首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Toxic bile acids facilitate Fas and tumor necrosis factor-associated apoptosis-inducing ligand (TRAIL) death-receptor oligomerization and activation. Bile acid modulation of death-receptor signaling is multifactorial and includes trafficking of Fas to the cell surface, enhancing TRAIL-R2/DR5 expression, and suppression of function of cFLIP, an antiapoptotic protein modulating death-receptor function. Because bile acid-associated death receptor-mediated apoptosis is a common mechanism for cholestatic hepatocyte injury, inhibition of death receptors and their cascades may prove useful in attenuating liver injury during cholestasis.  相似文献   

2.
Bile acids are cholesterol derivatives that serve as detergents in bile and the small intestine. Approximately 95% of bile acids secreted by hepatocytes into bile are absorbed from the distal ileum into the portal venous system. Extraction from the portal circulation by the hepatocyte followed by reexcretion into the bile canaliculus completes the enterohepatic circulation of these compounds. Over the past few years, candidate bile acid transport proteins of the sinusoidal and canalicular plasma membranes of the hepatocyte have been identified. The physiology of hepatocyte bile acid transport and its relationship to these transport proteins is the subject of this Themes article.  相似文献   

3.
4.
Retinobenzoic acids and nuclear retinoic acid receptors.   总被引:4,自引:0,他引:4  
  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
Bile acid synthesis: down-regulation by monohydroxy bile acids   总被引:3,自引:0,他引:3  
R Hall  E Kok  N B Javitt 《FASEB journal》1988,2(2):152-156
The regulation of bile acid synthesis was studied in rabbits after interruption of the enterohepatic circulation by choledochoureteral anastomosis. Total daily bile acid output was 772 +/- 130 (SD) mumol/24 h, of which greater than 95% was glycocholic acid. Administration of deoxycholic or cholic acid or their conjugates (300-800 mumol) or gall-bladder bile failed to down-regulate endogenous bile acid synthesis. In contrast, chenodeoxycholic acid administration did down-regulate bile acid synthesis, but this effect was related to the formation and excretion of lithocholic acid. This observation was confirmed by the finding that i.v. infusion of 10-20 mumol of either lithocholic acid or 3 beta-hydroxy-5-cholenoic acid significantly reduced cholic acid synthesis. Thus monohydroxy bile acids, derived from either hepatic or intestinal sources, participate in the down-regulation of bile acid synthesis.  相似文献   

13.
14.
15.
Tauroallocholate is the major bile salt of the lizard, Uromastix hardwickii. Alkaline hydrolysis of bile from 25 gallbladders provided 1.21 g of acidic material, about 90% of which was allocholic acid. Analyses by gas-liquid chromatography, and mass spectrometry verified the presence of almost 10% of deoxycholic acid and smaller amounts of other 5alpha and 5beta-bile acids.  相似文献   

16.
17.
The nuclear receptor Farnesoid X Receptor (FXR) critically regulates nascent bile formation and bile acid enterohepatic circulation. Bile acids and FXR play a pivotal role in regulating hepatic inflammation and regeneration as well as in regulating extent of inflammatory responses, barrier function and prevention of bacterial translocation in the intestinal tract. Recent evidence suggests, that the bile acid–FXR interaction is involved in the pathophysiology of a wide range of diseases of the liver, biliary and gastrointestinal tract, such as cholestatic and inflammatory liver diseases and hepatocellular carcinoma, inflammatory bowel disease and inflammation-associated cancer of the colon and esophagus. In this review we discuss current knowledge of the role the bile acid–FXR interaction has in (patho)physiology of the liver, biliary and gastrointestinal tract, and proposed underlying mechanisms, based on in vitro data and experimental animal models. Given the availability of highly potent synthetic FXR agonists, we focus particularly on potential relevance for human disease.  相似文献   

18.
K Y Tserng  P D Klein 《Steroids》1979,33(2):167-182
The 7- and 12-monosulfates of chenodeoxycholic acid, deoxycholic acid, and cholic acid were prepared by sulfation of the protected bile acids with sulfur trioxide-triethylamine in pyridine overnight and were isolated by precipitation as the p-toluidinium salt after removing the protecting group(s). The taurine conjugates were obtained by conjugating the bile acid sulfates with taurine in hot dimethylformamide (DMF) in the presence of N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ). A new procedure of preparing glycine conjugated bile acid sulfates by direct conjugation of the bile acid sulfate triethylammonium salt with ethyl glycinate in boiling chloroform in the presence of EEDQ is also described. The advantage of these procedures over other procedures are their simplicity and their higher yields (tyically above 90%) The thin layer chromatographic mobilities of these sulfates are presented. The influence of side chain and hydroxyl group configurations on the properties of bile acid sulfates is briefly discussed.  相似文献   

19.
20.
The synthesis of bile acid-3-beta-D-monoglucuronides has been accomplished via the Koenigs-Knorr condensation reaction using methyl 2, 3, 4-tri-O-acetyl-1-deoxy-alpha-bromo-D-glucopyranuronate as coupling reagent. Chemical characteristics as melting points, elemental analyses, IR-spectra, isobutane-chemical ionization mass spectra and, in case of the derivative of 3alpha-hydroxy=5beta-cholanoate, NMR-spectra were recorded and can serve as a means of identification of these recently detected naturally occurring derivatives of bile acids in isolation procedures from biological sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号