首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
从一株特殊生境荒漠药用植物沙蓬的内生真菌Rhinocladiella similis中分离得到4个苯甲酸大环内酯化合物,包括2个新化合物rhinoclactones E(2)和F(1)、2个已知化合物8,9-dihyrogreensporone D(3)和8,9-dihydrogreensporone A(4)。基于高分辨质谱与核磁共振谱数据以及相关文献比对,确定了新化合物与已知化合物的结构。化合物1和2是一对立体异构体,在大环内酯环中并有一个呋喃环,这种环系统在自然界比较稀少。化合物1-4对3株肿瘤细胞株和植物病原真菌没有抑制活性。本结果进一步丰富了该真菌的化学成分研究,暗示特殊生境荒漠植物内生真菌具有产生结构新颖的次级代谢产物的潜力,是发现新活性天然产物的一个新的重要宝库;此外,根据化合物的结构特征与生物活性结果,本文还探讨了这些化合物潜在的生态学功能。  相似文献   

2.
3.
Further chemical investigation of the metabolites in the fruiting bodies of Ganoderma lingzhi resulted in isolation of eight triterpenes; two of them are new triterpene acid ethyl esters. Their structures were established based on spectroscopic studies and comparison with the known related compounds. The anticancer potential of the isolates were tested with an in vitro cytotoxic assay against five human cancer cell lines (MCF-7, HeLa, HCT-116, Caco-2 and HepG2) and two normal human cell lines (TIG-1 and HF19). Results showed that the new compounds have a strong to moderate selective cytotoxic activity against MCF-7 while they showed moderate to weak activity against HeLa cell line. Potent cytotoxic activities of some of the known isolated compounds are reported for the first time.  相似文献   

4.
Planarians have regenerative ability made possible by pluripotent stem cells referred to as neoblasts. Classical ultrastructural studies have indicated that stem cells can be distinguished by a unique cytoplasmic structure known as the chromatoid body and their undifferentiated features, and they are specifically eliminated by X-ray irradiation. Recently, by using fluorescence activated cell sorting (FACS), planarian cells were separated into two X-ray-sensitive fractions (X1 and X2) and an X-ray-insensitive fraction (XIS) according to DNA content and cytoplasmic size. Here we analyzed the fractionated cells by transmission electron microscopy (TEM). First, we found that both undifferentiated cells (stem cells) and regenerative cells (differentiating cells) were concentrated in the X1 fraction containing the S/G2/M phase cells. The regenerative cells were considered to be committed stem cells or progenitor cells, suggesting that some stem cells may maintain proliferative ability even after cell fate-commitment. Second, we succeeded in identifying a new type of stem cells, which were small in size with few chromatoid bodies and a heterochromatin-rich nucleus. Interestingly, they were concentrated in the X2 fraction, containing G0/G1 phase cells. These results suggest that planarian stem cells are not homogeneous, but may consist of heterogeneous populations, like mammalian stem cells.  相似文献   

5.
The quiescent state is thought to be an indispensable property for themaintenance of hematopoietic stem cells (HSCs). Interaction of HSCs with theirparticular microenvironments, known as the stem cell niches, is critical for cell cycleregulation of HSCs. Monitoring of the quiescence of HSCs using by a new stem cellmarker, Side Population (SP), revealed that the cell cycle status of HSCs is dynamicallycontrolled by the microenvironments. We have recently revealed a molecularmechanism in which cell cycle of HSCs is regulated by the niche. HSCs expressing thereceptor tyrosine kinase Tie2 are adhere to osteoblasts (OBs) in the BM niche. Theinteraction of Tie2 and its ligand Angiopoietin-1 (Ang-1) leads to tight adhesion ofHSCs to stromal cells, resulting in maintainance of long-term repopulating activity ofHSCs. Thus, Tie2/Ang-1 signaling pathway plays a critical role in the maintenance ofHSCs in a quiescent state in the BM niche. The understanding of cell cycle control instem cells leads to development of new strategy for progress in regenerative medicine.  相似文献   

6.
7.
Many proteins have been proposed to be involved in retinoblastoma protein (pRB)-mediated repression, but it is largely uncertain which cofactors are essential for pRB to repress endogenous E2F-regulated promoters. Here we have taken advantage of the stream-lined Drosophila dE2F/RBF pathway, which has only two E2Fs (dE2F1 and dE2F2), and two pRB family members (RBF1 and RBF2). With RNA interference (RNAi), we depleted potential corepressors and looked for the elevated expression of groups of E2F target genes that are known to be directly regulated by RBF1 and RBF2. Previous studies have implicated histone deacetylase (HDAC) and SWI/SNF chromatin-modifying complexes in pRB-mediated repression. However, our results fail to support the idea that the SWI/SNF proteins are required for RBF-mediated repression and suggest that a requirement for HDAC activities is likely to be limited to a subset of targets. We found that the chromatin assembly factor p55/dCAF-1 is essential for the repression of dE2F2-regulated targets. The removal of p55 deregulated the expression of E2F targets that are normally repressed by dE2F2/RBF1 and dE2F2/RBF2 complexes in a cell cycle-independent manner but had no effect on the expression of E2F targets that are normally coupled with cell proliferation. The results indicate that the mechanisms of RBF regulation at these two types of E2F targets are different and suggest that p55, and perhaps p55's mammalian orthologs RbAp46 and RbAp48, have a conserved function in repression by pRB-related proteins.  相似文献   

8.
9.
10.
Mechanistic target of rapamycin (mTOR) is a serine/threonine kinase originally discovered as the molecular target of the immunosuppressant rapamycin. mTOR forms two compositionally and functionally distinct complexes, mTORC1 and mTORC2, which are crucial for coordinating nutrient, energy, oxygen, and growth factor availability with cellular growth, proliferation, and survival. Recent studies have identified critical, non-redundant roles for mTORC1 and mTORC2 in controlling B cell development, differentiation, and functions, and have highlighted emerging roles of the Folliculin-Fnip protein complex in regulating mTOR and B cell development. In this review, we summarize the basic mechanisms of mTOR signaling; describe what is known about the roles of mTORC1, mTORC2, and the Folliculin/Fnip1 pathway in B cell development and functions; and briefly outline current clinical approaches for targeting mTOR in B cell neoplasms. We conclude by highlighting a few salient questions and future perspectives regarding mTOR in B lineage cells.  相似文献   

11.
Microbial cells often serve as an evolutionary battlefield for different types of mobile genetic elements, such as viruses and plasmids. Here, we describe the isolation and characterization of two new archaeal plasmids which share the host with the spindle-shaped Thermococcus prieurii virus 1 (TPV1). The two plasmids, pTP1 and pTP2, were isolated from the hyperthermophilic archaeon Thermococcus prieurii (phylum Euryarchaeota), a resident of a deep-sea hydrothermal vent located at the East Pacific Rise at 2,700-m depth (7°25′24 S, 107°47′66 W). pTP1 (3.1 kb) and pTP2 (2.0 kb) are among the smallest known plasmids of hyperthermophilic archaea, and both are predicted to replicate via the rolling-circle mechanism. The two plasmids and the virus TPV1 do not have a single gene in common and stably propagate in infected cells without any apparent antagonistic effect on each other. The compatibility of the three genetic elements and the high copy number of pTP1 and pTP2 plasmids (50 copies/cell) might be useful for developing new genetic tools for studying hyperthermophilic euryarchaea and their viruses.  相似文献   

12.
地衣内生真菌 Pestalotiopsis sp.次生代谢产物   总被引:1,自引:0,他引:1  
拟盘多毛孢属 Pestalotiopsis真菌由于能够产生大量结构新颖活性显著的次生代谢产物,特别是从中发现抗肿瘤药物紫杉醇,成为近年来研究的热点。本研究通过对1株地衣内生真菌 Pestalotiopsis sp.的固体培养基次生代谢产物的UPLC-Q-TOF-MS分析,发现该菌株能够产生分子量比较特殊的两个色谱峰。通过进一步的菌株大量发酵,结合硅胶柱色谱,高效液相色谱等技术跟踪分离,得到了2个单体化合物。采用核磁共振波谱技术、质谱技术等方法确定这2个单体化 合物平面结构,分别为已知torrenyanic acid衍生物(1)和新化合物pestalotiopsin(2)。比对化合物的CD谱及考虑生源关系,确定了新化合物(2)的绝对构型。化合物1和2的体外抑制人白血病细胞K562实验显示二者均具有抗肿瘤活性,IC50值分别为25.2和32.1µmol/L。  相似文献   

13.
Mutations in the human bestrophin-1 (hBest1) gene are responsible for Best vitelliform macular dystrophy, however the mechanisms leading to retinal degeneration have not yet been determined because the function of the bestrophin protein is not fully understood. Bestrophins have been proposed to comprise a new family of Cl(-) channels that are activated by Ca(2+). While the regulation of bestrophin currents has focused on intracellular Ca(2+), little is known about other pathways/mechanisms that may also regulate bestrophin currents. Here we show that Cl(-) currents in Drosophila S2 cells, that we have previously shown are mediated by bestrophins, are dually regulated by Ca(2+) and cell volume. The bestrophin Cl(-) currents were activated in a dose-dependent manner by osmotic pressure differences between the internal and external solutions. The increase in the current was accompanied by cell swelling. The volume-regulated Cl(-) current was abolished by treating cells with each of four different RNAi constructs that reduced dBest1 expression. The volume-regulated current was rescued by transfecting with dBest1. Furthermore, cells not expressing dBest1 were severely depressed in their ability to regulate their cell volume. Volume regulation and Ca(2+) regulation can occur independently of one another: the volume-regulated current was activated in the complete absence of Ca(2+) and the Ca(2+)-activated current was activated independently of alterations in cell volume. These two pathways of bestrophin channel activation can interact; intracellular Ca(2+) potentiates the magnitude of the current activated by changes in cell volume. We conclude that in addition to being regulated by intracellular Ca(2+), Drosophila bestrophins are also novel members of the volume-regulated anion channel (VRAC) family that are necessary for cell volume homeostasis.  相似文献   

14.
15.
Two proteins, P1 and P2, which are specifically altered in mammalian cell mutants resistant to antimitotic drugs, have been identified as the homologs of two members of the class of proteins known as molecular chaperones. P1 is localized in mitochondria and P2-related proteins are involved in the translocation of proteins to mitochondria. To account for these and a number of other observations, a new model for in vivo microtubule assembly is proposed.  相似文献   

16.
CB1-type cannabinoid receptors in the brain mediate effects of the drug cannabis. Anandamide and sn-2 arachidonylglycerol (2-AG) are putative endogenous ligands for CB1 receptors, but it is not known which cells in the brain produce these molecules. Recently, an enzyme which catalyses hydrolysis of anandamide and 2-AG, known as fatty acid amide hydrolase (FAAH), was identified in mammals. Here we have analysed the distribution of FAAH in rat brain and compared its cellular localization with CB1-type cannabinoid receptors using immunocytochemistry. High concentrations of FAAH activity were detected in the cerebellum, hippocampus and neocortex, regions of the rat brain which are enriched with cannabinoid receptors. Immunocytochemical analysis of these brain regions revealed a complementary pattern of FAAH and CB1 expression with CB1 immunoreactivity occurring in fibres surrounding FAAH-immunoreactive cell bodies and/or dendrites. In the cerebellum, FAAH was expressed in the cell bodies of Purkinje cells and CB1 was expressed in the axons of granule cells and basket cells, neurons which are presynaptic to Purkinje cells. The close correspondence in the distribution of FAAH and CB1 in rat brain and the complementary pattern of FAAH and CB1 expression at the cellular level provides important new evidence that FAAH may participate in cannabinoid signalling mechanisms of the brain.  相似文献   

17.
The differentiation-inducing signals (DIFs) currently known in Dictyostelium appear unable to account for the full diversity of cell types produced in development. To search for new signals, we analyzed the differentiation in monolayers of cells expressing prestalk (ecmAO, ecmA, ecmO, ecmB and cAR2) and prespore (psA) markers. Expression of each marker drops off as the cell density is reduced, suggesting that cell interaction is required. Expression of each marker is inhibited by cerulenin, an inhibitor of polyketide synthesis, and can be restored by conditioned medium. However, the known stalk-inducing polyketide, DIF-1, could not replace conditioned medium and induce the ecmA or cAR2 prestalk markers, suggesting that they require different polyketide inducers. Polyketide production by fungi is stimulated by cadmium ions, which also dramatically stimulates differentiation in Dictyostelium cell cultures and the accumulation of medium factors. Factors produced with cadmium present were extracted from conditioned medium and fractionated by HPLC. A new factor inducing prespore cell differentiation, called PSI-2, and two inducing stalk cell differentiation (DIFs 6 and 7) were resolved. All are distinct from currently identified factors. DIF-6, but not DIF-7 or PSI-2, appears to have an essential carbonyl group. Thus Dictyostelium may use extensive polyketide signaling in its development.  相似文献   

18.
From a myxomycete Arcyria ferruginea, dihydroarcyriarubin C (1), a new bisindole alkaloid, has been isolated together with two known bisindoles, arcyriarubin C (2) and arcyriaflavin C (3), and arcyriaflavin C (3) was also isolated from Tubifera casparyi together with arcyriaflavin B (4). Arcyriaflavin C (3) exhibited cell cycle inhibition effect at G1 and G2/M stage at 10 and 100ng/mL, respectively.  相似文献   

19.
20.
Hwang SK  Kim HH 《BMB reports》2011,44(8):506-511
Mammalian Target of Rapamycin (mTOR) is a serine/threonine kinase and that forms two multiprotein complexes known as the mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). mTOR regulates cell growth, proliferation and survival. mTORC1 is composed of the mTOR catalytic subunit and three associated proteins: raptor, mLST8/GβL and PRAS40. mTORC2 contains mTOR, rictor, mLST8/GβL, mSin1, and protor. Here, we discuss mTOR as a promising anti-ischemic agent. It is believed that mTORC2 lies down-stream of Akt and acts as a direct activator of Akt. The different functions of mTOR can be explained by the existence of two distinct mTOR complexes containing unique interacting proteins. The loss of TSC2, which is upstream of mTOR, activates S6K1, promotes cell growth and survival, activates mTOR kinase activities, inhibits mTORC1 and mTORC2 via mTOR inhibitors, and suppresses S6K1 and Akt. Although mTOR signaling pathways are often activated in human diseases, such as cancer, mTOR signaling pathways are deactivated in ischemic diseases. From Drosophila to humans, mTOR is necessary for Ser473 phosphorylation of Akt, and the regulation of Akt-mTOR signaling pathways may have a potential role in ischemic disease. This review evaluates the potential functions of mTOR in ischemic diseases. A novel mTOR-interacting protein deregulates over-expression in ischemic disease, representing a new mechanism for controlling mTOR signaling pathways and potential therapeutic strategies for ischemic diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号