of smooth muscle gap junctions attenuates pressure-induced VSM cell depolarization and myogenic vasoconstriction.  相似文献   

12.
We tested the hypothesis that endothelin acting through the endothelial ET(B) receptor subtype and the nitric oxide (NO) pathway accounts for reduced myogenic reactivity of the renal resistance vasculature during pregnancy. Small renal arteries (100-200 microm) were isolated from virgin and midterm pregnant rats when gestational renal hyperfiltration and vasodilation are maximal in this species. Myogenic reactivity (the adjustment of arterial diameter in response to a change in transmural pressure) was assessed with a pressurized myograph system. A rapid increase in transmural pressure from 60 to 80 mmHg resulted in a 2.4% diameter increase in vessels from virgin compared with an 8.1% increase in arteries from midgestation rats (n = 8 each, P < 0.05). Thus myogenic reactivity is markedly reduced during pregnancy. Incubation with the NO synthase inhibitors, an ET(B) receptor subtype antagonist (RES-701-1), the nonselective ET(A/B) receptor blocker (SB-209670), or endothelial removal abrogated the reduced myogenic reactivity of vessels from gravid rats without affecting myogenic reactivity in arteries from virgin animals. Thus the endothelium mediates the reduced myogenic reactivity of small renal arteries of midgestation rats most likely through the ET(B) receptor subtype and NO pathway.  相似文献   

13.
Diminished constriction of arteries and veins following exposure to microgravity or bed rest is associated with a reduced ability to augment peripheral vascular resistance (PVR) and stroke volume during orthostasis. We tested the hypothesis that small mesenteric arteries and veins, which are not exposed to large pressure shifts during simulated microgravity via head-down tail suspension (HDT), will exhibit decrements in adrenergic constriction after HDT in rats. Small mesenteric arteries and veins from control (Con; n = 41) and HDT (n = 35) male Sprague-Dawley rats were studied in vitro. Vasoactive responsiveness to norepinephrine (NE) in arteries (10(-9) to 10(-4) M) and veins (pressure-diameter responses from 2 to 12 cmH(2)O after incubation in 10(-6) or 10(-4) M NE) were evaluated. Plasma concentrations of atrial (ANP) and NH(2)-terminal prohormone brain (NT-proBNP) natriuretic peptides were also measured. In mesenteric arteries, sensitivity and maximal responsiveness to NE were reduced with HDT. In mesenteric veins there was a diminished venoconstriction to NE at any given pressure in HDT. Plasma concentrations of both ANP and NT-proBNP were increased with HDT, and maximal arterial and venous constrictor responses to NE after incubation with 10(-7) M ANP or brain natriuretic peptide (BNP) were diminished. These data demonstrate that, in a vascular bed not subjected to large hydrodynamic differences with HDT, both small arteries and veins have a reduced responsiveness to adrenergic stimulation. Elevated levels of circulating ANP or NT-proBNP could adversely affect the ability of these vascular beds to constrict in vivo and conceivably could alter the intrinsic constrictor properties of these vessels with long-term exposure.  相似文献   

14.
Interactions between the biomechanical characteristics and pressure-induced active response of coronary microvessels are still not well known. We tested the hypothesis that pressure-dependent biomechanical characteristics of the coronary vascular wall are modulated by the active myogenic response and local vasodilators. We have utilized data obtained previously in isolated rat intramural coronary arterioles (approximately 100 microm in diameter), in which the diameter was investigated as a function of intraluminal pressure (Szekeres et al.: J. Cardiovasc. Pharmacol., 43, 242-249, 2004). To characterize the magnitude of myogenic response, diameter was expressed as percent of passive diameter as a function of pressure (normalized diameter; ND). In addition, circumferential wall stress (WS) and incremental distensibility (ID) were calculated. In control conditions, after an initial increase between 0-30 mm Hg, ND decreased substantially as pressure increased from 30 to 150 mm Hg. Correspondingly, WS gradually increased as a function of pressure (from 0.3 +/- 0.03 to 34.7 +/- 4.4 kPa) exhibiting a plateau phase between 40-80 mm Hg. In contrast, ID decreased and reached negative values (min: -104.9 +/- 21.9 10(-6) m2/N at 50 mm Hg). Inhibition of nitric oxide (NO) synthase by L-NNA decreased basal diameter (approximately 35% at 2 mm Hg), eliminated pressure-induced changes in ND, reduced the slope of pressure-WS curve, and decreased ID at lower pressures. Simultaneous administration of L-NNA and adenosine (which restored initial diameter, i.e. length of smooth muscle) restored--in part--the pressure-induced reduction in ND, reversed the pressure-induced behavior of WS to control, but not that of ID. These results not only confirm that in coronary arterioles wall stress is regulated by the myogenic response, but also suggest that there is interplay between the mechanical behavior of the wall and the myogenic response. Furthermore, the presence of NO seems to be necessary for maintaining a higher distensibility of intramural coronary arterioles allowing increases in diameter to lower pressures, which then activate the myogenic mechanism resulting in constrictions and full development of myogenic tone, as indicated by the presence of negative slope of pressure-diameter curve in the presence of NO.  相似文献   

15.
A possible role for a metabolite of cytochrome P-450 omega-hydroxylase in the initial and sustained phases of the myogenic response in cannulated rat mesenteric small arteries was studied. With slight preconstriction (norepinephrine and neuropeptide Y), pressure was raised from 60 to 100 mmHg, and both initial (within 2 min) and sustained phases (at 10 min) of the myogenic response were quantified. The myogenic response was fully inhibited by D600 (methoxyverapamil). Ketoconazole and 17-octadecanoic acid did not affect the initial phase but inhibited the sustained phase. In contrast, miconazole did not affect either phase. Charybdotoxin and iberiotoxin potentiated the initial phase but eliminated the sustained phase. Apamin, glibenclamide, 4-aminopyridine, and barium had no effect on either phase. The results demonstrate different mechanisms for the initial and sustained phases of the myogenic response of rat mesenteric small arteries. Only the sustained phase appears mediated through a cytochrome P-450 omega-hydroxylase metabolite and calcium-activated K+ channels. However, both phases of the response are dependent on calcium influx through voltage-dependent calcium channels.  相似文献   

16.
Smooth muscle and endothelial cells in the arterial wall are exposed to mechanical stress. Indeed blood flow induces intraluminal pressure variations and shear stress. An increase in pressure may induce a vessel contraction, a phenomenon known as the myogenic response. Many muscular vessels present vasomotion, i.e., rhythmic diameter oscillations caused by synchronous cytosolic calcium oscillations of the smooth muscle cells. Vasomotion has been shown to be modulated by pressure changes. To get a better understanding of the effect of stress and in particular pressure on vasomotion, we propose a model of a blood vessel describing the calcium dynamics in a coupled population of smooth muscle cells and endothelial cells and the consequent vessel diameter variations. We show that a rise in pressure increases the calcium concentration. This may either induce or abolish vasomotion, or increase its frequency depending on the initial conditions. In our model the myogenic response is less pronounced for large arteries than for small arteries and occurs at higher values of pressure if the wall thickness is increased. Our results are in agreement with experimental observations concerning a broad range of vessels.  相似文献   

17.
The present study examined the hypothesis that potassium ions act as an endothelium-derived hyperpolarizing factor (EDHF) released in response to ACh in small mesenteric arteries displaying myogenic tone. Small mesenteric arteries isolated from rats were set up in a pressure myograph at either 60 or 90 mmHg. After developing myogenic tone, responses to raising extracellular potassium were compared to those obtained with ACh (in the presence of nitric oxide synthase and cyclo-oxygenase inhibitors). The effects of barium and oubain, or capsaicin, on responses to raised extracellular potassium or ACh were also determined. The effects of raised extracellular potassium levels and ACh on membrane potential, were measured using sharp microelectrodes in pressurised arteries. Rat small mesenteric arteries developed myogenic tone when pressurised. On the background of vascular tone set by a physiological stimulus (i.e pressure), ACh fully dilated the small arteries in a concentration-dependent manner. This response was relatively insensitive to the combination of barium and ouabain, and insensitive to capsaicin. Raising extracellular potassium produced a more inconsistent and modest vasodilator response in pressurised small mesenteric arteries. Responses to raising extracellular potassium were sensitive to capsaicin, and the combination of barium and ouabain. ACh caused a substantial hyperpolarisation in pressurized arteries, while raising extracellular potassium did not. These data indicate that K+ is not the EDHF released in response to ACh in myogenically active rat mesenteric small arteries. Since the hyperpolarization produced by ACh was sensitive to carbenoxolone, gap junctions are the likely mediator of EDH responses under physiological conditions.  相似文献   

18.
We recently identified sphingosine-1-phosphate (S1P) signaling and the cystic fibrosis transmembrane conductance regulator (CFTR) as prominent regulators of myogenic responsiveness in rodent resistance arteries. However, since rodent models frequently exhibit limitations with respect to human applicability, translation is necessary to validate the relevance of this signaling network for clinical application. We therefore investigated the significance of these regulatory elements in human mesenteric and skeletal muscle resistance arteries. Mesenteric and skeletal muscle resistance arteries were isolated from patient tissue specimens collected during colonic or cardiac bypass surgery. Pressure myography assessments confirmed endothelial integrity, as well as stable phenylephrine and myogenic responses. Both human mesenteric and skeletal muscle resistance arteries (i) express critical S1P signaling elements, (ii) constrict in response to S1P and (iii) lose myogenic responsiveness following S1P receptor antagonism (JTE013). However, while human mesenteric arteries express CFTR, human skeletal muscle resistance arteries do not express detectable levels of CFTR protein. Consequently, modulating CFTR activity enhances myogenic responsiveness only in human mesenteric resistance arteries. We conclude that human mesenteric and skeletal muscle resistance arteries are a reliable and consistent model for translational studies. We demonstrate that the core elements of an S1P-dependent signaling network translate to human mesenteric resistance arteries. Clear species and vascular bed variations are evident, reinforcing the critical need for further translational study.  相似文献   

19.
The inner diameter and wall thickness of rat middle cerebral arteries (MCAs) were measured in vitro in both a pressure-induced, myogenically-active state and a drug-induced, passive state to quantify active and passive mechanical behavior. Elasticity parameters from the literature (stiffness derived from an exponential pressure-diameter relationship, beta, and elasticity in response to an increment in pressure, Einc-p) and a novel elasticity parameter in response to smooth muscle cell (SMC) activation, Einc-a, were calculated. beta for all passive MCAs was 9.11 +/- 1.07 but could not be calculated for active vessels. The incremental stiffness increased significantly with pressure in passive vessels; Einc-p (10(6) dynes/cm2) increased from 5.6 +/- 0.5 at 75 mmHg to 14.7 +/- 2.4 at 125 mmHg, (p < 0.05). In active vessels, Einc-p (10(6) dynes/cm2) remained relatively constant (5.5 +/- 2.4 at 75 mmHg and 6.2 +/- 1.0 at 125 mmHg). Einc-a (10(6) dynes/cm2) increased significantly with pressure (from 15.1 +/- 2.3 at 75 mmHg to 49.4 +/- 12.6 at 125 mmHg, p < 0.001), indicating a greater contribution of SMC activity to vessel wall stiffness at higher pressures.  相似文献   

20.
Administration of the ovarian hormone relaxin to nonpregnant rats vasodilates the renal circulation comparable to pregnancy. This vasodilation is mediated by endothelin (ET), the ET(B) receptor, and nitric oxide. Furthermore, endogenous relaxin mediates the renal vasodilation and hyperfiltration that occur during gestation. The goal of this study was to investigate whether myogenic reactivity of small renal and mesenteric arteries is reduced in relaxin-treated rats comparable to the pregnant condition. Relaxin or vehicle was administered to virgin female Long-Evans rats for 5 days at 4 microg/h, thereby producing midgestational blood levels of the hormone. The myogenic responses of small renal arteries (200-300 microm in diameter) isolated from these animals were evaluated in an isobaric arteriograph system. Myogenic reactivity was significantly reduced in the small renal arteries from relaxin-treated compared with vehicle-treated rats. The reduced myogenic responses were mediated by the ET(B) receptor and nitric oxide since the selective ET(B) receptor antagonist RES-701-1 and the nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester restored myogenic reactivity to virgin levels. The influence of relaxin was not limited to the renal circulation because myogenic reactivity was also reduced in small mesenteric arteries isolated from relaxin-treated rats. Thus relaxin administration to nonpregnant rats mimics pregnancy, insofar as myogenic reactivity of small renal and mesenteric arteries is reduced in both conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号