首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pig synovial and human skin fibroblast procollagenases were treated with highly purified tryptase, the major proteinase of human mast cells, to determine whether this trypsin-like proteinase could activate the latent form of collagenase and so be involved in connective tissue breakdown. No significant activation of either human or pig procollagenase was found, but the highest concentration of tryptase partially destroyed procollagenase. Tryptase did not degrade type I collagen or proteoglycan. These data indicate that human mast cell tryptase does not contribute to connective tissue breakdown via procollagenase activation or via proteoglycan degradation.  相似文献   

2.
Human mast cell beta-tryptase is a gelatinase   总被引:3,自引:0,他引:3  
Remodeling of extracellular matrix is an important component in a variety of inflammatory disorders as well as in normal physiological processes such as wound healing and angiogenesis. Previous investigations have identified the various matrix metalloproteases, e.g., gelatinases A and B, as key players in the degradation of extracellular matrix under such conditions. Here we show that an additional enzyme, human mast cell beta-tryptase, has potent gelatin-degrading properties, indicating a potential contribution of this protease to matrix degradation. Human beta-tryptase was shown to degrade gelatin both in solution and during gelatin zymographic analysis. Further, beta-tryptase was shown to degrade partially denatured collagen type I. beta-Tryptase bound strongly to gelatin, forming high molecular weight complexes that were stable during SDS-PAGE. Mast cells store large amounts of preformed, active tryptase in their secretory granules. Considering the location of mast cells in connective tissues and the recently recognized role of mast cells in disorders in which connective tissue degradation is a key event, e.g., rheumatoid arthritis, it is thus likely that tryptase may contribute to extracellular matrix-degrading processes in vivo.  相似文献   

3.
The functional role of mast cells in rheumatoid synovium was investigated by assessing the ability of mast cell tryptase to activate latent collagenase derived from rheumatoid synoviocytes. Tryptase, a mast cell neutral protease, was demonstrated in situ to reside in rheumatoid synovial mast cells, by an immunoperoxidase technique using a mouse mAb against tryptase, and in vitro to be released by dispersed synovial mast cells after both immunologic and nonimmunologic challenge. Each rheumatoid synovial mast cell contains an average of 6.2 pg of immunoreactive tryptase and the percent release values of this protease correlated with those of histamine (r = 0.58, p less than 0.01). The ability of purified tryptase to promote collagenolysis was demonstrated in a dose-dependent fashion using latent collagenase derived from rheumatoid synovium, synovial fluid, IL-1-stimulated cultured synoviocytes, and partially purified latent collagenase derived from conditioned media, with between 10 and 92% of the collagen substrate degraded. [3H] Collagen, treated with tryptase-activated latent collagenase, was subjected to electrophoresis on SDS polyacrylamide gels and autoradiography showed the collagen degradation pattern (A, B) characteristically produced by collagenase. Mast cell lysates also activated synovial latent collagenase yielding 24% digestion of collagen substrate. This activator in mast cell lysates could be inhibited by diisopropylflurophosphate or by immunoadsorption of tryptase. Thus, mast cells may activate metalloproteinases and play a role in the catabolism of collagen that occurs in rheumatoid synovium.  相似文献   

4.
Migrating cells degrade pericellular matrices and basement membranes. For these purposes cells produce a number of proteolytic enzymes. Mast cells produce two major proteinases, chymase and tryptase, whose physiological functions are poorly known. In the present study we have analyzed the ability of purified human mast cell tryptase to digest pericellular matrices of human fibroblasts. Isolated matrices of human fibroblasts and fibroblast conditioned medium were treated with tryptase, and alterations in the radiolabeled polypeptides were observed in autoradiograms of sodium dodecyl sulphate polyacrylamide gels. It was found that an M(r) 72,000 protein was digested to an M(r) 62,000 form by human mast cell tryptase while the plasminogen activator inhibitor, PAI-1, was not affected. Cleavage of the M(r) 72,000 protein could be partially inhibited by known inhibitors of tryptase but not by aprotinin, soybean trypsin inhibitor, or EDTA. Fibroblastic cells secreted the M(r) 72,000 protein into their medium and it bound to gelatin as shown by analysis of the medium by affinity chromatography over gelatin-Sepharose. The soluble form of the M(r) 72,000 protein was also susceptible to cleavage by tryptase. Analysis using gelatin containing polyacrylamide gels showed that both the intact M(r) 72,000 and the M(r) 62,000 degraded form of the protein possess gelatinolytic activity after activation by sodium dodecyl sulphate. Immunoblotting analysis of the matrices revealed the cleavage of an immunoreactive protein of M(r) 72,000 indicating that the protein is related to type IV collagenase. Further analysis of the pericellular matrices indicated that the protease sensitive extracellular matrix protein fibronectin was removed from the matrix by tryptase in a dose-dependent manner. Fibronectin was also susceptible to proteolytic degradation by tryptase. The data suggest a role for mast cell tryptase in the degradation of pericellular matrices.  相似文献   

5.
Enzyme histochemistry of rat mast cell tryptase   总被引:1,自引:0,他引:1  
Fixation and staining conditions for rat mast cell tryptase and its histochemical distribution in different rat tissues were investigated. Prostate, skin, lung, gut, stomach and salivary glands were fixed in either aldehyde or Carnoy fixatives and then frozen or embedded in paraffin wax. Preservation of tryptase enzymic activity against peptide substrates required aldehyde fixation and frozen sectioning. Of the peptide substrates examined, z-Ala-Ala-Lys-4-methoxy-2-naphthylamide and z-Gly-Pro-Arg-4-methoxy-2-naphthylamide proved the most effective for the demonstration of tryptase. Double staining by enzyme cytochemistry followed by immunological detection of tryptase showed that, in all tryptase-containing mast cells, the enzyme is at least in part active. Conventional dye-binding histochemistry was used to confirm the identity of mast cells. Aldehyde-fixed mucosal mast cells required a much shorter staining time with Toluidine Blue if tissue sections were washed directly in t-butyl alcohol. Double staining by enzyme cytochemistry and dye binding showed that tryptase is absent from mucosal and subepidermal mast cells, which are also smaller in size and appear to contain fewer granules than connective tissue mast cells. This study demonstrates that rat mast cell tryptase, unlike tryptases in other species, is a soluble enzyme. It is stored in an active form and is absent from some mast cell subpopulations in mucosa, skin and lung. © 1998 Chapman & Hall  相似文献   

6.
As part of an ongoing investigation of human mast cell heterogeneity, we have isolated, partially purified, and characterized the uterine mast cell and compared it with mast cells isolated from other organs. The average histamine content of myometrium and leiomyofibroma obtained from hysterectomies was 2.1 +/- 0.3 (mean +/- SEM) microgram/g of tissue (n = 10), and the histamine content of the two tissues did not differ significantly. A mild collagenase, hyaluronidase, and DNase digestion was used to disperse the uterine mast cells, with an average yield of 9.5% (range, 0 to 21%). The average histamine/uterine mast cell was 2.1 +/- 0.2 pg (n = 3), and 61 +/- 7% (n= 3) of the uterine mast cells survived overnight culture. Early purification efforts with Percoll gradients have yielded up to 80% pure uterine mast cells, with an average of 27 +/- 10% (n = 5). Uterine mast cells released histamine in response to the secretogogues anti-IgE and A23187 but did not respond to substance P or to the basophil secretogogues FMLP, C5a, and 12-O-tetradecanoylphorbol-13-acetate. After 1 microgram/ml anti-IgE stimulation, the uterine mast cell appeared to make significant quantities of PGD2 (89 +/- 26 ng/10(6) cells, n = 6) (p less than 0.05), as assayed by RIA. Simultaneously, leukotriene C4 release was 45 +/- 15 ng/10(6) cells, (n = 6) (p less than 0.05), as assayed by RIA. Combined gas-chromatography mass spectroscopy analysis of anti-IgE-stimulated cell supernatants confirmed the production of PGD2. In pharmacologic studies, isobutyl-methylxanthine and isoproterenol blocked anti-IgE-induced histamine release. The uterine mast cell is similar to the lung mast cell in terms of response to secretogogues and release of arachidonic acid metabolites. Ultrastructurally, the uterine mast cell contains scroll granules, crystal granules, combined granules, homogeneously dense granules, and large lipid bodies, many with focal lucencies within them. Particle granules, most frequently present in gut mast cells of mucosal origin, were absent from uterine mast cells. Although certain features are analogous to the ultrastructure of skin or lung mast cells, the combination of structures is distinctive for uterine mast cells.  相似文献   

7.
Selective adhesion of mast cells to tracheal epithelial cells in vitro   总被引:1,自引:0,他引:1  
In allergic and nonallergic lung diseases, if intraluminal mast cells adhere to airway epithelium, inflammatory mediators released from activated mast cells may reach high local concentrations and thus greatly affect airway function. To determine whether mast cells adhere to airway epithelial cells, radiolabeled or unlabeled dog mastocytoma cells were incubated with cultured dog tracheal epithelial cells, with extracellular matrix substrates, and with cryostat-cut sections of dog trachea. Mast cells adhered well to cultured epithelial cells (35 +/- 13% adhesion, mean +/- 1 SD, n = 23) but adhered poorly to types I and IV collagen or to fibronectin (less than 7.5% mean adhesion in all cases). Similarly, in tracheal tissue sections, mast cells adhered preferentially to epithelial cells in surface epithelium or in submucosal glands but not to basal membrane or connective tissue. Adhesion to cultured epithelial cells was a characteristics of a subpopulation of mast cells, could persist for more than 48 h, did not require energy or the presence of divalent cations, and was not mediated by a known family of leukocyte-associated adhesion glycoproteins. Adhesion was completely abolished by pretreatment of mast cells with pronase E or proteinase K but not with trypsin (up to 10 micrograms/ml at 37 degrees C for 20 min each). In contrast, pretreatment of cultured epithelial cells with any of these proteinases had no effect on adhesion. It is concluded that dog mastocytoma mast cells adhere to dog tracheal epithelial cells and do so selectively. It is suggested that mast cell adhesion to airway epithelium may play a role in the effectiveness of mast cell-epithelial cell interactions, and thus, in certain lung diseases, airway function may be affected by intraluminal mast cells more than is currently appreciated.  相似文献   

8.
We investigated the histochemical characteristics of mast cell tryptase in different mouse tissues. By use of peptide substrates, tryptase activity could be demonstrated in unfixed connective tissue mast cells in different tissues, including the stomach. Tryptase activity was better localized after aldehyde fixation and frozen sectioning, and under such conditions was also demonstrated in mucosal mast cells of the stomach but not in those of the gut mucosa. Double staining by enzyme histochemistry followed by toluidine blue indicated that the tryptase activity was present only in mast cells and that all mast cells in the stomach mucosa contained the enzyme. The peptide substrates z-Ala-Ala-Lys-4-methoxy-2-naphthylamide and z-Gly-Pro-Arg-4-methoxy-2-naphthlyamide, which are substrates of choice for demonstrating tryptase in other species, were most effective for demonstrating mouse tryptase. The use of protease inhibitors further indicated that activity present in all mast cells was tryptase. Safranin O did not stain stomach mucosal mast cells, suggesting that the tryptase present in these cells was active in the absence of heparin sulfate proteoglycan.  相似文献   

9.
The granule proteases of human neutrophils are thought to be responsible for the connective tissue destruction associated with certain inflammatory diseases. Using a model system for the degradation of a macromolecular connective tissue substrate, purified neutrophil elastase and cathepsin G were both individually able to degrade cartilage matrix proteoglycan and this degradation was blocked by the appropriate specific inhibitors. Neutrophil granule lysate also produced cartilage matrix degradation but little inhibition of degradation occurred when either elastase or cathepsin G inhibitor was used alone. However, a combination of elastase and cathepsin G inhibitors each at 100 microM or each at 10 microM blocked cartilage matrix degradation by 89% +/- 1 and 65% +/- 9 (mean +/- SEM, n = 3), respectively. The magnitude of the cartilage degradation mediated by neutrophil lysate, and its sensitivity to specific inhibitors, was reproduced using purified elastase and cathepsin G at the concentrations at which they are present in neutrophil lysate. Human neutrophils stimulated with opsonized zymosan degraded cartilage matrix in a dose-dependent manner in the presence of serum antiproteases. Supernatants from stimulated neutrophils cultured in the presence of serum did not degrade cartilage matrix, indicating that neutrophil mediated degradation in the presence of serum was confined to the protected subjacent region between the inflammatory cell and the substratum. A combination of elastase and cathepsin G inhibitors each at 500 microM or each at 100 microM blocked subjacent cartilage matrix degradation by stimulated human neutrophils by 91% +/- 3 and 54% +/- 8 (mean +/- SEM, n = 5), respectively, whereas either the elastase or cathepsin G inhibitor alone was much less effective. These studies demonstrate that neutrophil-mediated cartilage matrix degradation is produced primarily by elastase and cathepsin G. Furthermore, these results support the hypothesis that inflammatory neutrophils form zones of close contact with substratum that exclude serum antiproteases and that this subjacent degradation of cartilage matrix by stimulated neutrophils can be blocked by a combination of synthetic elastase and cathepsin G inhibitors.  相似文献   

10.
Mast cells contain proteases capable of activating matrix metalloproteinases (MMPs). However, given the relatively low density of mast cells in the myocardium (i.e., 1.5-5.3 cells/mm(2)), it is unknown whether these enzymes are present in sufficient quantities in the normal heart to mediate MMP activation. Accordingly, this study sought to determine whether chemically induced degranulation of cardiac mast cells (with compound 48/80) would have an effect in isolated, blood-perfused, functioning rat hearts. Mast cell degranulation produced a 15% increase in histamine levels present in the coronary efflux, a significant increase in myocardial water (i.e., edema) relative to normal values (80.1 +/- 3.4% vs. 77.4 +/- 1.08%, P < or = 0.03), a substantial activation of MMP-2 (126% increase relative to controls, P < or = 0.02), and a marked decrease in myocardial collagen volume fraction (0.46 +/- 0.10% vs. 0.97 +/- 0.33%, P < or = 0.001). Furthermore, although an increase in ventricular stiffness was expected due to the extent of edema resulting from mast cell degranulation, modest ventricular dilatation was observed. These findings clearly demonstrate that the number of mast cells present in normal hearts is sufficient to mediate activation of MMPs and produce extracellular matrix degradation, thereby potentially causing subsequent ventricular dilatation.  相似文献   

11.
Evaluation of human peripheral blood leukocytes for mast cell tryptase   总被引:11,自引:0,他引:11  
Murine monoclonal and goat polyclonal antibodies against tryptase, the dominant neutral protease and protein component in secretory granules of human mast cells, were used to assess the presence of tryptase in peripheral leukocytes. Carnoy's fluid-fixed cytocentrifuge preparations of enriched populations of lymphocytes, monocytes, eosinophils, and neutrophils showed no reactivity with anti-tryptase antibodies by a sensitive indirect immunoperoxidase procedure. Dispersed human lung mast cells showed strong granular cytoplasmic staining with both antibodies, whereas only approximately 50% of the peripheral blood basophils detectable with Wright's stain were detected with anti-tryptase antibodies, and these showed a staining pattern that was faint, granular, and cytoplasmic at high concentrations of antibody. At lower antibody concentrations mast cell staining was still intense, whereas basophils were not stained. Extracts of neutrophils and lymphocytes of up to 90% purity had undetectable amounts of tryptase by an ELISA sandwich immunoassay, as well as undetectable enzymatic activity with tosyl-L-gly-pro-lys-p-nitroanilide (a sensitive substrate for tryptase) in the presence of soybean trypsin inhibitor. Extracts of basophil-enriched (6 to 50% purity) preparations contained 0.046 +/- 0.013 pg of tryptase per basophil by the immunoassay along with 2 X 10(-9) +/- 0.8 X 10(-9) U of tryptase-like enzyme activity per basophil, compared with corresponding values of 12 pg, 480 X 10(-9) U of tryptase per human lung mast cell. Thus very small amounts of tryptase are present in human basophils (approximately 0.4% of that found in mast cells), but not in other peripheral leukocytes.  相似文献   

12.
Serine class proteinases with trypsin-like and chymotrypsin-like specificity were purified from dog mastocytoma tissue. An antiserum was produced against the chymotrypsin-like proteinase. The antiserum reacted with mast cells in skin sections prepared from normal dogs consistent with the proteinase being a mast cell constituent. The antiserum also cross-reacted with the major chymotrypsin-like proteinase isolated from normal dog skin and partially cross-reacted with human skin chymase. No cross-reaction was detected with rat chymase. The trypsin-like proteinase from dog mastocytoma tissue was similar to tryptase isolated from human skin. It had a similar subunit structure, was not inhibited by many protein proteolytic enzyme inhibitors, bound to heparin, and reacted strongly with antiserum against human tryptase. Antiserum against human tryptase also reacted with mast cells in skin sections prepared from normal dog skin. No immunocytochemical labeling of rat skin mast cells was observed with anti-human tryptase. These studies establish the presence of a trypsin-like and chymotrypsin-like proteinase in dog skin mast cells and provide immunological evidence which suggests that both proteinases are more closely related to human than rat mast cell proteinases. These immunological and biochemical relationships are important when comparing the roles of these proteinases in different animals.  相似文献   

13.
A recent report postulated that the mast cell population is a significant reservoir for persistent HIV infection. Our study attempted to validate this hypothesis by quantitatively comparing the distribution of mast cells and cells expressing the HIV protein p24 in HIV infected patients. Consecutive sections of paraffin-embedded human tissues from various tissue sites were subjected to immunohistochemistry with monoclonal antibodies to mast cell tryptase, viral protein p24, and other molecules. The sub-cellular distribution of these molecules was examined, to determine whether immunoreactivities to these molecules would be co-localized within the same cells. Our study revealed that, in two immediate adjacent sections immunostained for mast cell tryptase and p24, respectively, all or nearly all tryptase and p24 expressing cells were distributed at different areas. In the single section double immunostained for mast cell tryptase and p24, 5 (1.1%) of 460 large p24 expressing cell clusters encountered showed a single or few mast cells within or adjacent to p24 expressing cell clusters, but no distinct co-localization of these two proteins was observed. Similarly, no distinct co-localization was observed in any of over 500 isolated individual mast cells and p24 expressing cells. In contrast, macrophages were consistently intermixed with or adjacent to p24 expressing cells, and p24 immunostaining were seen in the cytoplasm of a subset of macrophages. These findings suggest that tissue mast cells do not show evidence for active virus replication by the techniques employed.  相似文献   

14.
Mast cell-fibroblast interactions have been extensively investigated in the last few years. Fibroblasts support the in vitro survival but not proliferation of mouse connective-tissue type mast cells. However, the factor(s) that allow their survival on fibroblast monolayers has not been identified. We have investigated the presence of mRNA for IL-3 and granulocyte-macrophage-CSF in single mouse mast cells, before and after co-culture with 3T3 fibroblasts, using the polymerase chain reaction technique. The system was calibrated first by using in vitro generated population of mouse bone-marrow derived mast cells (BMMC). Significant differences in the amplification of IL-3 cDNA were observed in each of the BMMC cells examined, whereas the amplification of cDNA for the alpha-subunit of the Fc epsilon RI were similar. Inasmuch as murine cultured IL-3-dependent mast cells differentiate into connective tissue-like mast cells when co-cultured with 3T3 fibroblasts without any exogenous supply of growth factors, it was of interest to determine whether these connective tissue-like mast cells produce IL-3 message. Separation of the differentiated BMMC from the fibroblast monolayer, by either trypsinization or by single cell manipulation revealed the synthesis of a detectable amount of IL-3 mRNA in these mast cells. Whether this IL-3 mRNA was induced by fibroblasts was further investigated using connective tissue mast cells freshly purified from the mouse peritoneal cavity. Only about 20% of these connective tissue mast cells produced detectable amount of granulocyte-macrophage-CSF mRNA whereas in less than 10% of the cells IL-3 mRNA was detected. However, when these connective tissue mast cells were co-cultured with 3T3 fibroblasts for 18 hours and then separated, IL-3 mRNA were detected in most of the cells whereas no such mRNA was detected in tissue mast cells incubated for 18 h with medium derived from 3T3 fibroblasts. Therefore we conclude that fibroblasts induce the accumulation of IL-3 mRNA in connective tissue mast cells. The production of IL-3 may play a role in the survival of this type of mast cells on the fibroblast monolayer.  相似文献   

15.
Histochemistry and morphology of porcine mast cells   总被引:11,自引:0,他引:11  
Summary Mast cells have been described extensively in rodents and humans but not in pigs, and the objective of this study was to characterize porcine mast cells by histochemistry and electron microscopy. Carnoy's fluid proved to be a good fixative but fixation with neutral buffered formalin blocked staining of most mast cells. Alcian Blue stained more mast cells than did Toluidine Blue (pH 0.5), although Alcian Blue also stained goblet cells. In pigs, unlike rodents, the Alcian Blue method did not distinguish between mast cells in the intestinal mucosa and those in the connective tissue of the intestinal submucosa, tongue and skin. Mast cells were significantly larger in adult pigs than in piglets; in adult pigs and piglets, mast cells in the intestinal mucosa were significantly larger than those in submucosal connective tissue, and they were more varied in shape in piglets and adults. Granules in mast cells in the intestinal mucosa stained less intensely than those in mast cells in connective tissue of tongue, skin and intestinal submucosa. Mast cells in the connective tissue of the tongue, skin and intestinal submucosa fluoresced strongly when stained with berberine sulphate or with a mixture of berberine sulphate and Acridine Orange, but mast cells in the intestinal mucosa did not. All mast cells reacted positively in an enzyme-histochemical method previously used to detect human tryptase but not in a method previously used to detect human chymase. Mast cells in the medulla of thymus stained similarly to mast cells in the intestinal mucosa. Ultrastructural differences between mast cells were not detected.  相似文献   

16.
Arachidonic acid metabolism in purified human lung mast cells   总被引:9,自引:0,他引:9  
Arachidonic acid metabolism has been explored in preparations of purified human lung mast cells prelabeled with arachidonic acid (AA). Cells were of 83 to greater than 96% purity, and each experiment was performed with four to six different preparations of mast cells. After overnight culture of the purified cells in the presence of 3H-AA, followed by extensive washing in buffer, mast cell uptake of labeled AA was 61.4 +/- 14.8 pmol/10(6) cells with 21 +/- 2.4% of the label in phospholipids, 73 +/- 2.1% in neutral lipids, and 3.6 +/- 0.8% as free AA. Analysis of the distribution of radioactivity in phospholipid classes revealed 51.4 +/- 5.5% of the label in phosphatidylcholine, 14.5 +/- 1.6% in phosphatidylinositol, 12.0 +/- 3.0% in phosphatidylethanolamine, and 9.1 +/- 2.4% in sphingomyelin, with the rest in other phospholipid classes. Challenge of these cells with an optimal concentration of anti-IgE led to the release of 20 +/- 4.0% of cellular histamine and to a reduction in labeled phosphatidylcholine and phosphatidylinositol to 75.5 +/- 8.8% and 84.2 +/- 4.5% of the control levels, respectively, (p less than 0.05); anti-IgE challenge produced no statistically significant change in the quantities of other labeled phospholipids. Activation of human lung mast cells with anti-IgE led to the release of 3.4 +/- 1.3% of the cellular 3H as AA and AA metabolites (1.5 +/- 0.6% as unmetabolized AA) in conjunction with 16 +/- 4.3% of the cellular histamine. Although activation of human lung mast cells with ionophore A23187 caused 70 +/- 1.1% histamine release, a similar quantity of AA and AA metabolites was released (a total of 4.0 +/- 0.8% with 2.3 +/- 1.5% as unmetabolized AA). Analysis of the released metabolites by liquid scintillation spectrometry after high performance liquid chromatography separation showed that approximately equal amounts of metabolites were produced after mast cell activation with anti-IgE and ionophore A23187. In this series of experiments approximately equal amounts of cyclooxygenase and lipoxygenase products were generated.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Thrombin activates mast cells to release inflammatory mediators through a mechanism involving protease-activated receptor-1 (PAR-1). We hypothesized that PAR-1 activation would induce mast cell adhesion to fibronectin (FN). Fluorescent adhesion assay was performed in 96-well plates coated with FN (20 microg/ml). Murine bone marrow cultured mast cells (BMCMC) were used after 3-5 wk of culture (>98% mast cells by flow cytometry for c-Kit expression). Thrombin induced beta-hexosaminidase, IL-6, and matrix metalloproteinase-9 release from BMCMC. Thrombin and the PAR-1-activating peptide AparafluoroFRCyclohexylACitY-NH(2) (cit) induced BMCMC adhesion to FN in a dose-dependent fashion, while the PAR-1-inactive peptide FSLLRY-NH(2) had no effect. Thrombin and cit induced also BMCMC adhesion to laminin. Thrombin-mediated adhesion to FN was inhibited by anti-alpha(5) integrin Ab (51.1 +/- 6.7%; n = 5). The combination of anti-alpha(5) and anti-alpha(4) Abs induced higher inhibition (65.7 +/- 7.1%; n = 5). Unlike what is known for FcepsilonRI-mediated adhesion, PAR-1-mediated adhesion to FN did not increase mediator release. We then explored the signaling pathways involved in PAR-1-mediated mast cell adhesion. Thrombin and cit induced p44/42 and p38 phosphorylation. Pertussis toxin inhibited PAR-1-mediated BMCMC adhesion by 57.3 +/- 7.3% (n = 4), indicating that G(i) proteins are involved. Wortmannin and calphostin almost completely inhibited PAR-1-mediated mast cell adhesion, indicating that PI-3 kinase and protein kinase C are involved. Adhesion was partially inhibited by the mitogen-activated protein kinase kinase 1/2 inhibitor U0126 (24.5 +/- 3.3%; n = 3) and the p38 inhibitor SB203580 (25.1 +/- 10.4%; n = 3). The two inhibitors had additive effects. Therefore, thrombin mediates mast cell adhesion through the activation of G(i) proteins, phosphoinositol 3-kinase, protein kinase C, and mitogen-activated protein kinase pathways.  相似文献   

18.
The current study characterizes the cytokine protein (ELISA) and mRNA (gene array and RT-PCR) profiles of skin-derived mast cells cultured under serum-free conditions when activated by cross-linking of Fc epsilonRI. Prior to mast cell activation, mRNA only for TNF-alpha was detected, while after activation mRNA for IL-5, IL-6, IL-13, TNF-alpha, and GM-CSF substantially increased, and for IL-4 it minimally increased. However, at the protein level certain recombinant cytokines, as measured by ELISAs, were degraded by proteases released by these skin-derived mast cells. IL-6 and IL-13 were most susceptible, followed by IL-5 and TNF-alpha; GM-CSF was completely resistant. These observations also held for the endogenous cytokines produced by activated mast cells. By using protease inhibitors, chymase and cathepsin G, not tryptase, were identified in the mast cell releasates as the likely culprits that digest these cytokines. Their cytokine-degrading capabilities were confirmed with purified chymase and cathepsin G. Soy bean trypsin inhibitor, when added to mast cell releasates, prevented the degradation of exogenously added cytokines and, when added to mast cells prior to their activation, prevented degradation of susceptible endogenous cytokines without affecting either degranulation or GM-CSF production. Consequently, substantial levels of IL-5, IL-6, IL-13, TNF-alpha, and GM-CSF were detected 24-48 h after mast cells had been activated, while none were detected 15 min after activation, by which time preformed granule mediators had been released. IL-4 was not detected at any time point. Thus, unless cytokines are protected from degradation by endogenous proteases, cytokine production by human mast cells with chymase and cathepsin G cells may be grossly underestimated.  相似文献   

19.
Mast cells can be distinguished according to various characteristics: rodent mast cells have been subtyped by histochemical criteria, whereas canine and human mast cells have been classified according to their proteases. Comparisons of mast cells from different species have therefore resulted in contradictory and confusing opinions on mast cell heterogeneity. Thus, it is essential to obtain species-specific data on mast cell density and heterogeneity. The present study was carried out to determine the physiological distribution of mast cell numbers and types in bovines according to tissue location, staining, and fixation methods. Samples were fixed in formalin or Carnoy’s fluid. The average number of mast cells was determined by using a metachromatic staining method. Protease content of mast cells was examined with a double-enzyme-immunohistochemical staining technique. Three mast cell subtypes were distinguished: T-, TC-, and C-mast cells. The T-mast cell was the predominant subtype in nearly all investigated organs and tissue locations. Only tryptase-positive mast cells could be demonstrated in bovine skin and uterus. No chymase activity was found in these organs, regardless of the fixation type. A larger number of mast cells was observed after fixation in Carnoy’s fluid. The three different mast cell subtypes were only demonstrated in formalin-fixed tissue; chymase-positive mast cells were not found after fixation in Carnoy’s fluid. Increasing experimental data suggest that mast cell subtypes have different functions in promoting and modulating inflammation and in remodeling the extracellular matrix. Since mast cell tryptase and chymase have different functional properties, these results may clarify the different reaction patterns observed in various organs and species.  相似文献   

20.
Human lung mast cells: purification and characterization   总被引:18,自引:0,他引:18  
Detailed studies of the biochemistry and pharmacology of mast cell-mediated inflammatory disorders have been hampered by the inability to purify human mast cells. We now report techniques to purify human lung mast cells to apparent homogeneity. The major purification steps are: 1) dispersion of lung fragments into a single-cell suspension with enzyme combinations (pronase-chymopapain, collagenase-elastase); 2) partial purification by countercurrent centrifugation elutriation (CCE); and 3) affinity column chromatography. Enzymatic dispersion yielded suspensions with congruent to 10(6) mast cells per gram of lung parenchyma in purities of 1.2 to 9.7%. Dispersed mast cells responded comparably to those in parent lung fragments to challenge with anti-human IgG and pharmacologic agonists. Elutriation of lung cell suspensions yielded mast cell-enriched fractions with purities up to 70%. High purity mast cell fractions were combined, passively sensitized with purified human penicillin (BPO)-specific IgE, and purified by a BPO-affinity column chromatography procedure. Post elutriation mast cell purities of 29 +/- 3.5% were increased to 84 +/- 3% (range 65 to 98%) by the affinity column. Short-term (24 hr) culture of column-purified mast cells allowed adherence of non-mast cell contaminants to tissue culture plates, further increasing purity (up to 100%). Purified mast cells were intact and functional as assessed by dye exclusion, survival in short-term culture, IgE-mediated histamine release, and modulation of release by the pharmacologic agonists adenosine, IBMX, prostaglandin E2, and fenoterol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号