首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
在基因组数据中,有20%~30%的产物被预测为跨膜蛋白,本文通过对膜蛋白拓扑结构预测方法进行分析,并评价其结果,为选择更合适的拓扑结构预测方法预测膜蛋白结构。通过对目前已有的拓扑结构预测方法的评价分析,可以为我们在实际工作中提供重要的参考。比如对一个未知拓扑结构的跨膜蛋白序列,我们可以先进行是否含有信号肽的预测,参考Polyphobius和SignalP两种方法,若两种方法预测结果不一致,综合上述对两种方法的评价,Polyphobius预测的综合能力较好,可取其预测的结果,一旦确定含有信号肽,则N端必然位于膜外侧。然后结合序列的长度,判断蛋白是单跨膜还是多重跨膜,即可参照上述评价结果,选择合适的拓扑结构预测方法进行预测。  相似文献   

2.
For current state-of-the-art methods, the prediction of correct topology of membrane proteins has been reported to be above 80%. However, this performance has only been observed in small and possibly biased data sets obtained from protein structures or biochemical assays. Here, we test a number of topology predictors on an "unseen" set of proteins of known structure and also on four "genome-scale" data sets, including one recent large set of experimentally validated human membrane proteins with glycosylated sites. The set of glycosylated proteins is also used to examine the ability of prediction methods to separate membrane from nonmembrane proteins. The results show that methods utilizing multiple sequence alignments are overall superior to methods that do not. The best performance is obtained by TOPCONS, a consensus method that combines several of the other prediction methods. The best methods to distinguish membrane from nonmembrane proteins belong to the "Phobius" group of predictors. We further observe that the reported high accuracies in the smaller benchmark sets are not quite maintained in larger scale benchmarks. Instead, we estimate the performance of the best prediction methods for eukaryotic membrane proteins to be between 60% and 70%. The low agreement between predictions from different methods questions earlier estimates about the global properties of the membrane proteome. Finally, we suggest a pipeline to estimate these properties using a combination of the best predictors that could be applied in large-scale proteomics studies of membrane proteins.  相似文献   

3.
The combination of paramagnetic tagging strategies with NMR or EPR spectroscopic techniques can revolutionize de novo structure determination of helical membrane proteins. Leveraging the full potential of this approach requires optimal labeling strategies and prediction of membrane protein topology from sparse and low-resolution distance restraints, as addressed by Chen et?al. (2011).  相似文献   

4.
Transmembrane proteins affect vital cellular functions and pathogenesis, and are a focus of drug design. It is difficult to obtain diffraction quality crystals to study transmembrane protein structure. Computational tools for transmembrane protein topology prediction fill in the gap between the abundance of transmembrane proteins and the scarcity of known membrane protein structures. Their prediction accuracy is still inadequate: TMHMM, the current state-of-the-art method, has less than 52% accuracy in topology prediction on one set of transmembrane proteins of known topology. Based on the observation that there are functional domains that occur preferentially internal or external to the membrane, we have extended the model of TMHMM to incorporate functional domains, using a probabilistic approach originally developed for computational gene finding. Our extension is better than TMHMM in predicting the topology of transmembrane proteins. As prediction of functional domain improves, our system's prediction accuracy will likely improve as well.  相似文献   

5.
Membrane proteins, which constitute approximately 20% of most genomes, are poorly tractable targets for experimental structure determination, thus analysis by prediction and modelling makes an important contribution to their on-going study. Membrane proteins form two main classes: alpha helical and beta barrel trans-membrane proteins. By using a method based on Bayesian Networks, which provides a flexible and powerful framework for statistical inference, we addressed alpha-helical topology prediction. This method has accuracies of 77.4% for prokaryotic proteins and 61.4% for eukaryotic proteins. The method described here represents an important advance in the computational determination of membrane protein topology and offers a useful, and complementary, tool for the analysis of membrane proteins for a range of applications.  相似文献   

6.
Cryoelectron microscopy (cryoEM) is an experimental technique to determine the three-dimensional (3D) structure of large protein complexes. Currently, this technique is able to generate protein density maps at 6-9 A resolution, at which the skeleton of the structure (which is composed of alpha-helices and beta-sheets) can be visualized. As a step towards predicting the entire backbone of the protein from the protein density map, we developed a method to predict the topology and sequence alignment for the skeleton helices. Our method combines the geometrical information of the skeleton helices with the Rosetta ab initio structure prediction method to derive a consensus topology and sequence alignment for the skeleton helices. We tested the method with 60 proteins. For 45 proteins, the majority of the skeleton helices were assigned a correct topology from one of our top ten predictions. The offsets of the alignment for most of the assigned helices were within +/-2 amino acids in the sequence. We also analyzed the use of the skeleton helices as a clustering tool for the decoy structures generated by Rosetta. Our comparison suggests that the topology clustering is a better method than a general overlap clustering method to enrich the ranking of decoys, particularly when the decoy pool is small.  相似文献   

7.
The prediction of transmembrane (TM) helix and topology provides important information about the structure and function of a membrane protein. Due to the experimental difficulties in obtaining a high-resolution model, computational methods are highly desirable. In this paper, we present a hierarchical classification method using support vector machines (SVMs) that integrates selected features by capturing the sequence-to-structure relationship and developing a new scoring function based on membrane protein folding. The proposed approach is evaluated on low- and high-resolution data sets with cross-validation, and the topology (sidedness) prediction accuracy reaches as high as 90%. Our method is also found to correctly predict both the location of TM helices and the topology for 69% of the low-resolution benchmark set. We also test our method for discrimination between soluble and membrane proteins and achieve very low overall false positive (0.5%) and false negative rates (0 to approximately 1.2%). Lastly, the analysis of the scoring function suggests that the topogeneses of single-spanning and multispanning TM proteins have different levels of complexity, and the consideration of interloop topogenic interactions for the latter is the key to achieving better predictions. This method can facilitate the annotation of membrane proteomes to extract useful structural and functional information. It is publicly available at http://bio-cluster.iis.sinica.edu.tw/~bioapp/SVMtop.  相似文献   

8.
We have developed a method to reliably identify partial membrane protein topologies using the consensus of five topology prediction methods. When evaluated on a test set of experimentally characterized proteins, we find that approximately 90% of the partial consensus topologies are correctly predicted in membrane proteins from prokaryotic as well as eukaryotic organisms. Whole-genome analysis reveals that a reliable partial consensus topology can be predicted for approximately 70% of all membrane proteins in a typical bacterial genome and for approximately 55% of all membrane proteins in a typical eukaryotic genome. The average fraction of sequence length covered by a partial consensus topology is 44% for the prokaryotic proteins and 17% for the eukaryotic proteins in our test set, and similar numbers are found when the algorithm is applied to whole genomes. Reliably predicted partial topologies may simplify experimental determinations of membrane protein topology.  相似文献   

9.
Nuclear magnetic resonance paramagnetic relaxation enhancement (PRE) measures long-range distances to isotopically labeled residues, providing useful constraints for protein structure prediction. The method usually requires labor-intensive conjugation of nitroxide labels to multiple locations on the protein, one at a time. Here a computational procedure, based on protein sequence and simple secondary structure models, is presented to facilitate optimal placement of a minimum number of labels needed to determine the correct topology of?a helical transmembrane protein. Tests on DsbB (four helices) using just one label lead to correct topology predictions in four of five cases, with the predicted structures <6 ? to the native structure. Benchmark results using simulated PRE data show that we can generally predict the correct topology for five and six to seven helices using two and three labels, respectively, with an average success rate of 76% and structures of similar precision. The results show promise in facilitating experimentally constrained structure prediction of membrane proteins.  相似文献   

10.
MOTIVATION: Membrane dipping loops are sections of membrane proteins that reside in the membrane but do not traverse from one side to the other, rather they enter and leave the same side of the membrane. We applied a combinatorial pattern discovery approach to sets of sequences containing at least one characterised structure described as possessing a membrane dipping loop. Discovered patterns were found to be composed of residues whose biochemical role is known to be essential for function of the protein, thus validating our approach. TMLOOP (http://membraneproteins.swan.ac.uk/TMLOOP) was implemented to predict membrane dipping loops in polytopic membrane proteins. TMLOOP applies discovered patterns as weighted predictive rules in a collective motif method (a variation of the single motif method), to avoid inherent limitations of single motif methods in detecting distantly related proteins. The collective motif method applies several, partially overlapping patterns, which pertain to the same sequence region, allowing proteins containing small variations to be detected. The approach achieved 92.4% accuracy in sensitivity and 100% reliability in specificity. TMLOOP was applied to the Swiss-Prot database, identifying 1392 confirmed membrane dipping loops, 75 plausible membrane dipping loops hitherto uncharacterised by topology prediction methods or experimental approaches and 128 false positives (8.0%).  相似文献   

11.
Integral membrane proteins usually have a predominantly alpha-helical secondary structure in which transmembrane segments are connected by membrane-extrinsic loops. Although a number of membrane protein structures have been reported in recent years, in most cases transmembrane topologies are initially predicted using a variety of theoretical techniques, including hydropathy analyses and the "positive inside" rule. We have explored the use of plots of the distribution of sequence similarity within families of membrane proteins comprising homeomorphic domains as a new method for the prediction/verification of the orientation of transmembrane topology models within certain families of multimeric respiratory chain enzymes. Within such proteins, analyses of sequence similarity can: i) identify heme and/or quinol binding sites; ii) identify potential electron-transfer conduits to/from prosthetic groups; and iii) locate regions defining potential subunit-subunit interactions. We mined emerging bioinformatic data for sequences of 11 families of membrane-intrinsic proteins that are part of multimeric respiratory chain complexes that also have membrane-extrinsic subunits. The sequences of each family were then aligned and the resultant alignments converted into a graphical format recording an empirical measure of the sequence similarity plotted versus residue position. In each case, this plot was compared to the predicted transmembrane topology. With one exception, there is a strong correlation between the existence  相似文献   

12.
In order to propose a reliable model for Brucella porin topology, several structure prediction methods were evaluated in their ability to predict porin topology. Four porins of known structure were selected as test-cases and their secondary structure delineated. The specificity and sensitivity of 11 methods were separately evaluated. Our critical assessment shows that some secondary structure prediction methods (PHD, Dsc, Sopma) originally designed to predict globular protein structure are useful on porin topology prediction. The overall best prediction is obtained by combining these three "generalist" methods with a transmembrane beta strand prediction technique. This "consensus" method was applied to Brucella porins Omp2b and Omp2a, sharing no sequence homology with any other porin. The predicted topology is a 16-stranded antiparallel beta barrel with Omp2a showing a higher number of negatively charged residue in the exposed loops than Omp2b. Experiments are in progress to validate the proposed topology and the functional hypotheses. The ability of the proposed consensus method to predict topology of complex outer membrane protein is briefly discussed.  相似文献   

13.
When experimental protein NMR data are too sparse to apply traditional structure determination techniques, de novo protein structure prediction methods can be leveraged. Here, we describe the incorporation of NMR restraints into the protein structure prediction algorithm BCL::Fold. The method assembles discreet secondary structure elements using a Monte Carlo sampling algorithm with a consensus knowledge‐based energy function. New components were introduced into the energy function to accommodate chemical shift, nuclear Overhauser effect, and residual dipolar coupling data. In particular, since side chains are not explicitly modeled during the minimization process, a knowledge based potential was created to relate experimental side chain proton–proton distances to Cβ–Cβ distances. In a benchmark test of 67 proteins of known structure with the incorporation of sparse NMR restraints, the correct topology was sampled in 65 cases, with an average best model RMSD100 of 3.4 ± 1.3 Å versus 6.0 ± 2.0 Å produced with the de novo method. Additionally, the correct topology is present in the best scoring 1% of models in 61 cases. The benchmark set includes both soluble and membrane proteins with up to 565 residues, indicating the method is robust and applicable to large and membrane proteins that are less likely to produce rich NMR datasets. Proteins 2014; 82:587–595. © 2013 Wiley Periodicals, Inc.  相似文献   

14.
MOTIVATION: Many important biological processes such as cell signaling, transport of membrane-impermeable molecules, cell-cell communication, cell recognition and cell adhesion are mediated by membrane proteins. Unfortunately, as these proteins are not water soluble, it is extremely hard to experimentally determine their structure. Therefore, improved methods for predicting the structure of these proteins are vital in biological research. In order to improve transmembrane topology prediction, we evaluate the combined use of both integrated signal peptide prediction and evolutionary information in a single algorithm. RESULTS: A new method (MEMSAT3) for predicting transmembrane protein topology from sequence profiles is described and benchmarked with full cross-validation on a standard data set of 184 transmembrane proteins. The method is found to predict both the correct topology and the locations of transmembrane segments for 80% of the test set. This compares with accuracies of 62-72% for other popular methods on the same benchmark. By using a second neural network specifically to discriminate transmembrane from globular proteins, a very low overall false positive rate (0.5%) can also be achieved in detecting transmembrane proteins. AVAILABILITY: An implementation of the described method is available both as a web server (http://www.psipred.net) and as downloadable source code from http://bioinf.cs.ucl.ac.uk/memsat. Both the server and source code files are free to non-commercial users. Benchmark and training data are also available from http://bioinf.cs.ucl.ac.uk/memsat.  相似文献   

15.
Topology predictions for integral membrane proteins can be substantially improved if parts of the protein can be constrained to a given in/out location relative to the membrane using experimental data or other information. Here, we have identified a set of 367 domains in the SMART database that, when found in soluble proteins, have compartment-specific localization of a kind relevant for membrane protein topology prediction. Using these domains as prediction constraints, we are able to provide high-quality topology models for 11% of the membrane proteins extracted from 38 eukaryotic genomes. Two-thirds of these proteins are single spanning, a group of proteins for which current topology prediction methods perform particularly poorly.  相似文献   

16.
An understanding of the folding states of α-helical membrane proteins in detergent systems is important for functional and structural studies of these proteins. Here, we present a rapid and simple method for identification of the folding topology and assembly of transmembrane helices using paramagnetic perturbation in nuclear magnetic resonance spectroscopy. By monitoring the perturbation of signals from glycine residues located at specific sites, the folding topology and the assembly of transmembrane helices of membrane proteins were easily identified without time-consuming backbone assignment. This method is validated with Mistic (membrane-integrating sequence for translation of integral membrane protein constructs) of known structure as a reference protein. The folding topologies of two bacterial histidine kinase membrane proteins (SCO3062 and YbdK) were investigated by this method in dodecyl phosphocholine (DPC) micelles. Combing with analytical ultracentrifugation, we identified that the transmembrane domain of YbdK is present as a parallel dimer in DPC micelle. In contrast, the interaction of transmembrane domain of SCO3062 is not maintained in DPC micelle due to disruption of native structure of the periplasmic domain by DPC micelle.  相似文献   

17.
We have explored the possibility that consensus predictions of membrane protein topology might provide a means to estimate the reliability of a predicted topology. Using five current topology prediction methods and a test set of 60 Escherichia coli inner membrane proteins with experimentally determined topologies, we find that prediction performance varies strongly with the number of methods that agree, and that the topology of nearly half of all E. coli inner membrane proteins can be predicted with high reliability (>90% correct predictions) by a simple majority-vote approach.  相似文献   

18.
Integral membrane proteins are found in all cellular membranes and carry out many of the functions that are essential to life. The membrane-embedded domains of integral membrane proteins are structurally quite simple, allowing the use of various prediction methods and biochemical methods to obtain structural information about membrane proteins. A critical step in the biosynthetic pathway leading to the folded protein in the membrane is its insertion into the lipid bilayer. Understanding of the fundamentals of the insertion and folding processes will significantly improve the methods used to predict the three-dimensional membrane protein structure from the amino acid sequence. In the first part of this review, biochemical approaches to elucidate membrane protein topology are reviewed and evaluated, and in the second part, the use of similar techniques to study membrane protein insertion is discussed. The latter studies search for signals in the polypeptide chain that direct the insertion process. Knowledge of the topogenic signals in the nascent chain of a membrane protein is essential for the evaluation of membrane topology studies.  相似文献   

19.
Integral membrane proteins are found in all cellular membranes and carry out many of the functions that are essential to life. The membrane-embedded domains of integral membrane proteins are structurally quite simple, allowing the use of various prediction methods and biochemical methods to obtain structural information about membrane proteins. A critical step in the biosynthetic pathway leading to the folded protein in the membrane is its insertion into the lipid bilayer. Understanding of the fundamentals of the insertion and folding processes will significantly improve the methods used to predict the three-dimensional membrane protein structure from the amino acid sequence. In the first part of this review, biochemical approaches to elucidate membrane protein topology are reviewed and evaluated, and in the second part, the use of similar techniques to study membrane protein insertion is discussed. The latter studies search for signals in the polypeptide chain that direct the insertion process. Knowledge of the topogenic signals in the nascent chain of a membrane protein is essential for the evaluation of membrane topology studies.  相似文献   

20.
Select members of the Reoviridae are the only nonenveloped viruses known to induce syncytium formation. The fusogenic orthoreoviruses accomplish cell-cell fusion through a distinct class of membrane fusion-inducing proteins referred to as the fusion-associated small transmembrane (FAST) proteins. The p15 membrane fusion protein of baboon reovirus is unique among the FAST proteins in that it contains two hydrophobic regions (H1 and H2) recognized as potential transmembrane (TM) domains, suggesting a polytopic topology. However, detailed topological analysis of p15 indicated only the H1 domain is membrane spanning. In the absence of an N-terminal signal peptide, the H1 TM domain serves as a reverse signal-anchor to direct p15 membrane insertion and a bitopic N(exoplasmic)/C(cytoplasmic) topology. This topology results in the translocation of the smallest ectodomain ( approximately 20 residues) of any known viral fusion protein, with the majority of p15 positioned on the cytosolic side of the membrane. Mutagenic analysis indicated the unusual presence of an N-terminal myristic acid on the small p15 ectodomain is essential to the fusion process. Furthermore, the only other hydrophobic region (H2) present in p15, aside from the TM domain, is located within the endodomain. Consequently, the p15 ectodomain is devoid of a fusion peptide motif, a hallmark feature of membrane fusion proteins. The exceedingly small, myristoylated ectodomain and the unusual topological distribution of structural motifs in this nonenveloped virus membrane fusion protein necessitate alternate models of protein-mediated membrane fusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号