首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
How bacteria coordinate cell growth with division is not well understood. Bacterial cell elongation is controlled by actin–MreB while cell division is governed by tubulin–FtsZ. A ring‐like structure containing FtsZ (the Z ring) at mid‐cell attracts other cell division proteins to form the divisome, an essential protein assembly required for septum synthesis and cell separation. The Z ring exists at mid‐cell during a major part of the cell cycle without contracting. Here, we show that MreB and FtsZ of Escherichia coli interact directly and that this interaction is required for Z ring contraction. We further show that the MreB–FtsZ interaction is required for transfer of cell‐wall biosynthetic enzymes from the lateral to the mature divisome, allowing cells to synthesise the septum. Our observations show that bacterial cell division is coupled to cell elongation via a direct and essential interaction between FtsZ and MreB.  相似文献   

2.
The mechanisms that restrict peptidoglycan biosynthesis to the pole during elongation and re‐direct peptidoglycan biosynthesis to mid‐cell during cell division in polar‐growing Alphaproteobacteria are largely unknown. Here, we explore the role of early division proteins of Agrobacterium tumefaciens including three FtsZ homologs, FtsA and FtsW in the transition from polar growth to mid‐cell growth and ultimately cell division. Although two of the three FtsZ homologs localize to mid‐cell, exhibit GTPase activity and form co‐polymers, only one, FtsZAT, is required for cell division. We find that FtsZAT is required not only for constriction and cell separation, but also for initiation of peptidoglycan synthesis at mid‐cell and cessation of polar peptidoglycan biosynthesis. Depletion of FtsZAT in A. tumefaciens causes a striking phenotype: cells are extensively branched and accumulate growth active poles through tip splitting events. When cell division is blocked at a later stage by depletion of FtsA or FtsW, polar growth is terminated and ectopic growth poles emerge from mid‐cell. Overall, this work suggests that A. tumefaciens FtsZ makes distinct contributions to the regulation of polar growth and cell division.  相似文献   

3.
Vibrio parahaemolyticus exists as swimmer and swarmer cells, specialized for growth in liquid and on solid environments respectively. Swarmer cells are characteristically highly elongated due to an inhibition of cell division, but still need to divide in order to proliferate and expand the colony. It is unknown how long swarmer cells divide without diminishing the population of long cells required for swarming behavior. Here we show that swarmer cells divide but the placement of the division site is cell length‐dependent; short swarmers divide at mid‐cell, while long swarmers switch to a specific non‐mid‐cell placement of the division site. Transition to non‐mid‐cell positioning of the Z‐ring is promoted by a cell length‐dependent switch in the localization‐dynamics of the division regulator MinD from a pole‐to‐pole oscillation in short swarmers to a multi‐node standing‐wave oscillation in long swarmers. Regulation of FtsZ levels restricts the number of divisions to one and SlmA ensures sufficient free FtsZ to sustain Z‐ring formation by preventing sequestration of FtsZ into division deficient clusters. By limiting the number of division‐events to one per cell at a specific non‐mid‐cell position, V. parahaemolyticus promotes the preservation of long swarmer cells and permits swarmer cell division without the need for dedifferentiation.  相似文献   

4.
Cell division proteins FtsZ (FtsA, ZipA, ZapA), FtsE/X, FtsK, FtsQ, FtsL/B, FtsW, PBP3, FtsN and AmiC localize at mid cell in Escherichia coli in an interdependent order as listed. To investigate whether this reflects a time dependent maturation of the divisome, the average cell age at which FtsZ, FtsQ, FtsW, PBP3 and FtsN arrive at their destination was determined by immuno- and GFP-fluorescence microscopy of steady state grown cells at a variety of growth rates. Consistently, a time delay of 14-21 min, depending on the growth rate, between Z-ring formation and the mid cell recruitment of proteins down stream of FtsK was found. We suggest a two-step model for bacterial division in which the Z-ring is involved in the switch from cylindrical to polar peptidoglycan synthesis, whereas the much later localizing cell division proteins are responsible for the modification of the envelope shape into that of two new poles.  相似文献   

5.
Cell division is a fundamental process for both eukaryotic and prokaryotic cells. In bacteria, cell division is driven by a dynamic, ring-shaped, cytoskeletal element (the Z-ring) made up of polymers of the tubulin-like protein FtsZ. It is thought that lateral associations between FtsZ polymers are important for function of the Z-ring in vivo, and that these interactions are regulated by accessory cell division proteins such as ZipA, EzrA and ZapA. We demonstrate that the putative Escherichia coli ZapA orthologue, YgfE, exists in a dimer/tetramer equilibrium in solution, binds to FtsZ polymers, strongly promotes FtsZ polymer bundling and is a potent inhibitor of the FtsZ GTPase activity. We use linear dichroism, a technique that allows structure analysis of molecules within linear polymers, to reveal a specific conformational change in GTP bound to FtsZ polymers, upon bundling by YgfE. We show that the consequences of FtsZ polymer bundling by YgfE and divalent cations are very similar in terms of GTPase activity, bundle morphology and GTP orientation and therefore propose that this conformational change in bound GTP reveals a general mechanism of FtsZ bundling.  相似文献   

6.
FtsZ is a widely distributed major cytoskeletal protein involved in the archaea and bacteria cell division. It is the most critical component in the division machinery and similar to tubulin in structure and function. Four major roles of FtsZ have been characterized: cell elongation, GTPase, cell division, and bacterial cytoskeleton. FtsZ subunits can be assembled into protofilaments. Mycobacteria consist of a large family of medical and environmental important bacteria, such as M. leprae, M. tuberculosis, the pathogen of leprosy, and tuberculosis. Structure, function, and regulation of mycobacteria FtsZ are summarized here, together with the implication of FtsZ as potential novel drug target for anti-tuberculosis therapeutics.  相似文献   

7.
Blastocrithidia culicis and Crithidia deanei are trypanosomatids that harbor an endosymbiotic bacterium in their cytoplasm. In prokaryotes, numerous proteins are essential for cell division, such as FtsZ, which is encoded by filament-forming temperature-sensitive (fts) genes. FtsZ is the prokaryotic homolog of eukaryotic tubulin and is present in bacteria and archaea, and has also been identified in mitochondria and chloroplasts. FtsZ plays a key role in the initiation of cytokinesis. It self-assembles into the Z ring, which establishes the division plane during septation. In this study, immunoblotting analysis using a FtsZ polyclonal antibody, revealed a 40-kDa band characteristic of FtsZ in endosymbiont fractions and in whole trypanosomatid homogenates, but not in whole cell extracts of aposymbiotic strains. Confocal microscopy and ultrastructural analysis revealed a specific and dispersed labeling over the endosymbiont. Bars and ring-like structures, which are suggestive of the presence of Z-rings, were never observed, even during the division of the symbiont. This peculiar distribution of FtsZ may represent an arrangement of cytoskeleton protein intermediate between prokaryotic and eukaryotic cells. The endosymbiont ftsz gene was completely sequenced after amplification of DNA from symbiont-bearing trypanosomatids or from pure endosymbiont fractions, using PCR and specific primers. The sequences obtained from the endosymbionts from C. deanei and B. culicis were very similar, and were most closely related to bacteria from the genus Pseudomonas.  相似文献   

8.
The essential cytoskeletal protein FtsZ assembles into a ring-like structure at the nascent division site and serves as a scaffold for the assembly of the prokaryotic division machinery. We previously characterized EzrA as an inhibitor of FtsZ assembly in Bacillus subtilis. EzrA interacts directly with FtsZ to prevent aberrant FtsZ assembly and cytokinesis at cell poles. EzrA also concentrates at the cytokinetic ring in an FtsZ-dependent manner, although its precise role at this position is not known. Here, we identified a conserved patch of amino acids in the EzrA C terminus that is essential for localization to the FtsZ ring. Mutations in this patch (designated the “QNR patch”) abolish EzrA localization to midcell but do not significantly affect EzrA's ability to inhibit FtsZ assembly at cell poles. ezrA QNR patch mutant cells exhibit stabilized FtsZ assembly at midcell and are significantly longer than wild-type cells, despite lacking extra FtsZ rings. These results indicate that EzrA has two distinct activities in vivo: (i) preventing aberrant FtsZ ring formation at cell poles through inhibition of de novo FtsZ assembly and (ii) maintaining proper FtsZ assembly dynamics within the medial FtsZ ring, thereby rendering it sensitive to the factors responsible for coordinating cell growth and cell division.  相似文献   

9.
细菌耐药性的日益凸显严重威胁着人类健康。传统的筛选方法已经难以筛选到新的抗生素。运用新的技术去开发新的抗生素迫在眉睫。FtsZ(filamentous temperature-sensitive protien Z)作为一种广泛存在于细菌中的重要的细胞分裂蛋白目前广受关注。该文简要概述了FtsZ在细胞分裂中的作用,靶向FtsZ的细胞分裂抑制剂筛选模型的建立,以及已经筛选获得的一些具有生理活性的FtsZ抑制剂。  相似文献   

10.
In Escherichia coli, spatiotemporal control of cell division occurs at the level of the assembly/disassembly process of the essential cytoskeletal protein FtsZ. A number of regulators interact with FtsZ and modulate the dynamics of the assembled FtsZ ring at the midcell division site. In this article, we report the identification of an FtsZ stabilizer, ZapC (Z-associated protein C), in a protein localization screen conducted with E. coli. ZapC colocalizes with FtsZ at midcell and interacts directly with FtsZ, as determined by a protein-protein interaction assay in yeast. Cells lacking or overexpressing ZapC are slightly elongated and have aberrant FtsZ ring morphologies indicative of a role for ZapC in FtsZ regulation. We also demonstrate the ability of purified ZapC to promote lateral bundling of FtsZ in a sedimentation reaction visualized by transmission electron microscopy. While ZapC lacks sequence similarity with other nonessential FtsZ regulators, ZapA and ZapB, all three Zap proteins appear to play an important role in FtsZ regulation during rapid growth. Taken together, our results suggest a key role for lateral bundling of the midcell FtsZ polymers in maintaining FtsZ ring stability during division.  相似文献   

11.
12.
The assembly of FtsZ plays an important role in bacterial cell division. Lipids in the bacterial cell membrane have been suggested to play a role in directing the site of FtsZ assembly. Using lipid monolayer and bilayer (liposome) systems, we directly examined the effects of cationic lipids on FtsZ assembly. We found that cationic lipids enhanced the assembly of FtsZ in association with an increase in the GTPase activity of FtsZ. The system consisting of lipid monolayer and bilayer (liposome) may mimic the bacterial membrane and therefore, the data might indicate the influence of bacterial membrane on the assembly of FtsZ protofilaments.  相似文献   

13.
Cell division in bacteria is governed by a complex cytokinetic machinery in which the key player is a tubulin homologue, FtsZ. Most rod‐shaped bacteria divide precisely at mid‐cell between segregated sister chromosomes. Selection of the correct site for cell division is thought to be determined by two negative regulatory systems: the nucleoid occlusion system, which prevents division in the vicinity of the chromosomes, and the Min system, which prevents inappropriate division at the cell poles. In Bacillus subtilis recruitment of the division inhibitor MinCD to cell poles depends on DivIVA, and these proteins were thought to be sufficient for Min function. We have now identified a novel component of the division‐site selection system, MinJ, which bridges DivIVA and MinD. minJ mutants are impaired in division because MinCD activity is no longer restricted to cell poles. Although MinCD was thought to act specifically on FtsZ assembly, analysis of minJ and divIVA mutants showed that their block in division occurs downstream of FtsZ. The results support a model in which the main function of the Min system lies in allowing only a single round of division per cell cycle, and that MinCD acts at multiple levels to prevent inappropriate division.  相似文献   

14.
The role of the cell division protein FtsZ in bacterial cell wall (CW) synthesis is believed to be restricted to localizing proteins involved in the synthesis of the septal wall. In this issue of Molecular Microbiology, the groups of Christine Jacobs-Wagner and Waldemar Vollmer provide compelling evidence that in Caulobacter crescentus, FtsZ plays an additional role in CW synthesis in non-dividing cells. During elongation (cell growth) FtsZ is responsible for the incorporation of CW material in a zone at the midcell by recruiting MurG, a protein involved in peptidoglycan (PG) precursor synthesis. This resembles earlier findings of FtsZ mediated PG synthesis activity in Escherichia coli. A role of FtsZ in PG synthesis during elongation forces a rethink of the current model of CW synthesis in rod-shaped bacteria.  相似文献   

15.
Singh JK  Makde RD  Kumar V  Panda D 《Biochemistry》2007,46(38):11013-11022
FtsZ polymerizes to form a dynamic ring structure called the Z-ring at the midcell of bacteria. EzrA, a membrane protein, has been shown to prevent the formation of aberrant Z-rings in the low GC Gram-positive bacteria by inhibiting FtsZ assembly. In this study, we show that Bacillus subtilis (B. subtilis) EzrA inhibited the assembly and bundling of B. subtilis FtsZ. It increased the critical concentration of FtsZ assembly and depolymerized the preformed FtsZ polymers in vitro. We obtained evidence suggesting that B. subtilis EzrA forms complex with B. subtilis FtsZ in vitro. EzrA was found to bind to FtsZ at a single site with a dissociation constant of 4.3 +/- 0.6 microM. EzrA-FtsZ interaction has a significant electrostatic contribution as apparent from the effect of salt on their binding interactions. To elucidate the site of interaction between EzrA and FtsZ, we deleted 16 amino acid residues from the extreme C-terminal tail of B. subtilis FtsZ, which are conserved in FtsZ orthologues. EzrA did not inhibit the assembly of C-terminal truncated B. subtilis FtsZ. It also did not bind to the C-terminal truncated FtsZ detectably, suggesting that EzrA interacts with FtsZ through its conserved C-terminal tail residues. Further, a 17-residue synthetic peptide (365-382) of the C-terminal tail of FtsZ (CTP17) was used to probe the interaction of EzrA with the C-terminal tail of FtsZ. CTP17 bound to EzrA, inhibited the binding of EzrA to FtsZ, and surmounted the inhibitory effects of EzrA on the assembly of FtsZ in vitro. The data together showed that EzrA binds to the C-terminal tail of FtsZ. FtsA, a positive regulator of FtsZ assembly, is also known to interact with the C-terminal tail of FtsZ. The results indicated an interesting possibility that the assembly dynamics of FtsZ in the Z-ring is regulated by the competition between positive and negative regulators sharing the same binding site on FtsZ.  相似文献   

16.
FtsZ, a bacterial homolog of tubulin, forms a structural element called the FtsZ ring (Z ring) at the predivisional midcell site and sets up a scaffold for the assembly of other cell division proteins. The genetic aspects of FtsZ-catalyzed cell division and its assembly dynamics in Mycobacterium tuberculosis are unknown. Here, with an M. tuberculosis strain containing FtsZ(TB) tagged with green fluorescent protein as the sole source of FtsZ, we examined FtsZ structures under various growth conditions. We found that midcell Z rings are present in approximately 11% of actively growing cells, suggesting that the low frequency of Z rings is reflective of their slow growth rate. Next, we showed that SRI-3072, a reported FtsZ(TB) inhibitor, disrupted Z-ring assembly and inhibited cell division and growth of M. tuberculosis. We also showed that M. tuberculosis cells grown in macrophages are filamentous and that only a small fraction had midcell Z rings. The majority of filamentous cells contained nonring, spiral-like FtsZ structures along their entire length. The levels of FtsZ in bacteria grown in macrophages or in broth were comparable, suggesting that Z-ring formation at midcell sites was compromised during intracellular growth. Our results suggest that the intraphagosomal milieu alters the expression of M. tuberculosis genes affecting Z-ring formation and thereby cell division.  相似文献   

17.
We report three crystal structures of the Mycobacterium tuberculosis cell division protein FtsZ, as the citrate, GDP, and GTPgammaS complexes, determined at 1.89, 2.60, and 2.08A resolution. MtbFtsZ crystallized as a tight, laterally oriented dimer distinct from the longitudinal polymer observed for alphabeta-tubulin. Mutational data on Escherichia coli FtsZ suggest that this dimer interface is important for proper protofilament and "Z-ring" assembly and function. An alpha-to-beta secondary structure conformational switch at the dimer interface is spatially analogous to, and has many of the hallmarks of, the Switch I conformational changes exhibited by G-proteins upon activation. The presence of a gamma-phosphate in the FtsZ active site modulates the conformation of the "tubulin" loop T3 (spatially analogous to the G-protein Switch II); T3 switching upon gamma-phosphate ligation is directly coupled to the alpha-to-beta switch by steric overlap. The dual conformational switches observed here for the first time in an FtsZ link GTP binding and hydrolysis to FtsZ (and tubulin) lateral assembly and Z-ring contraction, and they are suggestive of an underappreciated functional analogy between FtsZ, tubulin and G-proteins.  相似文献   

18.
The cell division protein FtsZ is composed of three regions based on sequence similarity: a highly conserved N-terminal region of ≈320 amino acids; a variable spacer region; and a conserved C-terminal region of eight amino acids. We show that FtsZ mutants missing different C-terminal fragments have dominant lethal effects because they block cell division in Caulobacter crescentus by two different mechanisms. Removal of the C-terminal conserved region, the linker, and 40 amino acids from the end of the N-terminal conserved region (FtsZΔC281) prevents the localization or the polymerization of FtsZ. Because two-hybrid analysis indicates that FtsZΔC281 does not interact with FtsZ, we hypothesize that FtsZΔC281 blocks cell division by competing with a factor required for FtsZ localization or that it titrates a factor required for the stability of the FtsZ ring. The removal of 24 amino acids from the C-terminus of FtsZ (FtsZΔC485) causes a punctate pattern of FtsZ localization and affects its interaction with FtsA. This suggests that the conserved C-terminal region of FtsZ is required for proper polymerization of FtsZ in Caulobacter and for its interaction with FtsA.  相似文献   

19.
Cell division in bacteria is facilitated by a polymeric ring structure, the Z ring, composed of tubulin-like FtsZ protofilaments. Recently it has been shown that in Bacillus subtilis , the Z ring forms through the cell cycle-mediated remodelling of a helical FtsZ polymer. To investigate how this occurs in vivo , we have exploited a unique temperature-sensitive strain of B. subtilis expressing the mutant protein FtsZ(Ts1). FtsZ(Ts1) is unable to complete Z ring assembly at 49°C, becoming trapped at an intermediate stage in the helix-to-ring progression. To determine why this is the case, we used a combination of methods to identify the specific defect of the FtsZ(Ts1) protein in vivo . Our results indicate that while FtsZ(Ts1) is able to polymerize normally into protofilaments, it is defective in the ability to support lateral associations between these filaments at high temperatures. This strongly suggests that lateral FtsZ association plays a crucial role in the polymer transitions that lead to the formation of the Z ring in the cell. In addition, we show that the FtsZ-binding protein ZapA, when overproduced, can rescue the FtsZ(Ts1) defect in vivo . This suggests that ZapA functions to promote the helix-to-ring transition of FtsZ by stimulating lateral FtsZ association.  相似文献   

20.
In plants, chloroplast division FtsZ proteins have diverged into two families, FtsZ1 and FtsZ2. FtsZ1 is more divergent from its bacterial counterparts and lacks a C-terminal motif conserved in most other FtsZs. To begin investigating FtsZ1 structure-function relationships, we first identified a T-DNA insertion mutation in the single FtsZ1 gene in Arabidopsis thaliana, AtFtsZ1-1. Homozygotes null for FtsZ1, though impaired in chloroplast division, could be isolated and set seed normally, indicating that FtsZ1 is not essential for viability. We then mapped five additional atftsZ1-1 alleles onto an FtsZ1 structural model and characterized chloroplast morphologies, FtsZ protein levels and FtsZ filament morphologies in young and mature leaves of the corresponding mutants. atftsZ1-1(G267R), atftsZ1-1(R298Q) and atftsZ1-1(Delta404-433) exhibit reduced FtsZ1 accumulation but wild-type FtsZ2 levels. The semi-dominant atftsZ1-1(G267R) mutation caused the most severe phenotype, altering a conserved residue in the predicted T7 loop. atftsZ1-1(G267R) protein accumulates normally in young leaves but is not detected in rings or filaments. atftsZ1-1(R298Q) has midplastid FtsZ1-containing rings in young leaves, indicating that R298 is not critical for ring formation or positioning despite its conservation. atftsZ1-1(D159N) and atftsZ1-1(G366A) both have overly long, sometimes spiral-like FtsZ filaments, suggesting that FtsZ dynamics are altered in these mutants. However, atftsZ1-1(D159N) exhibits loss of proper midplastid FtsZ positioning while atftsZ1-1(G366A) does not. Finally, truncation of the FtsZ1 C-terminus in atftsZ1-1(Delta404-433) impairs chloroplast division somewhat but does not prevent midplastid Z ring formation. These alleles will facilitate understanding of how the in vitro biochemical properties of FtsZ1 are related to its in vivo function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号