首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Reconstitution of purified bilirubin UDP-glucuronyltransferase from Wistar-rat liver into Gunn-rat liver microsomes provides a better environment than phosphatidylcholine liposomes, such that the final specific activity of the Wistar-rat liver enzyme was increased up to 85 units/mg of protein. 2. Gunn- and Wistar-rat liver microsomes were equally effective for reconstitution of the purified enzyme. 3. The transferase activity does not appear to be fully expressed in the more rigid environment of foetal Wistar-rat liver microsomes. 4. These reconstitution experiments reveal a final specific activity for the purified bilirubin UDP-glucuronyltransferase consistent with the capacity of the whole rat liver to glucuronidate bilirubin and indicate that the absence of this enzyme activity in Gunn-rat liver microsomes is not due to an abnormal microenvironment.  相似文献   

2.
Addition of alkyl ketone (10mM) to Gunn-rat liver homogenates increased UDP-glucuronyltransferase activity towards 2-aminophenol by 10--20 fold, up to enhanced values of enzyme activity observed with similarly treated Wistar-rat liver homogenates. Alkyl ketones also activate the defective enzyme purified from Gunn-rat liver. This genetic deficiency of UDP-glucuronyltransferase activity is no longer apparent when assayed in the presence of alkyl ketones.  相似文献   

3.
UDP-glucuronyltransferase activities towards eight substrates were assayed in samples of foetal, term and adult human liver. Activities towards bilirubin, androsterone, testosterone, 1-naphthol, 4-nitrophenol and 2-aminophenol were present in foetal and term liver samples at less than 14% of adult values, whereas activity towards 5-hydroxytryptamine was present in foetal and term liver at 109 and 121% of adult values respectively. Thus a 'foetal' form of UDP-glucuronyltransferase may exist in human liver that is more restricted in substrate specificity than are those of the rat or rhesus monkey.  相似文献   

4.
P Vajro  M M Thaler  N Blanckaert 《Enzyme》1992,46(4-5):169-178
Conflicting data have been published regarding the effects of phenobarbital treatment on bilirubin UDP-glucuronyltransferase activity in native liver microsomes. Recent evidence suggests that the bilirubin UDP-glycosyltransferase system faces the interior of microsomal vesicles, and that expression of its activities in sealed microsomes may be rate-limited by transport of UDP sugars across the membrane. These observations raise the possibility that the reported variability in the effects of phenobarbital may reflect differences in integrity of the membrane in microsomal preparations. We examined the effect of phenobarbital on bilirubin UDP-glucosyltransferase and the UDP-glucuronyltransferase activities towards bilirubin, 4-nitrophenol, and 1-naphthol using native rat liver microsomes with verified vesicle integrity. Phenobarbital-induced microsomes in which the membrane permeability barrier was eliminated by pretreatment with detergent displayed markedly higher UDP-glycosyltransferase activities towards all tested substrates compared with activities in similarly disrupted microsomes from untreated rats. In contrast, none of the transferase activities tested were significantly enhanced by phenobarbital treatment when the enzymic activities were assayed in sealed microsomes. Addition to the enzyme assay mixture of UDPGlcNAc, a presumed physiological activator of the UDP-glucuronyltransferases, failed to expose the enhanced UDP-glucuronyltransferase concentration in phenobarbital-induced sealed microsomes. Our findings are consistent with the idea that transport of UDP sugar across the membrane may be rate-limiting for expression of UDP-glycosyltransferase activities in sealed microsomes. Quantitative assessment of membrane integrity is an essential prerequisite in experiments designed to study the regulation of the microsomal UDP-glycosyltransferase system.  相似文献   

5.
UDP-glucuronyltransferase was assayed in liver from adult rhesus monkeys and foetuses during late gestation. Activities toward 2-aminophenol, 5-hydroxytryptamine, 1-naphthol and 4-nitrophenol in the foetal liver ranged from 46 to 114% of adult values, whereas activities toward bilirubin, oestradiol and testosterone were less than 5% of adult values. This suggests that in primates UDP-glucuronyltransferase develops differentially in two clusters analogous to that in the rat.  相似文献   

6.
A UDP-glucuronyltransferase isoform glucuronizes phenolic xenobiotics such as 4-nitrophenol, and an isoform glucuronizing 4-hydroxybiphenyl has also been found in rat liver. We purified a UDP-glucuronyltransferase isoform glucuronizing 4-hydroxybiphenyl from bovine liver microsomes by solubilization with 0.7% sodium cholate followed by three column chromatographic separations using DEAE-Toyopearl 650S, UDP-hexanolamine Sepharose 4B, and hydroxyapatite. The purified bovine liver 4-hydroxybiphenyl UDP-glucuronyltransferase (named Bovine 4HBGT) had glucuronidation activities toward 4-hydroxybiphenyl and 4-methylumbelliferone but had little activity toward 4-nitrophenol and 1-naphthol. The apparent molecular mass of Bovine 4HBGT was 54,000 Da on SDS-PAGE, and this was decreased to 50,000 Da by digestion with endo-beta-N-acetylglucosaminidase H. These data suggest that Bovine 4HBGT consists of a 50,000 Da polypeptide and a high mannose type oligosaccharide chain(s) of about 4,000 Da. The NH2-terminal sequence of GT-3 was GKVLVWPVDFSXWINI. These properties of Bovine 4HBGT were very similar to those of rat UDP-glucuronyltransferase glucuronizing xenobiotics. However, the NH2-terminal sequence of Bovine 4HBGT had higher homology with that of rat liver 4-hydroxybiphenyl UDP-glucuronyltransferase than with that of rat liver 4-nitrophenol UDP-glucuronyltransferase.  相似文献   

7.
1. The purification to homogeneity of stable highly active preparations of UDP-glucuronyltransferase from liver of phenobarbital-treated rats is briefly described. 2. A single polypeptide was visible after sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, of mol.wt.57000. 3. Antiserum raised against the pure enzyme produces a single sharp precipitin line after Ouchterlony double-diffusion analysis. 4. The pure UDP-glucuronyltransferase isolated from livers of untreated and phenobarbital-pretreated rats appears to be the same enzyme. 5. The Km (UDP-glucuronic acid) of the pure enzyme is 5.4 mM. 6. The activity of the pure enzyme towards 2-aminophenol can still be activated 2-3-fold by diethylnitrosamine. 7. UDP-glucose and UDP-galacturonic acid are not substrates for the purified enzyme. 8. The final preparation catalysed the glucuronidation of 4-nitrophenol, 1-naphthol, 2-aminophenol, morphine and 2-aminobenzoate. 9. Activities towards 4-nitrophenol, 1-naphthol and 2-aminophenol were all copurified. The proposed heterogeneity of UDP-glucuronyltransferase is discussed.  相似文献   

8.
Highly purified bilirubin UDP-glucuronyltransferase from Wistar-rat liver, when reconstituted with Gunn-rat liver microsomes (microsomal fraction), was able to catalyse the conversion of unesterified bilirubin into both bilirubin monoglucuronide and diglucuronide. Under zero-order kinetic conditions for monoglucuronide formation, the fraction of bilirubin diglucuronide formed by incubation of bilirubin with the reconstituted highly purified transferase accounted for 18% of total bilirubin glucuronides, which was only slightly lower than the fraction of diglucuronides (23% of total bilirubin glucuronides) formed by incubation with hepatic microsomes in the presence of UDP-N-acetylglucosamine or Lubrol. The reconstituted purified enzyme also catalysed the UDP-glucuronic acid-dependent conversion of bilirubin monoglucuronide into diglucuronide and, when bilirubin was incubated with UDP-glucose or UDP-xylose, the formation of bilirubin glucosides and xylosides respectively. These results suggest that a single microsomal bilirubin UDP-glycosyltransferase may be responsible for the formation of bilirubin mono- and di-glycosides.  相似文献   

9.
UDP-glucuronyltransferase activity of neonatal-chick liver or phenobarbital-treated chick-embryo liver catalysed the glucuronidation of 1-naphthol, 4-nitrophenol and 2-aminophenol. Only low transferase activity towards testosterone was detected, and activity towards bilirubin was not detectable. Liver microsomal transferase activity towards the three phenols was increased approx. 20-50-fold by phenobarbital treatment of chick embryos or by transfer of liver cells into tissue culture. A single form of UDP-glucuronyltransferase, which appears to catalyse the glucuronidation of these three phenols, was purified to near homogeneity from phenobarbital-treated chick-embryo liver microsomal fraction for the first time. The use of this purified enzyme as a standard protein facilitated the identification of this protein in chick-embryo liver microsomal fraction. Further, the accumulation of this microsomal protein was observed following phenobarbital treatment of chick embryos and during tissue culture of chick-embryo liver cells. The value of this model system for the study of the induction of UDP-glucuronyltransferase by drugs and hormones is discussed.  相似文献   

10.
Hepatic uridinediphosphoglucroonate glucuronosyl transferase (UDPglucuronyltransferase, EC 2.4.1.17) functionally heterogeneus; 4-nitrophenol and bilirubin are representative subtrates for two separated from of the enzyme. UDPglucuronyltransferase activity for bilirubin and 4-nitrophenol was separated from solubilized rat liver microsomes by DEAE-cellulose chromatography and corresponding enzymes were purified. A radioimmunoassay was developed using a rabbit antiserum against purified rat 4-nitrophenol-specific UDPglucuronyltransferase, which precipitated enzyme activities toward both 4-nitrophenol and bilirubin. After treatment with triiodothyronine(T3) (0.55 mg/kg body weight), hepatic microsomal UDPglucuronyltransferase activity for 4-nitropheelos was increased 400% as compared to controls; the enzyme activity for bilirubin was decreased by 80%; the changes in the substrate-specific enzyme activities were reflected in the enzymatically active fractions separated after DEAE-cellulose chromatography. The changes in enzyme activities paralleled changes in the concentrations of the two corresponing UDP glucuronyltransferase proteins in the chromatographic fractions, as measured by radioimmunoassay. The results indicate that the opposite effects of T3 on the two forms of UDPglucuronyltransferase activity is due to its differential effect on corresponding enzyme proteins.  相似文献   

11.
Glucuronidation reactions catalysed by rat liver microsomal UDP-glucuronyltransferase are differentially inducible by 3-methylcholanthrene and phenobarbital. To elucidate the molecular basis of this functional heterogeneity the enzyme was purified from livers of rats pretreated with the inducing agents. Using cholate solubilization, chromatography on Bio-Gel A-1.5m and on DEAE-cellulose in the presence of the nonionic detergent Brij 58, two enzyme forms could be separated. Both forms were subsequently purified to apparent homogeneity by affinity chromatography on UDP-hexanolamine Sepharose 4B, 3-Methylcholanthrene-inducible enzyme activity towards 1-naphthol, 4-nitrophenol, 3-hydroxybenzo(a)pyrene and N-hydroxy-2-naphthylamine copurified with one enzyme form (enzyme 1). In contrast phenobarbital-inducible enzyme activity towards morphine, chloramphenicol and 4-hydroxybiphenyl was associated with the other enzyme fraction (enzyme 2). Sodium dodecylsulfate/polyacrylamide gels showed similar molecular weights of 54000 for enzyme 1 and 56000 for enzyme 2. The results suggest the presence of at least two forms of UDP-glucuronyltransferase in rat liver. Factors affecting enzyme activity in purified and membrane-bound states are discussed.  相似文献   

12.
Rat kidney microsomal UDP-glucuronyltransferase activities toward phenoic xenobiotics were enhanced about 4-5-fold by treatment of the animal with beta-naphthoflavone. The transferase activity toward serotonin, an endogenous substrate, was also enhanced about 7.5-fold. A form of UDP-glucuronyltransferase was purified from kidney microsomes of beta-naphthoflavone-treated rat by solubilization with sodium cholate and two steps of column chromatography, the first with DEAE-Toyopearl (fast flow rate liquid chromatography:FFLC) and the second with UDP-hexanolamine Sepharose 4B (affinity chromatography). These procedures gave about 39-fold purification and 11.5% yield of the transferase activity toward 1-naphthol. The preparation, tentatively termed "GT-2," was highly purified as judged from the single protein band (Mr 54,000) on sodium dodecylsulfate (SDS)-polyacrylamide slab gel electrophoresis. It catalyzed the glucuronidation of not only phenolic xenobiotics such as 1-naphthol, 4-nitrophenol, and 4-methylumbelliferone but also serotonin. From the result that apparent molecular weight of GT-2 was reduced to 50,000 by endo-beta-N-acetylglucosaminidase H (Endo H)-treatment, GT-2 was found to be a 50,000 Da polypeptide carrying "high mannose" type oligosaccharide chain(s). The NH2-terminal sequence of 20 residues of GT-2 was determined to be Asp-Lys-Leu-Leu-Val-Val-Pro-Gln-Asp-Gly-Ser-His-Trp-Leu-Ser-Met-Lys-Glu- Ile-Val . It was observed that there are two amino acids substitutions in the seven NH2-terminal residues in comparison with GT-1, which was purified from liver microsomes of 3-methylcholanthrene-treated rat. The NH2-terminal sequence of GT-2 was found to be homologous with the NH2-terminal sequence from the 26th to 46th amino acid residue of various UDP-glucuronyltransferase cloned by other investigators.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
1. Reconstitution of UDP-glucuronyltransferase preparations with phosphataidylcholine liposomes facilitated the purification of testosterone UDP-glucuronyltransferase. 2. Transferase activity towards testosterone co-purifies with that towards 4-nitrophenol. 3. UDP-glucuronyltransferase activity towards oestrone was separated from that towards testosterone. 4. These results suggest that testosterone and 4-nitrophenol may be glucuronidated by a different form of UDP-glucuronyltransferase from the one glucuronidating oestrone.  相似文献   

14.
Microsomal UDPglucuronosyltransferase(1-naphthol), an enzyme form previously shown to be selectively inducible in rat liver by 3-methylcholanthrene-type inducers, was purified to apparent homogeneity. Rabbit antibodies against this enzyme form precipitated UDPglucuronosyltransferase activities towards 1-naphthol and 4-methylumbelliferone faster and to greater extents than enzyme activities towards bilirubin, oestrone and 4-hydroxybiphenyl. Ouchterlony double-diffusion analysis showed immunochemical similarity of the rat liver enzyme with the enzymes from other organs of the rat (kidney, testes) and the mouse liver but not with the enzyme from cat and human liver. Electroimmunochemical quantification of the enzyme indicated that its level was enhanced 1.3-fold and 2.5-fold in liver microsomes from phenobarbital-treated and 3-methylcholanthrene-treated rats, respectively. The results indicate that 3-methylcholanthrene treatment increases the enzyme level of rat liver microsomal UDPglucuronosyltransferase(1-naphthol). Despite phospholipid-dependence of its catalytic activity microsomal enzyme activity appears to be a good index of the enzyme level.  相似文献   

15.
A microsomal activator of the UDP-glucuronyltransferase for bilirubin has been isolated from lubrol solubilized and salt fractionated liver microsomes. The activator has been partially purified by anion exchange and molecular sieving chromatography and found to have a molecular weight of about 60 kDa. The activator is present in liver from normal and bilirubin UDP-glucuronyltransferase deficient Gunn rats. When tested with purified UDP-glucuronyltransferase for bilirubin it accelerated the conjugation rate 10 fold but with the purified UDP-paranitrophenol transferase the rate of conjugation was increased only 1.5 times.  相似文献   

16.
A form of UDP-glucuronyltransferase has been purified from liver microsomes of 3-methylcholanthrene-treated rats by a simple and rapid method involving chromatography on DEAE-Toyopearl and UDP-hexanolamine Sepharose columns. The purified preparation gave a single protein band (Mr 54,000) on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It catalyzed the glucuronidation of not only phenolic xenobiotics such as 4-nitrophenol, 1-naphthol, and eugenol but also serotonin, which is an endogenous compound. Its activities toward 4-hydroxybiphenyl and testosterone were very low and no activity was detected toward bilirubin. After removal of the detergent (Emulgen 911), the transferase activity was stimulated by various phospholipids, about 10-fold activation being attained with phosphatidylcholine and lysophosphatidylcholine. On nitrocellulose sheets concanavalin A, but not wheat germ agglutinin, bound to the purified transferase, and this binding was abolished in the presence of alpha-methylmannoside and after treatment of the enzyme with endo-beta-N-acetylglucosaminidase H (Endo H). These observations provided evidence that the transferase is a glycoprotein carrying a "high mannose type" of oligosaccharide chain(s). The NH2-terminal 7 residues of the purified enzyme were determined to be Thr-Lys-Leu-Leu-Val-Trp-Pro.  相似文献   

17.
A series of possible transition state analogues of the glucuronidation reaction catalyzed by UDP-glucuronosyltransferase were tested for their inhibitory effect on glucuronidation of various substrates in a rat liver microsomal fraction. In general 4-nitrophenol glucuronidation was more effectively inhibited than that of 1-naphthol, bilirubin or testosterone. 2-(1-Naphthyl)ethyl-UDP and 2,2,2-(triphenyl)ethyl-UDP were the most effective inhibitors. Their inhibitory effect was competitive towards both UDP-glucuronic acid and 4-nitrophenol. These compounds were much more effective inhibitors than UDP; therefore addition of a lipophilic group enhances the inhibitory potency of UDP. The various UDP derivatives showed differences in their abilities to inhibit the glucuronidation of the four acceptor substrates, supporting the concept that the different forms of UDP-glucuronosyl transferase have different active sites.  相似文献   

18.
A liver UDP glucuronosyltransferase (GT) enzyme from either phenobarbital- or 3-methylcholanthrene-treated C57BL/6N mice was isolated by phenyl-Sepharose, DEAE-ion exchange, and UDP hexanolamine chromatographic steps. This enzyme had a broad substrate specificity and was mainly responsible for the microsomal capacity to glucuronidate testosterone, 1-naphthol, and morphine. This UDP glucuronosyltransferase ( GTM1 ) appeared to be at least 95% homogeneous and had a subunit molecular weight of 51,000 using sodium dodecyl sulfate-polyacrylamide gel and two-dimensional gel electrophoreses. Antibodies prepared against the purified protein developed a single immunoprecipitin line by double-diffusion analysis with purified antigen and with solubilized microsomes from both control and drug-induced C57BL/6N and DBA/2N mice. A precipitin line was also observed with microsomal proteins which isoelectrofocused at approximately pH 6.7, but not with those which isoelectrofocused at approximately pH 8.5. GTM1 was, therefore, designated at low-pI form. Immunopurified antibody preferentially inhibited and immunoprecipitated GT activities toward testosterone, 1-naphthol, and morphine. To a lesser extent, activities toward phenolphthalein, 3-hydroxybenzo[a]pyrene, and estrone were inhibited while activities toward 4-nitrophenol and 4-methylumbelliferone were not affected. All activities, however, were immunoadsorbed in the presence of protein A-Sepharose. This observation can be explained by the following results. Immunoprecipitates from labeled microsomes contained primarily a 51,000-Da protein. When the immune complexes were adsorbed with protein A-Sepharose, a 54,000-Da protein as well as the expected 51,000-Da GTM1 was detected. This 54,000-Da protein was associated with the glucuronidation of 3-hydroxybenzo[a]pyrene and 4-nitrophenol, and was designated GTM2 .  相似文献   

19.
Three isoenzymes of UDP-glucuronyltransferase (UDPGT) have been separated and purified from liver microsomes of untreated female rats or female rats pretreated with 3-methylcholanthrene. The UDPGT isoenzymes were purified utilizing Chromatofocusing, column isoelectric focusing, and UDP-hexanolamine Sepharose 4B affinity chromatography. UDPGT activities could also be separated during UDP-hexanolamine affinity chromatography by elution with different UDPGA (UDP-glucuronic acid) concentrations. One isoenzyme exhibits a subunit molecular weight of 56,000 and is capable of conjugating p-nitrophenol, 1-naphthol, and 4-methylumbelliferone. This isoenzyme is inducible by 3-methylcholanthrene treatment and requires high UDPGA concentrations for elution from the UDP-hexanolamine affinity column in contrast to the other UDPGT isoenzymes. A second isoenzyme was purified and displayed a subunit molecular weight of 50,000. This isoenzyme was not induced by 3-methylcholanthrene and was active towards testosterone, the 17-OH position of beta-estradiol, p-nitrophenol, and 1-naphthol. A third isoenzyme was also purified and exhibited a subunit molecular weight of 52,000. This isoenzyme conjugated androsterone and etiocholanolone and was not induced by 3-methylcholanthrene treatment. This study reports the purification of two separate and distinct rat liver UDPGT isoenzymes capable of conjugating p-nitrophenol, only one of which is inducible by 3-methylcholanthrene treatment. Also, this is the first report of the purification of a UDPGT isoenzyme active towards the 3-OH position of androgens.  相似文献   

20.
1. Conjugated bilirubin is conveniently determined by coupling with the diazonium salt of ethyl anthranilate. 2. This method has been used in the development of assays for UDP-glucuronyltransferase (EC 2.4.1.17), with bilirubin as substrate, in rat liver homogenates, microsomal preparations and partly purified fractions. 3. Chromatographic analysis suggests that bilirubin monoglucuronide is the product of the enzyme systems studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号