首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In the past, bile acids were considered to be just detergent molecules derived from cholesterol in the liver. They were known to be important for the solubilization of cholesterol in the gallbladder and for stimulating the absorption of cholesterol, fat-soluble vitamins, and lipids from the intestines. However, during the last two decades, it has been discovered that bile acids are regulatory molecules. Bile acids have been discovered to activate specific nuclear receptors (farnesoid X receptor, preganane X receptor, and vitamin D receptor), G protein coupled receptor TGR5 (TGR5), and cell signaling pathways (c-jun N-terminal kinase 1/2, AKT, and ERK 1/2) in cells in the liver and gastrointestinal tract. Activation of nuclear receptors and cell signaling pathways alter the expression of numerous genes encoding enzyme/proteins involved in the regulation of bile acid, glucose, fatty acid, lipoprotein synthesis, metabolism, transport, and energy metabolism. They also play a role in the regulation of serum triglyceride levels in humans and rodents. Bile acids appear to function as nutrient signaling molecules primarily during the feed/fast cycle as there is a flux of these molecules returning from the intestines to the liver following a meal. In this review, we will summarize the current knowledge of how bile acids regulate hepatic lipid and glucose metabolism through the activation of specific nuclear receptors and cell signaling pathways.  相似文献   

3.
4.
胆汁酸作为一种信号分子通过激活肝、肠道和外周组织中的胆汁酸受体影响体内葡萄糖和脂质的代谢平衡,对于调节肥胖、2型糖尿病和非酒精性脂肪肝等代谢性疾病具有非常重要的意义。胆汁酸与相应核受体,如法尼醇X受体(farnesoid X receptor, FXR)和Takeda G蛋白偶联受体5 (Takeda G protein-coupled receptor 5,TGR5)的相互作用影响了这些代谢性疾病。FXR主要通过影响胆汁酸的合成及转运对非酒精性脂肪肝发挥作用,TGR5则是间接增加褐色脂肪组织中的生热作用,改善肥胖和2型糖尿病。这些调控机制的研究是非常必要的。本文综述了胆汁酸代谢及其对代谢性疾病调控的分子机制的研究进展,以期为科研工作者提供一定的参考。  相似文献   

5.
6.
Secondary bile acids, produced solely by intestinal bacteria, can accumulate to high levels in the enterohepatic circulation of some individuals and may contribute to the pathogenesis of colon cancer, gallstones, and other gastrointestinal (GI) diseases. Bile salt hydrolysis and hydroxy group dehydrogenation reactions are carried out by a broad spectrum of intestinal anaerobic bacteria, whereas bile acid 7-dehydroxylation appears restricted to a limited number of intestinal anaerobes representing a small fraction of the total colonic flora. Microbial enzymes modifying bile salts differ between species with respect to pH optima, enzyme kinetics, substrate specificity, cellular location, and possibly physiological function. Crystallization, site-directed mutagenesis, and comparisons of protein secondary structure have provided insight into the mechanisms of several bile acid-biotransforming enzymatic reactions. Molecular cloning of genes encoding bile salt-modifying enzymes has facilitated the understanding of the genetic organization of these pathways and is a means of developing probes for the detection of bile salt-modifying bacteria. The potential exists for altering the bile acid pool by targeting key enzymes in the 7alpha/beta-dehydroxylation pathway through the development of pharmaceuticals or sequestering bile acids biologically in probiotic bacteria, which may result in their effective removal from the host after excretion.  相似文献   

7.
8.
In liver and intestine, transporters play a critical role in maintaining the enterohepatic circulation and bile acid homeostasis. Over the past two decades, there has been significant progress toward identifying the individual membrane transporters and unraveling their complex regulation. In the liver, bile acids are efficiently transported across the sinusoidal membrane by the Na+ taurocholate cotransporting polypeptide with assistance by members of the organic anion transporting polypeptide family. The bile acids are then secreted in an ATP-dependent fashion across the canalicular membrane by the bile salt export pump. Following their movement with bile into the lumen of the small intestine, bile acids are almost quantitatively reclaimed in the ileum by the apical sodium-dependent bile acid transporter. The bile acids are shuttled across the enterocyte to the basolateral membrane and effluxed into the portal circulation by the recently indentified heteromeric organic solute transporter, OSTα-OSTβ. In addition to the hepatocyte and enterocyte, subgroups of these bile acid transporters are expressed by the biliary, renal, and colonic epithelium where they contribute to maintaining bile acid homeostasis and play important cytoprotective roles. This article will review our current understanding of the physiological role and regulation of these important carriers.  相似文献   

9.
10.
11.
Bile acids are a group of molecular species of acidic steroids with peculiar physical-chemical and biological characteristics. At high concentrations they become toxic to mammalian cells, and their presence is pertinent in the pathogenesis of several liver diseases and colon cancer. Bile acid cytoxicity has been related to membrane damage, but also to nondetergent effects, such as oxidative stress and apoptosis. Strikingly, hydrophilic ursodeoxycholic acid (UDCA), and its taurine-conjugated form (TUDCA), show profound cytoprotective properties. Indeed, these molecules have been described as potent inhibitors of classic pathways of apoptosis, although their precise mode of action remains to be clarified. UDCA, originally used for cholesterol gallstone dissolution, is currently considered the first choice therapy for several forms of cholestatic syndromes. However, the beneficial effects of both UDCA and TUDCA have been tested in other experimental pathological conditions with deregulated levels of apoptosis, including neurological disorders, such as Alzheimer''s, Parkinson''s, and Huntington''s diseases. Here, we review the role of bile acids in modulating the apoptosis process, emphasizing the anti-apoptotic effects of UDCA and TUDCA, as well as their potential use as novel and alternate therapeutic agents for the treatment of apoptosis-related diseases.  相似文献   

12.
Glucocorticoids are regulators of stress response essential for survival. Liver disease can alter this homeostatic mechanism in patients with liver cirrhosis – a finding that might mirror the controversially discussed condition of critical illness related corticosteroid insufficiency.Underlying mechanisms might be shared molecular pathways in both bile acid as well as glucocorticoid metabolism at the level of synthesis, catabolism or the hypothalamus and the pituitary gland. Molecular links include the farnesoid X receptor FXR or the G protein-coupled bile acid receptor TGR5 expressed in the liver and the adrenals.In this review we sum up knowledge on the regulation of adrenal gland function and steroidogenesis, focussing on bile acids and potential alterations under cholestatic conditions, depict molecular links between glucocorticoid and bile acid metabolism and discuss the difficulties of assessment of adrenal function in humans in general and more specifically in liver diseases.  相似文献   

13.
Bile acids (BAs) are cholesterol metabolites that have been extensively studied these last decades. BAs have been classified in two groups. Primary BAs are synthesized in liver, when secondary BAs are produced by intestinal bacteria. Recently, next to their ancestral roles in digestion and fat solubilization, BAs have been described as signaling molecules involved in many physiological functions, such as glucose and energy metabolisms. These signaling pathways involve the activation of the nuclear receptor FXRα or of the G-protein-coupled receptor TGR5. These two receptors have selective affinity to different types of BAs and show different expression patterns, leading to different described roles of BAs. It has been suggested for long that BAs could be molecules linked to tumor processes. Indeed, as many other molecules, regarding analyzed tissues, BAs could have either protective or pro-carcinogen activities. However, the molecular mechanisms responsible for these effects have not been characterized yet. It involves either chemical properties or their capacities to activate their specific receptors FXRα or TGR5. This review highlights and discusses the potential links between BAs and cancer diseases and the perspectives of using BAs as potential therapeutic targets in several pathologies.  相似文献   

14.
Cholesterol homeostasis in mammals involves pathways for biosynthesis, cellular uptake, and hepatic conversion to bile acids. Key genes for all three pathways are regulated by negative feedback control. Uptake and biosynthesis are directly regulated by cholesterol through its inhibition of the proteolytic activation of the sterol regulatory element binding proteins. The conversion of cholesterol into bile acids in the liver is regulated through the bile acid-dependent induction of the negatively acting small heterodimer partner nuclear receptor. In this report, we have shown that the small heterodimer partner also directly regulates cholesterol biosynthesis through inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase but has no effect on low density lipoprotein receptor expression. This has significant metabolic significance, as it provides both a mechanism to independently regulate cholesterol synthesis from uptake (an essential regulatory feature known to occur in vivo) and a pathway for direct regulation of cholesterol biosynthesis by bile acids. This latter feature ensures that the early phase of bile acid synthesis (pre-cholesterol) is in metabolic communication with the later stages of the pathway to properly regulate whole pathway flux. This highlights an important regulatory feature that is shared with other key branched, multienzyme pathways, such as glycolysis, where pathway outflow through pyruvate kinase is regulated by the concentration of a key early intermediate, fructose 1,6-bisphosphate.  相似文献   

15.
胆汁酸功能及其与肠道细菌相互关系   总被引:1,自引:0,他引:1  
胆汁酸具有多种重要生理功能. 近年研究发现,胆汁酸可作为信号分子与褐色脂肪细胞表面受体TGR5结合,可激活法尼酯衍生物X受体(nuclear receptor farnesoid X receptor, FXR)的表达. 通过激活这些不同的信号传导途径,胆汁酸可以分别起到调节体内能量代谢平衡、控制肥胖以及抑制肠道细菌过度增殖的作用. 胆汁酸与人及动物肠道细菌具有复杂的相互关系:肠道细菌对于胆汁酸的转化很重要,除了在胆汁酸的转化中发挥重要作用外,肠道微生物菌群还可以十分有效地水解已被胆汁酸清除的生物体内结合寄生物或异源物质,促进这些物质的活化或肠肝循环. 宿主拥有一些抑制细菌过度增殖的机制,这些机制包括快速转运以及利用抗菌肽、蛋白水解肽和胆汁酸等进行抑菌;而有些肠道细菌在进化中形成一些抗性机制可避免胆汁酸胁迫. 本文主要就胆汁酸控制肥胖以及抑制细菌过度增殖的机制和胆汁酸与肠道细菌相互关系进行了综述.  相似文献   

16.
It is well established that bile acids play important roles in lipid metabolism. In recent decades, bile acids have also been shown to function as signaling molecules via interacting with various receptors. Bile acids circulate continuously through the enterohepatic circulation and go through microbial transformation by gut microbes, and thus bile acids metabolism has profound effects on the liver and intestinal tissues as well as the gut microbiota. Farnesoid X receptor and G protein-coupled bile acid receptor 1 are two pivotal bile acid receptors that highly expressed in the intestinal tissues, and they have emerged as pivotal regulators in bile acids metabolism, innate immunity and inflammatory responses. There is considerable interest in manipulating the metabolism of bile acids and the expression of bile acid receptors as this may be a promising strategy to regulate intestinal health and disease. This review aims to summarize the roles of bile acids and their receptors in regulation of gut health and diseases.  相似文献   

17.
The mechanism and regulation of the degradation of cholesterol into bile acids has attracted increased interest, in particular after the recent discovery that nuclear receptors (farnesoid X receptor and liver X receptor) are involved in the regulation of bile acid synthesis. Recently, it has also been shown that the biosynthesis of bile acids is not exclusively restricted to the liver, and that degradation may start by a hydroxylation of cholesterol in the brain or in other extrahepatic organs. During the past 2 years the genes coding for three of the six enzymes catalysing the first steps in bile acid biosynthesis have been cloned and characterized. These genes and their gene products will be described here.  相似文献   

18.
Bile acids and cholesterol metabolism exhibits distinct daily rhythms and uridine closely associated with bile acids has been well documented. However, how dynamic oral administration of uridine affects bile acid and cholesterol metabolism has not been studied. We conducted the present study to investigate effects of oral administration of uridine in the daytime and nighttime (D-UR and N-UR) on bile acid and cholesterol metabolism-related genes expression in liver and ileum of mice. The results showed that oral administration of uridine in the nighttime (N-UR) reduced serum CHOL and ALT levels at Zeitgeber time (ZT) 4, ZT22, respectively. Compared with D-UR group, the mRNA expression of FXR and SHP genes of liver decreased in N-UR group at ZT10, ZT16, respectively. In addition, oral administration of uridine in the nighttime rhythmically increased the mRNA expression of bile acid transport, cholesterol excretion and decreased the mRNA expression of cholesterol absorption in ileum. Moreover, the expression of nucleotide transport and synthesis genes were also explored in duodenum. Oral administration of uridine in the nighttime rhythmically up-regulated nucleotide transport and synthesis genes expression. In conclusion, these results indicated dynamic oral administration of uridine has effects on the rhythmic fluctuation of cholesterol, bile acid and nucleotide metabolism-related genes. These findings have important physiological and pathophysiological implications, since bile acid and cholesterol metabolism are essential for cell function and closely involved in the development of metabolic syndrome.  相似文献   

19.
Bile acids are synthesized in the liver, stored in gallbladder, and secreted into the intestine to aid in the absorption of lipid-soluble nutrients. In addition, bile acids also actively participate in regulation of gene expression through their ability to act as ligands for the nuclear receptor farnesoid X receptor or by activating kinase signaling pathways. Under cholestatic conditions, elevated levels of bile acids in the liver induce hepatic inflammation, and because bile acid levels are also elevated in the circulation, they might also induce vascular inflammation. To test this hypothesis, primary human umbilical vein endothelial cells (HUVEC) and human aortic endothelial cells were treated with bile acids, and the expression of ICAM-1, VCAM-1, and E-selectin were monitored. The three major bile acids found in the circulation, chenodeoxycholic acid, deoxycholic acid, and lithocholic acid, all strongly induced both the mRNA and protein expression of ICAM-1 and VCAM-1. To delineate the mechanism, the experiments were conducted in the presence of various kinase inhibitors. The results demonstrate that the bile acid-mediated induction of adhesion molecule expression occurs by stimulation of NF-kappaB and p38 MAPK signaling pathways through the elevation in reactive oxygen species. The bile acid-induced cell surface expression of ICAM-1 and VCAM-1 was sufficient to result in the increased adhesion of THP-1 monocytes to the HUVEC, suggesting that elevated levels of bile acids in the circulation may cause endothelium dysfunction and contribute to the initiation of early events associated with vascular lesion formation.  相似文献   

20.
Liver is the largest organ in the human body, and it regulates many physiological processes. Many studies on liver development in different model organisms have demonstrated that the mechanism of hepatogenesis is conserved in vertebrates. The identification of the genes and regulatory pathways involved in liver formation provides a basis for the diagnosis of liver diseases and therapeutic interventions. Hepatocellular carcinoma is the third leading cause of mortality worldwide. In the last decade, genetic alterations, which include the gain and loss of DNA, as well as mutations and epigenomic changes, have been identified as important factors in liver cancer. Many genetic pathways are dysregulated during carcinogenesis. Here, we review the gene regulatory networks that underlie liver organogenesis and the dysregulation of these pathways in liver cancer. The genes and pathways involved in hepatogenesis and liver cancer are largely conserved between zebrafish and humans, making this an ideal model organism for the study of this disease. A better understanding of liver development may aid in the development of new diagnostic and therapeutic approaches to liver cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号