首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A thermodynamic comparison of mesophilic and thermophilic ribonucleases H   总被引:1,自引:0,他引:1  
Hollien J  Marqusee S 《Biochemistry》1999,38(12):3831-3836
The mechanisms by which thermophilic proteins attain their increased thermostability remain unclear, as usually the sequence and structure of these proteins are very similar to those of their mesophilic homologues. To gain insight into the basis of thermostability, we have determined protein stability curves describing the temperature dependence of the free energy of unfolding for two ribonucleases H, one from the mesophile Escherichia coli and one from the thermophile Thermus thermophilus. The circular dichroism signal was monitored as a function of temperature and guanidinium chloride concentration, and the resulting free energies of unfolding were fit to the Gibbs-Helmholtz equation to obtain a set of thermodynamic parameters for these proteins. Although the maximal stabilities for these proteins occur at similar temperatures, the heat capacity of unfolding for T. thermophilus RNase H is lower, resulting in a smaller temperature dependence of the free energy of unfolding and therefore a higher thermal melting temperature. In addition, the stabilities of these proteins are similar at the optimal growth temperatures for their respective organisms, suggesting that a balance of thermodynamic stability and flexibility is important for function.  相似文献   

2.
Schuler B  Kremer W  Kalbitzer HR  Jaenicke R 《Biochemistry》2002,41(39):11670-11680
We used (19)F NMR to extend the temperature range accessible to detailed kinetic and equilibrium studies of a hyperthermophilic protein. Employing an optimized incorporation strategy, the small cold shock protein from the bacterium Thermotoga maritima (TmCsp) was labeled with 5-fluorotryptophan. Although chaotropically induced unfolding transitions revealed a significant decrease in the stabilization free energy upon fluorine labeling, the protein's kinetic folding mechanism is conserved. Temperature- and guanidinium chloride-dependent equilibrium unfolding transitions monitored by (19)F NMR agree well with the results from optical spectroscopy, and provide a stringent test of the two-state folding character of TmCsp. Folding and unfolding rate constants at high temperatures were determined from the (19)F NMR spectra close to the midpoint of thermal unfolding by global line shape analysis. In combination with results from stopped-flow experiments at lower temperatures, they show that the folding rate constant of TmCsp and its temperature dependence closely resemble those of its mesophilic homologue from Bacillus subtilis, BsCspB. However, the unfolding rate constant of TmCsp is two orders of magnitude lower over the entire temperature range that was investigated. Consequently, the difference in conformational stability between the two proteins is solely due to the unfolding rate constant over a wide temperature range. A thermodynamic analysis points to an important role of entropic factors in the stabilization of TmCsp relative to its mesophilic homologues.  相似文献   

3.
T Dams  R Jaenicke 《Biochemistry》1999,38(28):9169-9178
Dihydrofolate reductase (DHFR) has been a well-established model system for protein folding. The enzyme DHFR from the hyperthermophilic bacterium Thermotoga maritima (TmDHFR) displays distinct adaptations toward high temperatures at the level of both structure and stability. The enzyme represents an extremely stable dimer; no isolated structured monomers could be detected in equilibrium or during unfolding. The equilibrium unfolding strictly follows the two-state model for a dimer (N(2) right harpoon over left harpoon 2U), with a free energy of stabilization of DeltaG = -142 +/- 10 kJ/mol at 15 degrees C. The two-state model is applicable over the whole temperature range (5-70 degrees C), yielding a DeltaG vs T profile with maximum stability at around 35 degrees C. There is no flattening of the stability profile. Instead, the enhanced thermostability is characterized by shifts toward higher overall stability and higher temperature of maximum stability. TmDHFR unfolds in a highly cooperative manner via a nativelike transition state without intermediates. The unfolding reaction is much slower (ca. 10(8) times) compared to DHFR from Escherichia coli (EcDHFR). In contrast to EcDHFR, no evidence for heterogeneity of the native state is detectable. Refolding proceeds via at least two intermediates and a burst-phase of rather low amplitude. Reassociation of monomeric intermediates is not rate-limiting on the folding pathway due to the high association constant of the dimer.  相似文献   

4.
The crystal structure of CheY protein from Thermotoga maritima has been determined in four crystal forms with and without Mg++ bound, at up to 1.9 A resolution. Structural comparisons with CheY from Escherichia coli shows substantial similarity in their folds, with some concerted changes propagating away from the active site that suggest how phosphorylated CheY, a signal transduction protein in bacterial chemotaxis, is recognized by its targets. A highly conserved segment of the protein (the "y-turn loop," residues 55-61), previously suggested to be a rigid recognition determinant, is for the first time seen in two alternative conformations in the different crystal structures. Although CheY from Thermotoga has much higher thermal stability than its mesophilic counterparts, comparison of structural features previously proposed to enhance thermostability such as hydrogen bonds, ion pairs, compactness, and hydrophobic surface burial would not suggest it to be so.  相似文献   

5.
Zhou HX  Dong F 《Biophysical journal》2003,84(4):2216-2222
The thermophilic Bacillus caldolyticus cold shock protein (Bc-Csp) differs from the mesophilic Bacillus subtilis cold shock protein B (Bs-CspB) in 11 of the 66 residues. Stability measurements of Schmid and co-workers have implicated contributions of electrostatic interactions to the thermostability. To further elucidate the physical basis of the difference in stability, previously developed theoretical methods that treat electrostatic effects in both the folded and the unfolded states were used in this paper to study the effects of mutations, ionic strength, and temperature. For 27 mutations that narrow the difference in sequence between Bc-Csp and Bs-CspB, calculated changes in unfolding free energy (Delta G) and experimental results have a correlation coefficient of 0.98. Bc-Csp appears to use destabilization of the unfolded state by unfavorable charge-charge interactions as a mechanism for increasing stability. Accounting for the effects of ionic strength and temperature on the electrostatic free energies in both the folded and the unfolded states, explanations for two important experimental observations are presented. The disparate ionic strength dependences of Delta G for Bc-Csp and Bs-CspB were attributed to the difference in the total charges (-2e and -6e, respectively). A main contribution to the much higher unfolding entropy of Bs-CspB was found to come from the less favorable electrostatic interactions in the folded state. These results should provide insight for understanding the thermostability of other thermophilic proteins.  相似文献   

6.
Recombinant maltose-binding protein from Thermotoga maritima (TmMBP) was expressed in Escherichia coli and purified to homogeneity, applying heat incubation of the crude extract at 75 degrees C. As taken from the spectral, physicochemical and binding properties, the recombinant protein is indistinguishable from the natural protein isolated from the periplasm of Thermotoga maritima. At neutral pH, TmMBP exhibits extremely high intrinsic stability with a thermal transition >105 degrees C. Guanidinium chloride-induced equilibrium unfolding transitions at varying temperatures result in a stability maximum at approximately 40 degrees C. At room temperature, the thermodynamic analysis of the highly cooperative unfolding equilibrium transition yields DeltaG(N-->U)=100(+/-5) kJ mol(-1 )for the free energy of stabilization. Compared to mesophilic MBP from E. coli as a reference, this value is increased by about 60 kJ mol(-1). At temperatures around the optimal growth temperature of T. maritima (t(opt) approximately 80 degrees C), the yield of refolding does not exceed 80 %; the residual 20 % are misfolded, as indicated by a decrease in stability as well as loss of the maltose-binding capacity. TmMBP is able to bind maltose, maltotriose and trehalose with dissociation constants in the nanomolar to micromolar range, combining the substrate specificities of the homologs from the mesophilic bacterium E. coli and the hyperthermophilic archaeon Thermococcus litoralis. Fluorescence quench experiments allowed the dissociation constants of ligand binding to be quantified. Binding of maltose was found to be endothermic and entropy-driven, with DeltaH(b)=+47 kJ mol(-1) and DeltaS(b)=+257 J mol(-1) K(-1). Extrapolation of the linear vant'Hoff plot to t(opt) resulted in K(d) approximately 0.3 microM. This result is in agreement with data reported for the MBPs from E. coli and T. litoralis at their respective optimum growth temperatures, corroborating the general observation that proteins under their specific physiological conditions are in corresponding states.  相似文献   

7.
Equilibrium dissociation and unfolding of the Arc repressor dimer   总被引:20,自引:0,他引:20  
J U Bowie  R T Sauer 《Biochemistry》1989,28(18):7139-7143
The equilibrium unfolding reaction of Arc repressor, a dimeric DNA binding protein encoded by bacteriophage P22, can be monitored by fluorescence or circular dichroism changes. The stability of Arc is concentration dependent, and the unfolding reaction is well described as a two-state transition from folded dimer to unfolded monomer. The stability of the protein is decreased at low pH and increased by high salt concentration. The salt dependence suggests that two ions bind preferentially to the folded protein. In 10 mM potassium phosphate (pH 7.3) and 100 mM KCl, the unfolding free energy reaches a maximum near room temperature. The results suggest that at the low protein concentrations where operator DNA binding is normally measured, Arc is predominantly monomeric and unfolded.  相似文献   

8.
Carnosine promotes the heat denaturation of glycated protein   总被引:3,自引:0,他引:3  
Glycation alters protein structure and decreases biological activity. Glycated proteins, which accumulate in affected tissue, are reliable markers of disease. Carnosine, which prevents glycation, may also play a role in the disposal of glycated protein. Carnosinylation tags glycated proteins for cell removal. Since thermostability determines cell turnover of proteins, the present study examined carnosine's effect on thermal denaturation of glycated protein using cytosolic aspartate aminotransferase (cAAT). Glycated cAAT (500 microM glyceraldehyde for 72h at 37 degrees C) increased the T(0.5) (temperature at which 50% denaturation occurs) and the Gibbs free energy barrier (DeltaG) for denaturation. The enthalpy of denaturation (DeltaH) for glycated cAAT was also higher than that for unmodified cAAT, suggesting that glycation changes the water accessible surface. Carnosine enhanced the thermal unfolding of glycated cAAT as evidenced by a decreased T(0.5) and a lowered Gibbs free energy barrier. Additionally, carnosine decreased the enthalpy of denaturation, suggesting that carnosine may promote hydration during heat denaturation of glycated protein.  相似文献   

9.
Lee DW  Hong YH  Choe EA  Lee SJ  Kim SB  Lee HS  Oh JW  Shin HH  Pyun YR 《FEBS letters》2005,579(5):1261-1266
To gain insight into the structural stability of homologous homo-tetrameric l-arabinose isomerases (AI), we have examined the isothermal guanidine hydrochloride (GdnHCl)-induced unfolding of AIs from mesophilic Bacillus halodurans (BHAI), thermophilic Geobacillus stearothermophilus (GSAI), and hyperthermophilic Thermotoga maritima (TMAI) using circular dichroism spectroscopy. The GdnHCl-induced unfolding of the AIs can be well described by a two-state reaction between native tetramers and unfolded monomers, which directly confirms the validity of the linear extrapolation method to obtain the intrinsic stabilities of these proteins. The resulting unfolding free energy (DeltaGU) values of the AIs as a function of temperature were fit to the Gibbs-Helmholtz equation to determine their thermodynamic parameters based on a two-state mechanism. Compared with the stability curves of BHAI in the presence and absence of Mn2+, those of holo GSAI and TMAI were more broadened than those of the apo enzymes at all temperatures, indicating increased melting temperatures (Tm) due to decreased heat capacity (DeltaGp). Moreover, the extent of difference in DeltaCp between the apo and holo thermophilic AIs is larger than that of BHAI. From these studies, we suggest that the metal dependence of the thermophilic AIs, resulting in the reduced DeltaCp, may play a significant role in structural stability compared to their mesophilic analogues, and that the extent of metal dependence of AI stability seems to be highly correlated to oligomerization.  相似文献   

10.
Motono C  Gromiha MM  Kumar S 《Proteins》2008,71(2):655-669
The cold shock protein (CSP) from hyperthermophile Thermotoga maritima (TmCSP) is only marginally stable (DeltaG(T(opt)) = 0.3 kcal/mol) at 353 K, the optimum environmental temperature (T(opt)) for T. maritima. In comparison, homologous CSPs from E. coli (DeltaG(T(opt)) = 2.2 kcal/mol) and B. subtilis (DeltaG(T(opt)) = 1.5 kcal/mol) are at least five times more stable at 310 K, the T(opt) for the mesophiles. Yet at the room temperature, TmCSP is more stable (DeltaG(T(R)) = 4.7 kcal/mol) than its homologues (DeltaG(T(R)) = 3.0 kcal/mol for E. coli CSP and DeltaG(T(R)) = 2.1 kcal/mol for B. subtilis CSP). This unique observation suggests that kinetic, rather than thermodynamic, barriers toward unfolding might help TmCSP native structure at high temperatures. Consistently, the unfolding rate of TmCSP is considerably slower than its homologues. High temperature (600 K) complete unfolding molecular dynamics (MD) simulations of TmCSP support our hypothesis and reveal an unfolding scheme unique to TmCSP. For all the studied homologues of TmCSP, the unfolding process first starts at the C-terminal region and N-terminal region unfolds in the end. But for TmCSP, both the terminals resist unfolding for consistently longer simulation times and, in the end, unfold simultaneously. In TmCSP, the C-terminal region is better fortified and has better interactions with the N-terminal region due to the charged residues, R2, E47, E49, H61, K63, and E66, being in spatial vicinity. The electrostatic interactions among these residues are unique to TmCSP. Consistently, the room temperature MD simulations show that TmCSP is more rigid at its N- and C-termini as compared to its homologues from E. coli, B. subtilis, and B. caldolyticus.  相似文献   

11.
Effects of hydrated water on protein unfolding   总被引:5,自引:0,他引:5  
The conformational stability of a protein in aqueous solution is described in terms of the thermodynamic properties such as unfolding Gibbs free energy, which is the difference in the free energy (Gibbs function) between the native and random conformations in solution. The properties are composed of two contributions, one from enthalpy due to intramolecular interactions among constituent atoms and chain entropy of the backbone and side chains, and the other from the hydrated water around a protein molecule. The hydration free energy and enthalpy at a given temperature for a protein of known three-dimensional structure can be calculated from the accessible surface areas of constituent atoms according to a method developed recently. Since the hydration free energy and enthalpy for random conformations are computed from those for an extended conformation, the thermodynamic properties of unfolding are evaluated quantitatively. The evaluated hydration properties for proteins of known transition temperature (Tm) and unfolding enthalpy (delta Hm) show an approximately linear dependence on the number of constituent heavy atoms. Since the unfolding free energy is zero at Tm, the enthalpy originating from interatomic interactions of a polypeptide chain and the chain entropy are evaluated from an experimental value of delta Hm and computed properties due to the hydrated water around the molecule at Tm. The chain enthalpy and entropy thus estimated are largely compensated by the hydration enthalpy and entropy, respectively, making the unfolding free energy and enthalpy relatively small. The computed temperature dependences of the unfolding free energy and enthalpy for RNase A, T4 lysozyme, and myoglobin showed a good agreement with the experimental ones.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Proteins from (hyper-)thermophiles are known to exhibit high intrinsic stabilities. Commonly, their thermodynamic characterization is impeded by irreversible side reactions of the thermal analysis or calorimetrical problems. Small single-domain proteins are suitable candidates to overcome these obstacles. Here, the thermodynamics of the thermal denaturation of the recombinant cold-shock protein (Csp) from the hyperthermophilic bacterium Thermotoga maritima (Tm) was studied by differential scanning calorimetry. The unfolding transition can be described over a broad pH range (3.5-8.5) by a reversible two-state process. Maximum stability (DeltaG (25 degrees C)=6.5 kcal/mol) was observed at pH 5-6 where Tm Csp unfolds with a melting temperature at 95 degrees C. The heat capacity difference between the native and the denatured states is 1.1(+/-0.1) kcal/(mol K). At pH 7, thermal denaturation occurs at 82 degrees C. The corresponding free energy profile has its maximum at 30 degrees C with DeltaGN-->U=4.8(+/-0.5) kcal/mol. At the optimal growth temperature of T. maritima (80 degrees C), Tm Csp in the absence of ligands is only marginally stable, with a free energy of stabilization not far beyond the thermal energy. With the known stabilizing effect of nucleic acids in mind, this suggests a highly dynamical interaction of Tm Csp with its target molecules.  相似文献   

13.
Talla-Singh D  Stites WE 《Proteins》2008,71(4):1607-1616
The change in heat capacity, DeltaC(p), on protein unfolding has been usually determined by calorimetry. A noncalorimetric method which employs the Gibbs-Helmholtz relationship to determine DeltaC(p) has seen some use. Generally, in this method the free energy change on unfolding of the protein is determined at a variety of temperatures and the temperature at which DeltaG is zero, T(m), and change in enthalpy at T(m) are determined by thermal denaturation and DeltaC(p) is then calculated using the Gibbs-Helmholtz equation. We show here that an abbreviated method with stability determinations at just two temperatures gives values of DeltaC(p) consistent with values from free energy change on unfolding determination at a much wider range of temperatures. Further, even the free energy change on unfolding from a single solvent denaturation at the proper temperature, when coupled with the melting temperature, T(m), and the van't Hoff enthalpy, DeltaH(vH), from a thermal denaturation, gives a reasonable estimate of DeltaC(p), albeit with greater uncertainty than solvent denaturations at two temperatures. We also find that nonlinear regression of the Gibbs-Helmholtz equation as a function of stability and temperature while simultaneously fitting DeltaC(p), T(m), and DeltaH(vH) gives values for the last two parameters that are in excellent agreement with experimental values.  相似文献   

14.
Gursky O  Ranjana  Gantz DL 《Biochemistry》2002,41(23):7373-7384
Thermal unfolding of discoidal complexes of apolipoprotein (apo) C-1 with dimyristoyl phosphatidylcholine (DMPC) reveals a novel mechanism of lipoprotein stabilization that is based on kinetics rather than thermodynamics. Far-UV CD melting curves recorded at several heating/cooling rates from 0.047 to 1.34 K/min show hysteresis and scan rate dependence characteristic of slow nonequilibrium transitions. At slow heating rates, the apoC-1 unfolding in the complexes starts just above 25 degrees C and has an apparent melting temperature T(m) approximately 48 +/- 1.5 degrees C, close to T(m) = 51 +/- 1.5 degrees C of free protein. Thus, DMPC binding may not substantially increase the low apparent thermodynamic stability of apoC-1, DeltaG(25 degrees C) < 2 kcal/mol. The scan rate dependence of T(m) and Arrhenius analysis of the kinetic data suggest an activation enthalpy E(a) = 25 +/- 5 kcal/mol that provides the major contribution to the free energy barrier for the protein unfolding on the disk, DeltaG > or = 17 kcal/mol. Consequently, apoC-1/DMPC disks are kinetically but not thermodynamically stable. To explore the origins of this kinetic stability, we utilized dynode voltage measured in CD experiments that shows temperature-dependent contribution from UV light scattering of apoC-1/DMPC complexes (d approximately 20 nm). Correlation of CD and dynode voltage melting curves recorded at 222 nm indicates close coupling between protein unfolding and an increase in the complex size and/or lamellar structure, suggesting that the enthalpic barrier arises from transient disruption of lipid packing interactions upon disk-to-vesicle fusion. We hypothesize that a kinetic mechanism may provide a general strategy for lipoprotein stabilization that facilitates complex stability and compositional variability in the absence of high packing specificity.  相似文献   

15.
The thermodynamic stability of beta-lactoglobulin (beta-Lg) was studied at acidic and near-neutral pH values using equilibrium thermal-unfolding measurements. Transition temperature increased with a decrease in pH from 7.5 to 6.5 and 3.0 to 1.5, suggesting an increase in the net protein stability. Determination of the change in free energy of unfolding and extrapolation into the nontransition region revealed that beta-Lg increases its stability by increasing the magnitude of the change in free energy of unfolding at the temperature of maximum stability, as well as by increasing the temperature of maximum stability. The relative difference in the change in free energy of unfolding at 70 degrees C (with a reference pH of 7.5) was positive and its magnitude increased with a decrease in pH from 7.0 to 1.5 van't Hoff plots of thermal unfolding of beta-Lg at all pH values studied were non-linear and the measured changes in the enthalpy and entropy of unfolding for beta-Lg were high and positive. The relative magnitude of change of both enthalpy and entropy at 70 degrees C (compared with pH 7.5) increased with a decrease in pH up to 1.5. A possible mechanism for the increased stability of beta-Lg at low pH is discussed.  相似文献   

16.
Obtaining detailed knowledge of folding intermediate and transition state (TS) structures is critical for understanding protein folding mechanisms. Comparisons between proteins adapted to survive extreme temperatures with their mesophilic homologs are likely to provide valuable information on the interactions relevant to the unfolding transition. For kinetically stable proteins such as alpha-lytic protease (alphaLP) and its family members, their large free energy barrier to unfolding is central to their biological function. To gain new insights into the mechanisms that underlie kinetic stability, we have determined the structure and high temperature unfolding kinetics of a thermophilic homolog, Thermobifida fusca protease A (TFPA). These studies led to the identification of a specific structural element bridging the N and C-terminal domains of the protease (the "domain bridge") proposed to be associated with the enhanced high temperature kinetic stability in TFPA. Mutagenesis experiments exchanging the TFPA domain bridge into alphaLP validate this hypothesis and illustrate key structural details that contribute to TFPA's increased kinetic thermostability. These results lead to an updated model for the unfolding transition state structure for this important class of proteases in which domain bridge undocking and unfolding occurs at or before the TS. The domain bridge appears to be a structural element that can modulate the degree of kinetic stability of the different members of this class of proteases.  相似文献   

17.
Previous studies on the conformation of the monomeric acetylcholinesterase (AChE) from the krait (Bungarus fasciatus) venom showed that the protein possesses a large permanent dipole moment. These studies predicted that thermal irreversible denaturation must occur via partially unfolded states. The thermal stability of Bungarus AChE was determined using capillary electrophoresis (CE) with optimized conditions. Runs performed at convenient temperature scanning rates provided evidence for an irreversible denaturation process according to the Lumry and Eyring model. The mid-transition temperature, T(m), and the effective enthalpy change, DeltaH(m) were determined at different pH. The temperature dependence of the free energy, DeltaG, of Bungarus AChE unfolding was drawn using values of T(m), DeltaH(m) and DeltaC(p) determined by CE. The thermodynamic parameters for the thermal denaturation of the monomeric snake enzyme were compared with those of different dimeric and tetrameric ChEs. It was shown that the changes in the ratio of DeltaH(cal/)DeltaH(vH) and DeltaC(p) reflect the oligomerization state of these proteins. All these results indicate that wild-type monomeric Bungarus AChE is a stable enzyme under standard conditions. However, designed mutants of this enzyme capable of degrading organophosphates have to be engineered to enhance their thermostability.  相似文献   

18.
To characterize the thermal stability of 3-isopropylmalate dehydrogenase (IPMDH) from an extreme thermophile, Thermus thermophilus, urea-induced unfolding of the enzyme and of its mesophilic counterpart from Escherichia coli was investigated at various temperatures. The unfolding curves were analyzed with a three-state model for E.coli IPMDH and with a two-state model for T.thermophilus IPMDH, to obtain the free energy change DeltaG degrees of each unfolding process. Other thermodynamic parameters, enthalpy change DeltaH, entropy change DeltaS and heat capacity change DeltaC(p), were derived from the temperature dependence of DeltaG degrees. The main feature of the thermophilic enzyme was its lower dependence of DeltaG degrees on temperature resulting from a low DeltaC(p). The thermophilic IPMDH had a significantly lower DeltaC(p), 1.73 kcal/mol.K, than that of E.coli IPMDH (20.7 kcal/mol.K). The low DeltaC(p) of T.thermophilus IPMDH could not be predicted from its change in solvent-accessible surface area DeltaASA. The results suggested that there is a large structural difference between the unfolded state of T.thermophilus and that of E.coli IPMDH. Another responsible factor for the higher thermal stability of T.thermophilus IPMDH was the increase in the most stable temperature T(s). The DeltaG degrees maximum of T.thermophilus IPMDH was much smaller than that of E.coli IPMDH. The present results clearly demonstrated that a higher melting temperature T(m) is not necessarily accompanied by a higher DeltaG degrees maximum.  相似文献   

19.
Park SY  Quezada CM  Bilwes AM  Crane BR 《Biochemistry》2004,43(8):2228-2240
Dimerization of the chemotaxis histidine kinase CheA is required for intersubunit autophosphorylation [Swanson, R. V., Bourret, R. B., and Simon, M. I. (1993) Mol. Microbiol. 8, 435-441]. Here we show that CheA dimers exchange subunits by the rate-limiting dissociation of a central four-helix bundle association domain (P3), despite the high stability of P3 versus unfolding. P3 alone determines the stability and exchange properties of the CheA dimer. For CheA proteins from the mesophile Escherichia coli and the thermophile Thermotoga maritima, subunit dissociation activates at temperatures where the respective organisms live (37 and 80 degrees C). Under destabilizing conditions, P3 dimer dissociation is cooperative with unfolding. Chemical denaturation is reversible for both EP3 and TP3. Aggregation accompanies thermal unfolding for both proteins under most conditions, but thermal unfolding is reversible and two-state for EP3 at low protein concentrations. Residue differences within interhelical loops may account for the contrasted thermodynamic properties of structurally similar EP3 and TP3 (41% sequence identity). Under stabilizing conditions, greater correlation between activation energy for dimer dissociation and P3 stability suggests more unfolding in the dissociation of EP3 than TP3. Furthermore, destabilization of extended conformations by glycerol slows relative dissociation rates more for EP3 than for TP3. Nevertheless, at physiological temperatures, neither protein likely unfolds completely during subunit exchange. EP3 and TP3 will not exchange subunits with each other. The receptor coupling protein CheW reduces the subunit dissociation rate of the T. maritima CheA dimer by interacting with the regulatory domain P5.  相似文献   

20.
To understand the structural basis of thermostability, we have determined the solution structure of a thermophilic ribosomal protein L30e from Thermococcus celer by NMR spectroscopy. The conformational stability of T. celer L30e was measured by guanidine and thermal-induced denaturation, and compared with that obtained for yeast L30e, a mesophilic homolog. The melting temperature of T. celer L30e was 94 degrees C, whereas the yeast protein denatured irreversibly at temperatures >45 degrees C. The two homologous proteins also differ greatly in their stability at 25 degrees C: the free energy of unfolding was 45 kJ/mole for T. celer L30e and 14 kJ/mole for the yeast homolog. The solution structure of T. celer L30e was compared with that of the yeast homolog. Although the two homologous proteins do not differ significantly in their number of hydrogen bonds and the amount of solvent accessible surface area buried with folding, the thermophilic T. celer L30e was found to have more long-range ion pairs, more proline residues in loops, and better helix capping residues in helix-1 and helix-4. A K9A variant of T. celer L30e was created by site-directed mutagenesis to examine the role of electrostatic interactions on protein stability. Although the melting temperatures of the K9A variant is approximately 8 degrees C lower than that of the wild-type L30e, their difference in T(m) is narrowed to approximately 4.2 degrees C at 0.5 M NaCl. This salt-dependency of melting temperatures strongly suggests that electrostatic interactions contribute to the thermostability of T. celer L30e.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号