首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A large Mr chondroitin sulfate proteoglycan was extracted from the media of human aorta under dissociative conditions and purified by density-gradient centrifugation, ion-exchange chromatography, and gel filtration chromatography. Removal of a contaminating dermatan sulfate proteoglycan was accomplished by reduction, alkylation and rechromatography on the gel filtration column. After chondroitinase ABC treatment, the proteoglycan core was separated from a residual heparan sulfate proteoglycan by a third gel filtration chromatography step. As assessed by radioimmunoassay, the isolated proteoglycan core was free of link protein, but possessed epitopes that were recognized by antisera against the hyaluronic acid binding region of bovine cartilage proteoglycan as well as those that were weakly recognized by anti-keratan sulfate antisera. Following beta-elimination of the protein core, the liberated low Mr oligosaccharides were partially resolved by Sephadex G-50 chromatography, and their primary structure was determined by 500-MHz1H NMR spectroscopy in combination with compositional sugar analysis. The N-glycosidic carbohydrate chains, which were obtained as glycopeptides, were all biantennary glycans containing NeuAc and Fuc; microheterogeneity in the NeuAc----Gal linkage was detected in one of the branches. The N-glycosidic glycans have the following overall structure: (Formula: see text). The majority of the O-glycosidic carbohydrate chains bound to the protein core were found to be of the mucin type. They were obtained as glycopeptides and oligosaccharide alditols, and possessed the following structures: NeuAc alpha(2----3)Gal beta(1----3)GalNAc-ol, [NeuAc alpha(2----3)Gal beta(1----3)[NeuAc alpha(2----6)]GalNAc-ol, and NeuAc alpha-(2----3) Gal beta(1----3)[NeuAc alpha(2----3)Gal beta(1----4)GlcNAc beta(1----6)] GalNAc-ol. The remainder of the O-glycosidic carbohydrate chains bound to the isolated proteoglycan were the hexasaccharide link regions of the chondroitin sulfate chains that remained after chondroitinase ABC treatment of the native molecule. These latter glycans, which were obtained as oligosaccharide alditols, had the following structure (with GalNAc free of sulfate or containing sulfate bound at either C-4 or C-6): delta 4,5GlcUA beta(1----3)GalNAc beta(1----4)GlcUA beta(1----3)Gal beta(1----3)Gal beta(1----4)Xyl-ol.  相似文献   

2.
The glycosaminoglycan (GAG)-protein linkage regions of various proteoglycans share the common tetrasaccharide GlcA-Gal-Gal-Xyl-attached to Ser residues in the core proteins. In previous analysis we demonstrated unique modifications by epimerization, sulfation and phosphorylation of the component sugars. Here we developed a sensitive analytical method for the linkage region oligosaccharides to detect or monitor structural variations and changes. This will be useful for investigation of their biological roles, which are largely unknown, but they have been implicated in biosynthesis. A variety of linkage region-derived hexasaccharides was first prepared as reducing sugar chains from peptide chondroitin/dermatan sulfate of whale cartilage, shark cartilage, and bovine aorta by means of chondroitinase digestion in conjunction with beta-elimination in the absence of reducing reagents, but involving a mild alkali, 0.5 M LiOH, at 4 degrees C to prevent peeling reactions. The structures of these oligosaccharides were determined by the combination of HPLC, enzymatic digestion, matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry, and (1)H NMR spectroscopy, which revealed eleven different hexasaccharides including a novel structure, DeltaHexAalpha1-3GalNAcbeta1-4IdoAalpha1-3Gal(4-O-sulfate)beta1-3Galbeta1-4Xyl (DeltaHexA and IdoA represent unsaturated hexuronic acid and L-iduronic acid, respectively). These oligosaccharides were labeled with a fluorophore, 2-aminobenzamide, to prepare analytical probes using the recently developed procedure [Kinoshita and Sugahara (1999) Anal. Biochem. 269, 367-378]. The fluorophore-tagged hexasacharides of low picomoles were well separated by HPLC and successfully analyzed by MALDI-TOF mass spectrometry. The principle of the method should be applicable to the analysis of the linkage region oligosaccharides derived from heparin and heparan sulfate as well.  相似文献   

3.
Proteoglycans (PGs) were dissociatively extracted from human umbilical cord arteries (UCAs) with 4 M guanidine hydrochloride containing Triton X-100 and protease inhibitors, purified by Q-Sepharose anion exchange chromatography and lyophilized. They were analysed by gel filtration, SDS/PAGE and agarose gel electrophoresis before and after treatment with chondroitinase ABC. It was found that the PG preparation was especially enriched in chondroitin/dermatan sulphate PGs. The predominant PG fraction included small PGs that emerged from Sepharose CL-2B with Kav = 0.74. Their molecular mass, estimated by SDS/PAGE, was 160-200 kDa and 90-150 kDa, i.e. it was typical for biglycan and decorin, respectively. Treatment with chondroitinase ABC yielded the core proteins of 45 and 47 kDa, characteristic for both small PGs. Remarkable amounts of the 45 kDa protein were detected in non-treated PG samples, suggesting the presence of free core proteins of biglycan and decorin. Large PGs were present in lower amounts. In intact form they were eluted from Sepharose CL-2B with Kav = 0.17 and 0.43. Digestion with chondroitinase ABC yielded the core proteins with a molecular mass within the range of 180-360 kDa but predominant were the bands of 200, 250 and 360 kDa. The large PGs probably represent various forms of versican or perlecan bearing chondroitin sulphate chains.  相似文献   

4.
1. We have isolated, chemically and immunologically characterized versican and decorin from bovine gingiva. 2. Versican was of large molecular weight and the molecular size of the core protein was estimated to be greater than 200 kDa. 3. The glycosaminoglycan chains were susceptible to chondroitinase ABC and N-linked oligosaccharides were present on the protein core of the molecule. 4. Immunological studies provided evidence that a hyaluronic acid binding region was present in the core protein of versican. 5. The overall structure was similar to that of versican isolated from bovine sclera. 6. Decorin had a molecular weight of 102 kDa and its glycosaminoglycan chain was completely digested by specific glycosidases. 7. The partially deglycosylated core protein had a molecular weight of 55 kDa and N-linked oligosaccharides were present on the molecule.  相似文献   

5.
Yang HO  Gunay NS  Toida T  Kuberan B  Yu G  Kim YS  Linhardt RJ 《Glycobiology》2000,10(10):1033-1039
Eight oligosaccharides were prepared from dermatan sulfate (DS) and their structures were elucidated. Porcine intestinal mucosal DS was subjected to controlled depolymerization using chondroitin ABC lyase (chondroitinase ABC). The oligosaccharide mixture formed was fractionated by low-pressure gel permeation chromatography (GPC). Size uniform mixtures of disaccharides, tetrasaccharides, hexasaccharides, octasaccharides, decasaccharides, and dodecasaccharides were obtained. Each size-fractionated mixture was then purified on the basis of charge by repetitive semi-preparative strong-anion-exchange (SAX) high-performance liquid chromatography (HPLC). This approach has led to the isolation of six homogeneous oligosaccharides. The size of the oligosaccharides were determined using GPC-HPLC. Treatment of tetrasaccharide and hexasaccharide fragments with Hg(OAc)2 afforded trisaccharide and pentasaccharide products, respectively. The purity of the oligosaccharides obtained was confirmed by analytical SAX-HPLC, and capillary electrophoresis (CE). The molecular mass and degree of sulfation of the eight purified oligosaccharides were elucidated using electrospray ionization (ESI) mass spectrometry and their structures were established with high field nuclear magnetic resonance (NMR) spectroscopy. These DS-oligosaccharides are currently being used to study for interaction of the DS with biologically important proteins.  相似文献   

6.
Bacterial chondroitinases and heparitinases are potentially useful tools for structural studies of chondroitin sulfate and heparin/heparan sulfate. Substrate specificities of Flavobacterium chondroitinase C, as well as heparitinases I and II, towards the glycosaminoglycan-protein linkage region -HexA-HexNAc-GlcA-Gal-Gal-Xyl-Ser (where HexA represents glucuronic acid or iduronic acid and HexNAc represents N-acetylgalactosamine or N-acetylglucosamine) were investigated using various structurally defined oligosaccharides or oligosaccharide-serines derived from the linkage region. In the case of oligosaccharide-serines, they were labeled with a chromophore dimethylaminoazobenzenesulfonyl chloride (DABS-Cl), which stably reacted with the amino group of the serine residue and rendered high absorbance for microanalysis. Chondroitinase C cleaved the GalNAc bond of the pentasaccharides or hexasaccharides derived from the linkage region of chondroitin sulfate chains and tolerated sulfation of the C-4 or C-6 of the GalNAc residue and C-6 of the Gal residues, as well as 2-O-phosphorylation of the Xyl residue. In contrast, it did not act on the GalNAc-GlcA linkage when attached to a 4-O-sulfated Gal residue. Heparitinase I cleaved the innermost glucosaminidic bond of the linkage region oligosaccharide-serines of heparin/heparan sulfate irrespective of substitution by uronic acid, whereas heparitinase II acted only on the glucosaminidic linkages of the repeating disaccharide region, but not on the innermost glucosaminidic linkage. These defined specificities of chondroitinase C, as well as heparitinases I and II, will be useful for preparation and structural analysis of the linkage oligosaccharides.  相似文献   

7.
Basic fibroblast growth factor (bFGF) exhibits specific binding to the extracellular matrix (ECM) produced by cultured endothelial cells. Binding was saturable as a function both of time and of concentration of 125I-bFGF. Scatchard analysis of FGF binding revealed the presence of about 1.5 X 10(12) binding sites/mm2 ECM with an apparent kD of 610nM. FGF binds to heparan sulfate (HS) in ECM as evidenced by (i) inhibition of binding in the presence of heparin or HS at 0.1-1 micrograms/mL, but not by chondroitin sulfate, keratan sulfate, or hyaluronic acid at 10 micrograms/mL, (ii) lack of binding to ECM pretreated with heparitinase, but not with chondroitinase ABC, and (iii) rapid release of up to 90% of ECM-bound FGF by exposure to heparin, HS, or heparitinase, but not to chondroitin sulfate, keratan sulfate, hyaluronic acid, or chondroitinase ABC. Oligosaccharides derived from depolymerized heparin, and as small as the tetrasaccharide, released the ECM-bound FGF, but there was little or no release of FGF by modified nonanticoagulant heparins such as totally desulfated heparin, N-desulfated heparin, and N-acetylated heparin. FGF released from ECM was biologically active, as indicated by its stimulation of cell proliferation and DNA synthesis in vascular endothelial cells and 3T3 fibroblasts. Similar results were obtained in studies on release of endogenous FGF-like mitogenic activity from Descemet's membranes of bovine corneas. It is suggested that ECM storage and release of bFGF provide a novel mechanism for regulation of capillary blood vessel growth. Whereas ECM-bound FGF may be prevented from acting on endothelial cells, its displacement by heparin-like molecules and/or HS-degrading enzymes may elicit a neovascular response.  相似文献   

8.
Analysis of oligosaccharides by mass spectrometry (MS) has enabled the investigation of the glycan repertoire of organisms with high resolution and sensitivity. It is difficult, however, to correlate the expression of glycosyltransferases with the glycan structures present in a particular cell type or tissue because the use of MS for quantitative purposes has significant limitations. For this reason, in order to develop a technique that would allow relative glycan quantification by MS analysis between two samples, a procedure was developed for the isotopic labeling of oligosaccharides with (13)C-labeled methyl iodide using standard permethylation conditions. Separate aliquots of oligosaccharides from human milk were labeled with (12)C or (13)C methyl iodide; the labeled and non-labeled glycans were mixed in known proportions, and the mixtures analyzed by MS. Results indicated that the isotopic labeling described here was capable of providing relative quantitative data with a dynamic range of at least two orders of magnitude, adequate linearity, and reproducibility with a coefficient of variation that was 13% on average. This procedure was used to analyze N-linked glycans released from various mixtures of glycoproteins, such as alpha-1 acid glycoprotein, human transferrin, and bovine fetuin, using MS techniques that included matrix assisted laser desorption ionization-time of flight MS and electrospray ionization with ion cyclotron resonance-Fourier transformation MS. The measured (12)C:(13)C ratios from mixtures of glycans permethylated with either (12)CH(3)I or (13)CH(3)I were consistent with the theoretical proportions. This technique is an effective procedure for relative quantitative glycan analysis by MS.  相似文献   

9.
A major difficulty with isolating enzymatically or chemically released oligosaccharides from large-scale glycoprotein deglycosylation reactions is the time-consuming chromatography, desalting, and concentration steps required to prepare a glycan fraction of manageable proportions. To overcome these time and preparative chromatography equipment requirements, we have developed a rapid organic solvent precipitation/extraction procedure that allows sequential isolation of endo-beta-N-acetylglucosaminidase H (EC 3.2.1.96)-released high-mannose and hybrid, peptide-N(4)-(N-acetyl-beta-glucosaminyl) Asn amidase (EC 3.5.1. 52)-released complex, and beta-eliminated O-linked glycans without the need for intermediate chromatography, desalting, or concentration steps. The method involves precipitation of protein and released glycans at -20 degrees C in 80% acetone and extraction of the glycans from the pellet with 60% aqueous methanol after each deglycosylation step. Three pools of essentially salt- and detergent-free oligosaccharides (high-mannose/hybrid, complex, and O-linked) can be isolated in a high yield in 4 days with this protocol, which has been extensively tested using bovine RNase B, human bile salt-stimulated lipase expressed in Pichia pastoris, hen ovalbumin, bovine fetuin, bovine thyroglobulin, and several invertase preparations from wild-type and mutant yeast strains.  相似文献   

10.
Swarm rat chondrosarcoma cell cultures were metabolically labeled with [35S]sulfate, [3H]glucose, or [3H]glucosamine. Chondroitin sulfate chains were isolated from purified aggrecan using alkaline borohydride treatment and Superose 6 chromatography. Various linkage region oligosaccharide alditols were derived from these chains using sequential chondroitinase digestions (ABC lyase followed by ACII lyase). They were then further processed by mercuric acetate treatment, which removed the 4,5-unsaturated uronosyl residue from the nonreducing end of the linkage, and then beta-galactosidase digestion which liberated the 2 galactose residues from the xylitol reducing terminus. Alkaline phosphatase digestions were performed to verify the presence of phosphate esters. All linkage region structures were isolated and identified using a combination of Progel-TSK G2500 and CarboPac PA1 chromatography steps in conjunction with monosaccharide analyses. This study revealed that chondroitin sulfate chains from aggrecan synthesized by rat chondrosarcoma cells in vitro have the following properties: 1) three out of every four of their linkage regions carry a phosphate ester on xylose, 2) nearly three out of every five chains begin the repeating disaccharide region with an unsulfated first disaccharide unit, 3) nearly twice as many nonphosphorylated chains have a sulfated first disaccharide than their phosphorylated counterparts, and 4) the vast majority of these chains do not contain sulfated galactose in their linkage regions. This report also describes a borohydride reduction procedure to confer alkali stability to the 3-substituted, unsaturated disaccharides derived from chondroitinase digests of chondroitin sulfate. Furthermore, a CarboPac PA1 method is demonstrated that separates these reduced disaccharides with exceptional resolution.  相似文献   

11.
Wang C  Fan W  Zhang P  Wang Z  Huang L 《Proteomics》2011,11(21):4229-4242
A novel one-pot procedure for the nonreductive release of O-linked glycans from glycoproteins and the simultaneous derivatization of released glycans with 1-phenyl-3-methyl-5-pyrazolone (PMP) is described. Unlike the traditional reductive β-elimination, which produces alditols, this new method employs PMP/ammonia aqueous solution as the reaction medium. The O-glycans are released from glycoproteins and derivatized with PMP nonreductively, specifically, and quantitatively. Samples can be easily purified from ammonia, excess PMP, and peptide residues by evaporation, chloroform extraction, and solid-phase extraction (SPE) column fractionation for HPLC, CE, or MS analysis. The procedure has been elaborated with two purified glycoproteins, porcine stomach mucin and bovine fetuin, and successfully applied to O-glycan profiling of a challenging biological specimen, healthy human plasma. This new procedure has shown methodological significance in O-glycan analysis.  相似文献   

12.
The chondroitin sulfate proteoglycans of brain contain several core proteins bearing HNK-1 antibody epitopes. Endo-beta-galactosidase treatment resulted in the almost complete disappearance of HNK-1 staining of proteoglycan immunoblots, indicating that a significant portion of the 3-sulfated sugar residues recognized by this antibody are present on poly(N-acetyllactosaminyl) oligosaccharides. However, after treatment with chondroitinase ABC followed by endo-beta-galactosidase, several proteoglycan species showed HNK-1 reactivity, presumably due to the presence of this epitope on other oligosaccharides which are both resistant to endo-beta-galactosidase and inaccessible to the antibody in the native proteoglycan. Immunostaining of the endo-beta-galactosidase degradation products after separation by thin-layer chromatography demonstrated that HNK-1 reactivity was confined to a minor population of large oligosaccharides. Only a relatively small portion of the native chondroitin sulfate proteoglycans of brain enter a 6-12% SDS-polyacrylamide gel. However, after treatment of the proteoglycans with chondroitinase ABC (or chondroitinase and endo-beta-galactosidase) in the presence of protease inhibitors, seven bands with molecular sizes ranging from 80 to 200 kDa appear in Coomassie Blue stained gels, and two additional bands with molecular sizes of 67 and 350-400 kDa are apparent in fluorographs of sodium [35S]sulfate labeled proteoglycans. Most of these components probably represent individual proteoglycan species rather than different degrees of nonchondroitin sulfate/keratan sulfate glycosylation of a single protein core, since [35S]methionine-labeled proteins of comparable molecular size were synthesized by an in vitro translation system. These findings suggest that chondroitin sulfate proteoglycans which differ in molecular size and composition may be specific to particular cell types in brain.  相似文献   

13.
A sensitive, rapid, quantitative strategy has been developed for O-glycan analysis. A structural database has been constructed that currently contains analytical parameters for more than 50 glycans, enabling identification of O-glycans at the subpicomole level. The database contains the structure, molecular weight, and both normal and reversed-phase HPLC elution positions for each glycan. These observed parameters reflect the mass, three-dimensional shape, and hydrophobicity of the glycans and, therefore, provide information relating to linkage and arm specificity as well as monosaccharide composition. Initially the database was constructed by analyzing glycans released by mild hydrazinolysis from bovine serum fetuin, synthetic glycopeptides, human glycophorin A, and serum IgA1. The structures of the fluorescently labeled sugars were determined from a combination of HPLC data, mass spectrometric composition and mass fragmentation data, and exoglycosidase digestions. This approach was then applied to human neutrophil gelatinase B and secretory IgA, where 18 and 25 O-glycans were identified, respectively, and the parameters of these glycans were added to the database. This approach provides a basis for the analysis of subpicomole quantities of O-glycans from normal levels of natural glycoproteins.  相似文献   

14.
Proteoglycans (PGs) synthesized by the epidermis during stages crucial to the subepidermal migration of neural crest cells in the trunk of the axolotl (Ambystoma mexicanum, Urodela, Amphibia) embryo were studied. The glycosaminoglycan chains were biosynthetically labeled with [35S]sulfate in vitro during a period corresponding to the onset of migration. After extraction with guanidine HCl, the radiolabeled PGs were separated according to size by molecular-sieve chromatography on Sepharose CL-2B under dissociative conditions. This resulted in the separation of high-molecular-weight PGs, which eluted in the void volume, and low-molecular-weight PGs, eluting in a broad peak with a mean Kav of 0.7. The large PGs were also found to elute in the void volume when chromatographed on a Sephacryl S-1000 column. The low-molecular-weight PGs contained heparan sulfate and chondroitin sulfate (CS) and were not further characterized. The glycosaminoglycan component of the high-molecular-weight PG was completely degraded by chondroitinase ABC, while a large portion was resistant to chondroitinase AC, indicating the presence of dermatan sulfate (DS). These CS/DS chains were of unusually large size (Mr approximately 150,000) as estimated by chromatography on Sepharose CL-4B, relating the elution position to hyaluronan standards. Moreover, the chains were found to have a lower surface charge density than standard CS, and may therefore be undersulfated. After reduction and alkylation the high-molecular-weight PGs were included on both Sepharose CL-2B and Sephacryl S-1000 columns, eluting at Kav 0.2 and 0.4, respectively. Hence, the high-molecular-weight material appears to consist of large PG complexes, stabilized by intermolecular disulfide bonds. A CS/DSPG of similar size as the reduced monomeric form of the high-molecular-weight PG was found in small amounts in the total extract of 35S-labeled material.  相似文献   

15.
There are a large number of labeling methods for asparagine-type oligosaccharides with fluorogenic and chromophoric reagents. We have to choose the most appropriate labeling method based on the purposes such as mass spectrometry, high-performance liquid chromatography and capillary electrophoresis. Asparagine-type glycans are released from core proteins as N-glycosylamine at the initial step of the releasing reaction when glycoamidase F is employed as the enzyme. The N-glycosylamine-type oligosaccharides thus released by the enzyme are subjected to hydrolysis or mutarotation to form free-form oligosaccharides. In the detailed studies on the enzyme reaction, we found a condition in which the released N-glycosylamine-type oligosaccharides were exclusively present at least during the course of enzyme reaction, and developed a method for in situ derivatization of the glycosylamine-type oligosaccharides with 9-fluorenylmethyl chloroformate (Fmoc-Cl). The Fmoc labeled sialo- and asialo- (or high-mannose and hybrid) oligosaccharides were successfully analyzed on an amine-bonded polymer column and amide-silica column, respectively. The present method showed approximately 5 times higher sensitivities than that using 2-aminobenzoic acid (2-AA). The separation profile was similar to that observed using 2-AA method as examined by the analyses of carbohydrate chains derived from several glycoproteins including complex-type, high-mannose type and hybrid type of N-linked oligosaccharides. The labeled oligosaccharides were stable at least for several months when stored at -20 degrees C. Furthermore, it should be emphasized that the Fmoc-derivatized oligosaccharides could be easily recovered as free reducing oligosaccharides simply by incubation with morpholine in dimethylformamide solution. We obtained a pure triantennary oligosaccharide with 3 sialic acid residues as a free reducing form from fetuin in good yield after isolation of the corresponding Fmoc oligosaccharide followed by removing reaction of the Fmoc group. The proposed method will be useful for preparation of free oligosaccharides as standard samples at pmol-nmol scale from commercially available glycoproteins.  相似文献   

16.
Chick-embryo cartilage contains a unique set of proteoglycans. Type H proteoglycan (PG-H) is the most abundant, constituting over 90% of the total cartilage hexuronate. We previously showed that treatment of PG-H with chondroitinase ACII and keratanase yields a protein-enriched core molecule [PG(-CS,KS)] with enzymically modified linkage oligosaccharides of the chondroitin sulphate and keratan sulphate chains. We report here that further treatment of PG(-CS,KS) with pepsin and N-oligosaccharide glycopeptidase (almond glycopeptidase) released four distinct types of mannose-containing oligosaccharide. Two of them were shown to be: (Formula: see text). Of the mannose-containing glycopeptides formed by pepsin digestion, about 40% (as mannose) were resistant to N-oligosaccharide glycopeptidase. Since the resistant fraction was enriched in keratan sulphate remnants, it is suggest that the mannose-containing oligosaccharides in this fraction represent those located in a keratan sulphate-enriched region of PG-H.  相似文献   

17.
Reducing O-linked oligosaccharides from bovine submaxillary mucin, bovine fetuin, and porcine gastric mucin were recovered by nonreductive alkaline beta-elimination from an in-line flow system. Glycoproteins where attached to a solid support using hydrophobic interaction with alkali-resistant Poros reversed phase beads and a flow of alkali released the oligosaccharides. The alkali was subsequently neutralized by a continuous flow through cation exchange resin. The released oligosaccharides in the flow were trapped in a cartridge filled with graphitized carbon. Salt-free oligosaccharides could be recovered as a concentrated solution by elution with organic solvents from the cartridge. The glycosylation pattern of the released oligosaccharides was compared with the conventionally released and reduced oligosaccharides recovered from alkaline beta-elimination in the presence of borohydride. In general, the recovery from the in-line release was sometimes lower than from the reductive elimination method, but it was shown that alkaline degradation of reducing oligosaccharides was limited in this system. Liquid chromatography using graphitized carbon packing and high pH mobile phases together with negative ion electrospray mass spectrometry showed that both neutral and acidic reducing oligosaccharides could be analyzed in a single run. Reducing O-linked oligosaccharides could also be recovered in this way from human glycophorin separated by SDS-PAGE. The polyacrylamide was sufficient to retain the glycoprotein in the gel while the flow of alkali released the oligosaccharides. It was also shown that the alkaline conditions for releasing O-linked oligosaccharides from fetuin would partially release some N-linked oligosaccharides, particularly in the presence of reducing agent.  相似文献   

18.
Normal human keratinocytes (NHK) were cultured in serum-free medium, containing low (0.1 mM) or high (2 mM) calcium, to obtain proliferating and differentiating cultures, respectively. Proteoglycan (PG) synthesis of proliferating and differentiating NHK was investigated. Cultures were labeled with 35S-sulfate, and the PGs were extracted from medium and cell layer. The newly synthesized PGs were isolated by ion-exchange chromatography on a column of DEAE-Sephacel. The molecular properties of the PGs and the size and composition of glycosaminoglycans (GAGs) were determined. In general, the PGs are relatively small size (Mr 70,000-120,000). The PGs of proliferating cultures are larger in molecular size than the PGs of differentiating cultures, and this is due to the degradation of the GAG chains. The molecular weight of the GAG chains of proliferating NHK ranged from 4,800 to 22,000, and the range for GAGs from differentiating cultures varied from 2,800 to 9,600. By compositional analysis, these PGs proved to contain heparan sulfate, chondroitin sulfate, and dermatan sulfate as determined by nitrous acid degradation, and chondroitinase ACII and ABC digestion. No significant differences were found in the overall GAG composition of the medium secreted PGs of proliferating and differentiating cultures. In contrast, cell-associated PGs of differentiating cells had higher levels of heparan sulfate than those of proliferating cells.  相似文献   

19.
Sertoli cells in culture synthesize two membrane-associated proteoglycans (PGs) containing as glycosaminoglycan (GAG) moieties either chondroitin sulfate (CS) or CS and heparan sulfate (HS); the latter PG is, therefore, referred to as the mixed PG. To determine if these PGs are randomly distributed on the cell surface, Sertoli cell monolayers were treated with chondroitinase ABC, and then the remaining PGs were analyzed by DEAE-Sephacel chromatography. The results obtained with Sertoli cell monolayers show that the CS of the mixed PG is degraded by chondroitinase, while the CS-PG is not degraded. In contrast, chondroitinase treatment of Sertoli cells in suspension shows that both the mixed PG and the CS-PG are degraded. From this, it is inferred that the mixed PG is apically oriented and the CS-PG is basolaterally oriented. Studies of the adhesion of germ cells to Sertoli cell monolayers give further support to the apical location of the mixed PG and suggest that its HS moiety is involved in the attachment of germ cells to Sertoli cells.  相似文献   

20.
A sensitive and quantitative method for the structural analysis of oligosaccharide was established for the glycoform analysis of glycoproteins. In this study,N-linked oligosaccharides of human IgG and bovine transferrin were analyzed for the evaluation of the method. Carbohydrate moiety of glycoprotein was released by hydrazinolysis and purified by paper chromatography. The oligosaccharides were labeled with a fluorescent dye, 2-aminobenzamide, for the enhancement of detection sensitivity. Sialylated (acidic) oligosaccharides were separated from neutral oligosaccharide by employing a strong anion-exchange column (MonoO) followed by the treatment with sialidase. Enzymatically desialyated fractions and neutral fractions of oligosaccharides were applied to normal-phase HPLC to resolve the peaks according to glucose unit (GU). The structure of separated molecules was further determined by sequential digestion with exoglycosidases. As a result, disialylated biantennary complextype oligo saccharide was found to be a major sugar chain in bovine transferrin (63%). In human IgG, core fucosylated asialobiantennary complex oligosaccharides were dominant. These results coincided well with reported results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号