首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Time-dependent variations in clock gene expression have recently been observed in mouse hematopoietic cells, but the activity of these genes in human bone marrow (BM) has so far not been investigated. Since such data can be of considerable clinical interest for monitoring the dynamics in stem/progenitor cells, the authors have studied mRNA expression of the clock genes hPer1 , hPer2, hCry1, hCry2, hBmal1, hRev-erb alpha, and hClock in human hematopoietic CD34-positive (CD34( +)) cells. CD34(+) cells were isolated from the BM samples obtained from 10 healthy men at 6 times over 24 h. In addition, clock gene mRNA expression was analyzed in the whole BM in 3 subjects. Rhythms in serum cortisol, growth hormone, testosterone, and leukocyte counts documented that subjects exhibited standardized circadian patterns. All 7 clock genes were expressed both in CD34(+) cells and the whole BM, with some differences in magnitude between the 2 cell populations. A clear circadian rhythm was shown for hPer1, hPer2, and hCry2 expression in CD34(+) cells and for hPer1 in the whole BM, with maxima from early morning to midday. Similar to mouse hematopoietic cells, h Bmal1 was not oscillating rhythmically. The study demonstrates that clock gene expression in human BM stem/progenitor cells may be developmentally regulated, with strong or weaker circadian profiles as compared to those reported in other mature tissues.  相似文献   

2.
Most living organisms exhibit circadian rhythms that are generated by endogenous circadian clocks, the master one being present in the suprachiasmatic nuclei (SCN). Output signals from the SCN are believed to transmit standard circadian time to peripheral tissue through sympathetic nervous system and humoral routes. Therefore, the authors examined the expression of clock genes following treatment with the β-adrenergic receptor agonist, isoprenaline, or the synthetic glucocorticoid, dexamethasone, in cultured human osteoblast SaM-1 cells. Cells were treated with 10(-6) M isoprenaline or 10(-7) M dexamethasone for 2?h and gene expressions were determined using real-time polymerase chain reaction (PCR) analysis. Treatment with isoprenaline or dexamethasone induced the circadian expression of clock genes human period 1 (hPer1), hPer2, hPer3, and human brain and muscle Arnt-like protein 1 (hBMAL1). Isoprenaline or dexamethasone treatment immediately increased hPer1 and hPer2 and caused circadian oscillation of hPer1 and hPer2 with three peaks within 48?h. hPer3 expression had one peak after isoprenaline or dexamethasone treatment. hBMAL expression had two peaks after isoprenaline or dexamethasone treatment, the temporal pattern being in antiphase to that of the other clock genes. Dexamethasone treatment delayed the oscillation of all clock genes for 2-6?h compared with isoprenaline treatment. The authors also examined the expression of osteoblast-related genes hα-1 type I collagen (hCol1a1), halkaline phosphatase (hALP), and hosteocalcin (hOC). Isoprenaline induced oscillation of hCol1a1, but not hALP and hOC. On the other hand, dexamethasone induced oscillation of hCol1a1 and hALP, but not hOC. Isoprenaline up-regulated hCol1a1 expression, but dexamethasone down-regulated hCol1a1 and hALP expression in the first phase.  相似文献   

3.
4.
5.
Most living organisms exhibit circadian rhythms that are generated by endogenous circadian clocks, the master one being present in the suprachiasmatic nuclei (SCN). Output signals from the SCN are believed to transmit standard circadian time to peripheral tissue through sympathetic nervous system and humoral routes. Therefore, the authors examined the expression of clock genes following treatment with the β-adrenergic receptor agonist, isoprenaline, or the synthetic glucocorticoid, dexamethasone, in cultured human osteoblast SaM-1 cells. Cells were treated with 10?6 M isoprenaline or 10?7 M dexamethasone for 2?h and gene expressions were determined using real-time polymerase chain reaction (PCR) analysis. Treatment with isoprenaline or dexamethasone induced the circadian expression of clock genes human period 1 (hPer1), hPer2, hPer3, and human brain and muscle Arnt-like protein 1 (hBMAL1). Isoprenaline or dexamethasone treatment immediately increased hPer1 and hPer2 and caused circadian oscillation of hPer1 and hPer2 with three peaks within 48?h. hPer3 expression had one peak after isoprenaline or dexamethasone treatment. hBMAL expression had two peaks after isoprenaline or dexamethasone treatment, the temporal pattern being in antiphase to that of the other clock genes. Dexamethasone treatment delayed the oscillation of all clock genes for 2–6?h compared with isoprenaline treatment. The authors also examined the expression of osteoblast-related genes hα-1 type I collagen (hCol1a1), halkaline phosphatase (hALP), and hosteocalcin (hOC). Isoprenaline induced oscillation of hCol1a1, but not hALP and hOC. On the other hand, dexamethasone induced oscillation of hCol1a1 and hALP, but not hOC. Isoprenaline up-regulated hCol1a1 expression, but dexamethasone down-regulated hCol1a1 and hALP expression in the first phase. (Author correspondence: )  相似文献   

6.
7.
8.
Recurrent hypersomnia is characterized by recurring episodes of hypersomnia of 18 h or more per day lasting from several days to several weeks. We report the case of a 17-year-old male subject with recurrent hypersomnia who displayed change in the 24 h expression of the hPer2 gene in whole red and white blood cells as well as markers [deep body temperature (DBT) and cortisol] of the circadian time structure during an episode of hypersomnia compared to remission. The patient was studied for the temporal characteristics of hPer2 gene, DBT, cortisol, and melatonin expression during a single 24 h span during an episode of hypersomnia and again during a single 24 h span in the following remission. The approximation of a 24 h cosine curve to the time series data revealed circadian rhythmicity (P < 0.05) only in DBT in the two stages of the disease with differences in amplitude and acrophase. Cortisol circadian rhythmicity was detected during remission, but not during hypersomnia. Statistically significant differences were detected by ANOVA between the remission and active disease stages in the 24 h mean level of hPer2 gene expression (P < 0.05), cortisol (P < 0.05), and DBT (P < 0.05). The findings of this case study suggest the expression of hPer2 gene and alterations in circadian time structure might play an important role in the pathogenesis of recurrent hypersomnia, although additional study is required.  相似文献   

9.
The mammalian period (Per) genes, which are components of the circadian clock, are mainly regulated via an autoregulatory feedback loop. Here we provide evidence that human Per1 (hPER1) reporter gene activity shows circadian rhythmicity in a human neuroblastoma, but not in a astrocytoma or a hepatoma cell line. Medium change and various pharmacological stimuli differentially induce this behavior. This circadian oscillation was strongly dampened and could be followed over maximally three cycles. It was even possible to phase-shift the course of this oscillation by repeated application of stimuli.  相似文献   

10.
Evaluating individual circadian rhythm traits is crucial for understanding the human biological clock system. The present study reports characterization of physiological and molecular parameters in 13 healthy male subjects under a constant routine condition, where interfering factors were kept to minimum. We measured hormonal secretion levels and examined temporal expression profiles of circadian clock genes in peripheral leukocytes and beard hair follicle cells. All 13 subjects had prominent daily rhythms in melatonin and cortisol secretion. Significant circadian rhythmicity was found for PER1 in 9 subjects, PER2 in 3 subjects, PER3 in all 13 subjects, and BMAL1 in 8 subjects in leukocytes. Additionally, significant circadian rhythmicity was found for PER1 in 5 of 8 subjects tested, PER2 in 2 subjects, PER3 in 6 subjects, and BMAL1 in 3 subjects in beard hair follicle cells. The phase of PER1 and PER3 rhythms in leukocytes correlated significantly with that of physiological rhythms. Our results demonstrate that leukocytes and beard hair follicle cells possess an endogenous circadian clock and suggest that PER1 and PER3 expression would be appropriate biomarkers and hair follicle cells could be a useful tissue source for the evaluation of biological clock traits in individuals.  相似文献   

11.
12.
Various physiological and behavioral processes exhibit circadian rhythmicity. These rhythms are usually maintained by negative feedback loops of core clock genes, namely, CLOCK, BMAL, PER, and CRY. Recently, dysfunction in the circadian clock has been recognized as an important foundation for the pathophysiology of lifestyle-related diseases, such as obesity, cardiovascular disease, and some cancers. We have reported that angiopoietin-like protein 2 (ANGPTL2) contributes to the pathogenesis of these lifestyle-related diseases by inducing chronic inflammation. However, molecular mechanisms underlying regulation of ANGPTL2 expression are poorly understood. Here, we assess circadian rhythmicity of ANGPTL2 expression in various mouse tissues. We observed that ANGPTL2 rhythmicity was similar to that of the PER2 gene, which is regulated by the CLOCK/BMAL1 complex. Promoter activity of the human ANGPTL2 gene was significantly induced by CLOCK and BMAL1, an induction markedly attenuated by CRY co-expression. We also identified functional E-boxes in the ANGPTL2 promoter and observed occupancy of these sites by endogenous CLOCK in human osteosarcoma cells. Furthermore, Cry-deficient mice exhibited arrhythmic Angptl2 expression. Taken together, these data suggest that periodic expression of ANGPTL2 is regulated by a molecular clock.  相似文献   

13.
14.
Patients undergoing surgery often develop symptoms of circadian rhythm disorders such as insomnia or delirium. However, the effect of surgery on the biological clock remains unknown. The present study examines the expression of clock genes in peripheral blood mononuclear cells (PBMCs) and measures plasma hormone concentrations in patients with esophageal cancer and early gastric cancer who underwent surgery. Six blood samples per day were collected from 9 patients with esophageal cancer before and after esophagectomy and from 9 patients with early gastric cancer before and after laparoscopy-assisted distal gastrectomy (LADG). The expression profiles of hPer1 and hPer2 mRNAs in PBMCs were determined by real-time RT-PCR. Plasma melatonin and cortisol concentrations were measured by radioimmunoassay. Plasma melatonin levels decreased in both groups throughout the day and plasma cortisol levels changed after surgery. The acrophase of clock gene expression was altered after surgery as follows: hPer1, from 6:19+/-1:50 to 13:59+/-0:59 (p=0.0003) and from 7:47+/-1:27 to 12:33+/-1:30 (p=0.0043) and hPer2, from 5:01+/-2:59 to 19:30+/-2:15 (p<0.0001) and from 6:49+/-1:59 to 13:39+/-3:06 (p=0.0171) in patients with esophageal and early gastric cancer, respectively. The post-operative phase change of hPer2 was more prominent after esophagectomy than after LADG. Our results suggest that surgical stress affects the peripheral clock as well as endogenous hormones in humans.  相似文献   

15.
16.
17.
The suprachiasmatic nucleus (SCN) of the hypothalamus synchronizes circadian rhythms of cells and tissues throughout the body. In SCN neurons, rhythms of clock gene expression are suppressed by manipulations that hyperpolarize the plasma membrane or lower intracellular Ca(2+). However, whether clocks in other cells also depend on membrane potential and calcium is unknown. In this study, the authors investigate the effects of membrane potential and intracellular calcium on circadian rhythms in mouse primary fibroblasts. Rhythms of clock gene expression were monitored using a PER2::LUC knockin reporter. Rhythms were lost or delayed at lower (hyperpolarizing) K(+) concentrations. Bioluminescence imaging revealed that this loss of rhythmicity in cultures was due to loss of rhythmicity of single cells rather than loss of synchrony among cells. In lower Ca(2+) concentrations, rhythms were advanced or had shorter periods. Buffering intracellular Ca(2+) by the calcium chelator 1,2-Bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis acetoxymethyl ester (BAPTA-AM) or manipulation of inositol triphosphate (IP(3))-sensitive intracellular calcium stores by thapsigargin delayed rhythms. These results suggest that the circadian clock in fibroblasts, as in SCN neurons, is regulated by membrane potential and Ca(2+). Changes in intracellular Ca(2+) may mediate the effects of membrane potential observed in this study.  相似文献   

18.
In mammals, behavioral and physiological processes display 24-h rhythms that are regulated by a circadian system. In the present study, we investigated the possibility that the expression of clock genes in peripheral leukocytes can be used to assess the circadian clock system. We found that Per1 and Per2 exhibit circadian oscillations in mRNA expression in mouse peripheral leukocytes. Furthermore, the rhythms of Per1 and Per2 mRNA expression in peripheral leukocytes are severely blunted in homozygous Cry1/2 double-deficient mice that are known to have an abolished biological clock. We have examined the circadian expression of clock genes in human leukocytes and found that Per1 mRNA exhibits a robust circadian expression while Per2 and Bmal1 mRNA showed weak rhythm. These observations suggest that monitoring Per1 mRNA expression in human leukocytes may be useful for investigating the function of the circadian system in physiological and pathophysiological states.  相似文献   

19.
A group of specialized genes has been defined to govern the molecular mechanisms controlling the circadian clock in mammals. Their expression and the interactions among their products dictate circadian rhythmicity. Three genes homologous to Drosophila period exist in the mouse and are thought to be major players in the biological clock. Here we present the generation of mice in which the founding member of the family, Per1, has been inactivated by homologous recombination. These mice present rhythmicity in locomotor activity, but with a period almost 1 h shorter than wild-type littermates. Moreover, the expression of clock genes in peripheral tissues appears to be delayed in Per1 mutant animals. Importantly, light-induced phase shifting appears conserved. The oscillatory expression of clock genes and the induction of immediate-early genes in response to light in the master clock structure, the suprachiasmatic nucleus, are unaffected. Altogether, these data demonstrate that Per1 plays a distinct role within the Per family, as it may be involved predominantly in peripheral clocks and/or in the output pathways of the circadian clock.  相似文献   

20.
Spinal astrocytes have key roles in the regulation of pain transmission. However, the relationship between astrocytes and the circadian system in the spinal cord remains poorly defined. In the current study, the circadian variations in the expression of several clock genes in the lumbar spinal cord of mice were examined by using real-time PCR. The expression of Period1, Period2 and Cryptochrome1 showed significant circadian oscillations, each gene peaking in the early evening. The expression of Bmal1 mRNA also exhibited a circadian pattern, peaking from around midnight to early morning. The mRNA levels of Cryptochrome2 were slightly, but not significantly altered. Molecules related to pain transmission were also investigated. The mRNA expression of glutamine synthase (GS), and cyclooxygenases (COXs), known to be involved in various spinal sensory functions, showed rhythmicity with a peak in the early evening, although the expression of the neurokinin-1 receptor, subunits of the N-methyl-d-aspartate receptor, and glutamate transporters did not change. In addition, we found that protein levels of GS and COX-1 were also high at midnight compared with midday. Furthermore, we examined the effect of intrathecal fluorocitrate (100pmol), an inhibitor of astrocytic metabolism, on the expression of oscillating genes in lumbar spinal cord. Fluorocitrate significantly suppressed astrocyte function. Furthermore, the circadian oscillation of clock gene expression and GS and COX-1 expression were suppressed. Together, these results suggest that a significant circadian rhythmicity of the expression of clock genes is present in the spinal cord and that the components of the circadian clock timed by astrocytes might contribute to spinal functions, including nociceptive processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号