首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Antibodies to the extreme C-terminal tryptic (nona-) peptide fragment of porcine progastrin have been used in radioimmunoassay to identify progastrin fragments in dog, ferret and pig antral mucosa extracts and to monitor their purification. In addition to previously characterised phosphorylated and unphosphorylated C-terminal tryptic peptides of porcine progastrin a minor form corresponding to the C-terminal octapeptide (i.e. des-Ser C-terminal nonapeptide) was isolated and characterised. The latter form together with phosphorylated and unphosphorylated forms of the nonapeptides were also isolated and chemically characterised from dog antrum, and the unphosphorylated nonapeptide was characterised from ferret antrum. The primary amino acid sequences of the dog, ferret and pig nonapeptides were identical. In ferret the unphosphorylated nonapeptide predominated, and in dog the phosphorylated form predominated; in pig both forms of the nonapeptide were well represented. Intact progastrin was identified in gel filtration eluates of extracts of all 3 species, but occurred only in relatively low concentrations. The nonapeptides did not stimulate acid secretion in the conscious gastric fistula rat and they did not modify the acid response to G17. Phosphorylation of progastrin-derived peptides is evidently well conserved across a range of species even though there appear to be differences in the relative proportions of phosphorylated and unphosphorylated forms.  相似文献   

2.
Post-translational processing of the precursor for rat gastrin yields products that include peptides phosphorylated at Ser96, amidated at Phe92, and sulfated at Tyr87 or Tyr103. The phosphorylation site is immediately adjacent to the processing point that gives rise to the biologically active amidated gastrins. We have examined changes in post-translational processing which occur in gastrin cells from rats that are physiologically stimulated (by feeding) or unstimulated (by fasting). Peptides were identified using site-directed radioimmunoassays and chromatographic systems that resolve phosphorylated, amidated, and sulfated progastrin products, including intermediates generated prior to amidation (i.e. C-terminal glycine-extended variants). Assays for Phe92-amidated peptides and for the C-terminal tryptic fragment of progastrin indicated decreases in the total tissue concentrations of immunoreactive peptide with fasting; in contrast, the tissue concentrations of glycine-extended biosynthetic intermediates were similar in fasted and fed rats. Taken together the data suggest a relative failure in amidation mechanisms in unstimulated cells. The endopeptidase cleavage of progastrin was not influenced significantly by fasting. However, the phosphorylation of peptide products containing Ser96 was depressed significantly in fasted rats. The proportions of amidated peptides sulfated at Tyr87 were generally lower than their corresponding glycine-extended biosynthetic precursors, but in both cases the proportion of peptide in the sulfated form was lower than for peptides sulfated at Tyr103. Feeding did not change the sulfation of amidated heptadecapeptide gastrin or its glycine-extended variant. The results suggest that the mechanisms determining phosphorylation and amidation of progastrin-related peptides depend on the patterns of stimulation of gastrin cells. The observation that decreased phosphorylation is associated with a failure to produce active amidated products is consistent with a regulatory function for phosphorylation in gastrin production.  相似文献   

3.
ACE (angiotensin-converting enzyme; peptidyl dipeptidase A; EC 3.4.15.1), cleaves C-terminal dipeptides from active peptides containing a free C-terminus. We investigated the hydrolysis of cholecystokinin-8 [CCK-8; Asp-Tyr(SO3H)-Met-Gly-Trp-Met-Asp-Phe-NH2] and of various gastrin analogues by purified rabbit lung ACE. Although these peptides are amidated at their C-terminal end, they were metabolized by ACE to several peptide fragments. These fragments were analysed by h.p.l.c., isolated and identified by comparison with synthetic fragments, and by amino acid analysis. The initial and major site of hydrolysis was the penultimate peptide bond, which generated a major product, the C-terminal amidated dipeptide Asp-Phe-NH2. As a secondary cleavage, ACE subsequently released di- or tri-peptides from the C-terminal end of the remaining N-terminal fragments. The cleavage of CCK-8 and gastrin analogues was inhibited by ACE inhibitors (Captopril and EDTA), but not by other enzyme inhibitors (phosphoramidon, thiorphan, bestatin etc.). Hydrolysis of [Leu15]gastrin-(14-17)-peptide [Boc (t-butoxycarbonyl)-Trp-Leu-Asp-Phe-NH2] in the presence of ACE was found to be dependent on the chloride-ion concentration. Km values for the hydrolysis of CCK-8, [Leu15]gastrin-(11-17)-peptide and Boc-[Leu15]gastrin-(14-17)-peptide at an NaCl concentration of 300 mM were respectively 115, 420 and 3280 microM, and the catalytic constants were about 33, 115 and 885 min-1. The kcat/Km for the reactions at 37 degrees C was approx. 0.28 microM-1.min-1, which is approx. 35 times less than that reported for the cleavage of angiotensin I. These results suggest that ACE might be involved in the metabolism in vivo of CCK and gastrin short fragments.  相似文献   

4.
A complete set of mono-, di- and triphosphorylated peptides comprising amino acids 10-27, the Mdm2 and p300 binding site(s) of p53, with and without a fluorescein label at the N-terminus, was synthesized by step-by-step solid phase synthesis. Fluorescence polarization analysis revealed that phosphorylation at Thr18 decreased binding to recombinant Mdm2 protein compared with the unphosphorylated and the two other single phosphorylated analogues. Unlabelled multiply phosphorylated peptides corresponding to this amino-terminal transactivation domain proved to be powerful tools in analysing the phosphate specificity of existing anti-p53 monoclonal and polyclonal antibodies using direct ELISA. The tetramerization domain of human p53 protein was modelled with a 53 residue-long unlabelled unphosphorylated and Ser315-phosphorylated peptide pair. CD analysis showed similar alpha-helical structures for both peptides and no major difference in the secondary structure could be observed upon phosphorylation. Size-exclusion HPLC indicated that these synthetic oligomerization domain mimics underwent a pH-dependent tetramerization process, but the presence of a phosphate group at Ser315 did not modify the oligomeric state of the 308-360 p53 fragments. Nevertheless, the fluorescein-labelled Ser315 phosphorylated peptide bound to the downstream signalling ligand DNA topoisomerase I protein with slightly higher affinity than did the unphosphorylated analogue.  相似文献   

5.
Prohormones often undergo extensive cellular processing prior to secretion. These post-translational processing events occur in organelles of the constitutive or regulated secretory pathway. The aim of this study was to examine the relationship between post-translational modifications and the secretory pathways taken by peptides derived from progastrin, the prohormone of gastrin, which in vivo is secreted by cells of the pyloric glands and stimulates the release of gastric acid. Targeting progastrin to compartments of the early secretory pathway shows that endoproteolytic processing is initiated in a pre-trans-Golgi network compartment of endocrine but not non-endocrine cells. The resulting N-terminal fragments of progastrin are secreted via the constitutive pathway, whereas endoproteolytically processed C-terminal fragments are secreted via the regulated or constitutive-like pathways. C-terminal fragments derived from progastrin differ in characteristic manners in levels and patterns of carboxyamidation and tyrosine sulfation in accordance with the secretory pathway taken. Point mutations introduced into a sorting motif disrupt these patterns, suggesting that differences in post-translational modifications are attributable to differential intracellular sorting of precursors. The results suggest a two-step sorting mechanism for progastrin leading to differential secretion of processed fragments via different secretory pathways.  相似文献   

6.
1. The human erythrocyte glucose transporter was phosphorylated in vitro by protein kinase C. 2. Tryptic cleavage of phosphorylated native transporter produced two major unphosphorylated membrane-embedded fragments weighing 23 and 19 kDa and released numerous water-soluble peptides. 3. Ion-exchange FPLC of the soluble tryptic peptides resolved the mixture into two phosphopeptide peaks. 4. Tryptic digestion of glucose transporter that was phosphorylated in vivo in response to phorbol esters produced soluble phosphopeptides that eluted at identical salt concentrations. 5. Proteolytic digestion and peptide mapping of the transporter revealed that the site(s) of phosphorylation lie within the large cytoplasmic domain that bisects the molecule.  相似文献   

7.
8.
The structural and functional properties of arrestin were studied by subjecting the protein to limited proteolysis. Limited proteolysis by trypsin cleaves arrestin (48 kDa), producing 20-25-kDa fragments. Prior to this stage of proteolysis, trypsin produced 46.6-, 45.4-, and 42-kDa fragments. Structural analysis of the proteolytic fragments demonstrated major cleavage at the carboxyl terminus, indicating that the carboxyl terminus is highly exposed. We found that forms of arrestin truncated at their carboxyl terminus maintained their functional properties and bound to phosphorylated rhodopsin. Native arrestin binds only to photoexcited phosphorylated rhodopsin, whereas the truncated arrestin binds to phosphorylated rhodopsin independent of its exposure to light. The truncated forms of arrestin were separated from native arrestin by a chromatographic procedure and subsequently characterized in functional studies. The binding of the truncated forms of arrestin to phosphorylated photoexcited rhodopsin is more tight than the binding of native arrestin as determined by a direct binding assay and the phosphodiesterase assay. We suggest that the acidic carboxyl-terminal region of arrestin may act as a regulator for light-dependent binding to phosphorylated rhodopsin.  相似文献   

9.
The calcitonin-calcitonin-gene-related peptide (CGRP) gene complex encodes a small family of peptides: calcitonin, CGRP and katacalcin. Calcitonin is a circulating hormone that prevents skeletal breakdown by inhibiting the resorption of bone by osteoclasts. CGRP, a potent vasodilator, is involved in normal regulation of blood flow. The calcitonins structurally resemble the CGRP peptides, and both are known to cross-react at each others' receptors. The present study was undertaken to examine the structural prerequisites for biological activity of the intact CGRP molecule. We therefore prepared eight chymotryptic and tryptic fragments of CGRP and synthesized its acetylated and S-carboxyamidomethylcysteinyl analogues. The analogues were purified by h.p.l.c. and their structures were confirmed by fast-atom bombardment mass spectrometry. We have examined the effects of structurally modified analogues and fragments of human CGRP in a calcitonin-receptor-mediated assay, the osteoclast bone resorption assay, and in one or two CGRP-receptor-mediated assays, the rabbit skin blood flow assay and the oedema formation assay. The results showed that (1) in the osteoclast bone resorption assay, both CGRP peptides, alpha and beta, were equipotent, and were both at least 1000-fold were both approx. 1000-fold more potent than salmon calcitonin; human calcitonin had no effect; (3) the bis- and N-acetylated CGRP analogues retained reduced levels of biological activity in all assays, whereas S-carboxyamidomethylcysteinyl-human CGRP was without activity; and (4) all tryptic and chymotryptic fragments of CGRP were without biological activity, with the exception of hCGRP-(Ala1-Lys35): this fragment had much reduced activity compared with the intact peptide in inhibiting osteoclastic bone resorption and increasing blood flow in the rabbit skin. The results suggest that: (1) calcitonin and CGRP act at distinct receptors to mediate different physiological effects; (2) minor amino acid substitutions, as between the alpha and beta forms of CGRP (these two forms have 94% structural similarity) do not result in differences in biological activity; (3) the intact peptide is required for full biological activity of the CGRP molecule, and even the loss of two amino acids at the C-terminus of the molecule results in a marked decrease in activity; (4) the disulphide bridge appears to play an important role in the interaction of the intact CGRP molecule with its receptor; and (5) the C-terminal region is probably necessary for the peptide to assume the right conformation in the interaction with the receptor.  相似文献   

10.
The Fujinami avian sarcoma virus (FSV) transforming gene product, P140, is a fusion protein which contains both gag-related and FSV-specific methionine-containing tryptic peptides. The virion protease p15 cleaved p140 into two fragments: an N-terminal 33K fragment which contained all but one of the gag-related tryptic peptides and a C-terminal 120K fragment which contained all of the FSV-specific tryptic peptides. The 33K gag-related fragment from P140 phosphorylated in FSV-transformed cells contained only phosphoserine, whereas the 120K C-terminal FSV-specific fragments contained both phosphoserine and phosphotyrosine. P140 isolated from cells infected at the nonpermissive temperature with an isolate of FSV which is temperature sensitive for transformation had a normally phosphorylated 33K fragment, but a hypophosphorylated 120K fragment deficient in both phosphotyrosine and phosphoserine. When P140 was immunoprecipitated from cells and phosphorylated in vitro at tyrosine residues in the immune complex kinase reaction, only the FSV-specific fragment was labeled. These data define the structure of FSV P140 and locate the phosphorylated amino acids within the two regions of the polypeptide.  相似文献   

11.
The main intrinsic membrane protein of the lens fiber cell, MIP, has been previously shown to be phosphorylated in preparations of lens fragments. Phosphorylation occurred on serine residues near the cytoplasmic C-terminus of the molecule. Since MIP is thought to function as a channel protein in lens plasma membranes, possibly as a cell-to-cell channel protein, phosphorylation could regulate the assembly or gating of these channels. We sought to identify the specific serines which are phosphorylated in order to help identify the kinases involved in regulating MIP function. To this end we purified a peptide fragment from native membranes that had not been subjected to any exogenous kinases or kinase activators. Any phosphorylation detected in these fragments must be due to cellular phosphorylation and thus is termed in vivo phosphorylation. Purified membranes were also phosphorylated with cAMP-dependent protein kinase to determine the mobility of phosphorylated and unphosphorylated MIP-derived peptides on different HPLC columns and to determine possible cAMP-dependent protein kinase phosphorylation sites. Lens membranes, which contain 50-60% of the protein as MIP, were digested with lysylendopeptidase C. Peptides were released from the C-terminal region of MIP and a major product of 21-22 kDa remained membrane-associated. Separation of the lysylendopeptidase-C-released peptides on C8 reversed-phase HPLC demonstrated that one of these fragments, corresponding to residues 239-259 in MIP, was partially phosphorylated. The phosphorylated and nonphosphorylated forms of this peptide were separated on QAE HPLC. In vivo phosphorylation sites were found at residues 243 and 245 through phosphoserine modification via ethanethiol and sequence analysis. Phosphorylation was never detected on serine 240. The phosphorylation level of serine 243 could be increased by incubation of membranes with cAMP-dependent protein kinase under standard assay conditions. Other kinases that phosphorylate serines found near acidic amino acids must be responsible for the in vivo phosphorylation demonstrated at serine 245.  相似文献   

12.
OBJECTIVES: In addition to the acid-stimulatory gastrins, progastrin also release N-terminal fragments. In order to examine the cellular content, secretion and peripheral metabolism of these fragments, we developed an immunoassay specific for the N-terminal sequence of human progastrin. RESULTS: The concentration of N-terminal progastrin fragments in human antral tissue was 6.7 nmol/g tissue (n=5), which was only half of that of acid-stimulatory gastrins (12 nmol/g tissue). Gel chromatography of antral extracts showed that the progastrin fragment 1-35 and 1-19 constitute the major part of the N-terminal progastrin fragments. The basal concentration of N-terminal fragments in normal human plasma was almost 30-fold higher than that of the amidated, acid-stimulatory gastrins (286 pmol/l versus 9.8 pmol/l, n=26, P<0.001). In contrast, the concentration of N-terminal fragments in hypergastrinemic plasma was only 2.7-fold higher than the concentration of amidated gastrins (540 pmol vs. 198 pmol/l, P=0.02). During meal stimulation, the plasma concentrations of N-terminal progastrin fragments and amidated gastrins increased in a correlated manner (r=0.97, P=0.005). The half life for progastrin 1-35 in circulation was 30 min, and a pig model revealed the kidneys and the vasculature to the head as the primary sites of degradation. CONCLUSION: The cellular and circulatory concentration profiles of N-terminal progastrin fragments differ markedly from those of the acid-stimulatory gastrins. The high basal plasma concentrations of N-terminal progastrin fragments cannot be explained by differences in elimination.  相似文献   

13.
Semenogelin I (SgI) is one of the most abundant proteins in human seminal plasma. SgI plays a key role in sperm coagulation and spermatozoon immobilization. In addition, SgI and/or its proteolytic fragments are involved in regulating spermatozoon motility, capacitation and inhibin-like activity. However, little is known about the antibacterial activity of SgI-derived peptides. By a combination of ion-exchange, gel filtration and high-performance liquid chromatography, peptides from liquefied human seminal plasma from 40 healthy donors were isolated and characterized. N-terminal amino-acid sequencing and fast atom bombardment mass spectrometry revealed that four isolated peptides were SgI-derived, namely SgI-29 (85-113), SgI-46 (85-130), SgI-47 (85-131) and SgI-52 (85-136). Interestingly, SgI-29, SgI-46 and SgI-47 are newly identified SgI-derived peptides. Antimicrobial activity assay results indicated that synthesized SgI-29 had strong antibacterial activity toward various bacterial strains. Our results indicate that SgI can be digested into small fragments like newly identified SgI-29, SgI-46 and SgI-47 and may have diversified functions.  相似文献   

14.
Chemical degradation and antipeptide antibodies were used to study alterations in the structure and function of the human placental insulin receptor following autophosphorylation in vitro. Antibodies elicited to residues 1143-1162 (P2) of the human insulin proreceptor immunoprecipitated the native, phosphorylated receptor but not the unphosphorylated receptor. Since this antibody recognizes both forms of the receptor on immunoblots, it was concluded that the accessibility of the P2 domain to the antibody is increased by in vitro autophosphorylation. Chemical cleavage at either tryptophan or methionine residues followed by immunoprecipitation with antipeptide antibodies was used to map the in vitro autophosphorylation sites of the beta subunit of the insulin receptor. Two phosphorylated fragments were resolved. One, recognized by antibody elicited to amino acid residues 1328-1343 (P5), is derived from the carboxyl terminus of the beta subunit and includes tyrosine 1316. The other, recognized by antibody to P2, is located in a domain that includes tyrosine 1150. The rate of phosphorylation of this latter site correlates with the rate of activation of the insulin receptor kinase during in vitro autophosphorylation. The results support the following conclusions: autophosphorylation alters the conformation of the beta subunit of the insulin receptor; autophosphorylation in vitro leads to phosphorylation of tyrosine residues near the carboxyl terminus of the protein and in the P2 domain that includes tyrosine 1150; activation of the insulin receptor kinase correlates with autophosphorylation of the domain containing tyrosine 1150.  相似文献   

15.
p67(PHOX), a cytosolic component of the NADPH oxidase complex, is phosphorylated during neutrophil activation by several agonists. The intracellular signaling pathways leading to its phosphorylation in neutrophils may involve a PKC-dependent pathway and a PKC-independent pathway. Here, we analyzed p67(PHOX) phosphorylation by ERK2 and p38MAPK. Both ERK2 and p38MAPK phosphorylated p67(PHOX) in vitro, with similar K(m) values (10 and 9 microM, respectively). Phosphopeptide mapping indicated that ERK2 and p38MAPK phosphorylate different subgroups of peptides. Using truncated forms of p67(PHOX), we found that the major phosphorylation target site of ERK2 was located in the N-terminal fragment (1-243), while the major phosphorylation target sites of p38MAPK were located in the C-terminal fragment (244-526). Furthermore, an additional peptide, which was not phosphorylated in the intact protein, appeared to be phosphorylated in the isolated C-terminal fragment (aa 244-526). This site may not thus be accessible in the intact protein. Indeed, incubation of the C-terminal fragment (244-526) with different N-terminal fragments (1-243, 1-210, or 1-199) containing the tetratricopeptide-rich region prevented phosphorylation of this C-terminal fragment. ERK1/2 and p38MAPK are also involved in p67(PHOX) phosphorylation in intact neutrophils. Indeed, PD98059 and SB203580, two selective inhibitors of MEK1/2 and p38MAPK, respectively, inhibited p67(PHOX) phosphorylation in fMLP- and PMA-stimulated neutrophils, with additive effects, thus suggesting that they also target different sites in vivo. Furthermore, the major peptides phosphorylated by ERK2 and p38MAPK in vitro were also phosphorylated in fMLP-stimulated neutrophils. Taken together, these results suggest not only that p67(PHOX) is phosphorylated by ERK2 and p38MAPK in vitro and in intact neutrophils on several selective sites but also that a C-terminal phosphorylation site may become accessible after a conformational change of the protein.  相似文献   

16.
Monoclonal antibody PH7 has specificity for the phosphorylated form of the human liver phenylalanine hydroxylase and negligible reactivity towards the dephosphorylated form of the native enzyme by enzyme-linked immunoassay. PH7 binds specifically to the phosphorylated form of the liver enzyme after SDS/polyacrylamide-gel electrophoresis and transfer to nitrocellulose. Competitive blocking assays have been applied in conjunction with reversed-phase h.p.l.c. of purified tryptic fragments of human liver phenylalanine hydroxylase to localize the epitope. The major immunoreactive tryptic peptide cross-reacting with PH7 had an amino acid analysis corresponding to the first 41 amino acids of the human liver phenylalanine hydroxylase sequence and included the serine residue that is thought to be the phosphorylation site. The monoclonal antibody recognized the phosphorylated form of the synthetic decapeptide corresponding to the local phosphorylation-site sequence Gly-Leu-Gly-Arg-Lys-Leu-Ser(P)-Asp-Phe-Gly, but not the dephosphodecapeptide. Thermolysin digestion of the peptide demonstrated the monoclonal antibody bound to the pentapeptide Leu-Ser(P)-Asp-Phe-Gly. Monoclonal antibody PH7 recognized the phosphodecapeptide at concentrations 10(3)-fold higher than with phenylalanine hydroxylase, compared with 10(4)-10(7)-fold higher for other phosphopeptides and phosphoproteins. The results demonstrate that monoclonal antibody PH7 has specificity for the phosphorylated form of phenylalanine hydroxylase at the phosphorylation site.  相似文献   

17.
By using only reverse-phase h.p.l.c., three fragments of prosomatostatin were isolated from an extract of a human pancreatic neuroendocrine tumour that produced somatostatin, vasoactive intestinal polypeptide and gastrin-releasing peptide. The amino acid composition of the peptides indicated that they represented prosomatostatin-(1-63)-peptide, prosomatostain-(65-76)-peptide and prosomatostatin-(79-92)-peptide (somatostatin-14). The identity of prosomatostatin-(1-63)-peptide was confirmed by characterization of the products of digestion with Armillaria mellea (honey fungus) proteinase. Partial micro-sequencing of prosomatostatin-(1-63)-peptide showed that the Gly24-Ala25 bond of preprosomatostatin was the site of cleavage of the signal peptide. Thus human prosomatostatin is a protein of 92 amino acid residues that is proteolytically cleaved in a pancreatic tumour at the site of a dibasic-residue (arginine-lysine) processing site and at a single-monobasic-residue (arginine) processing site.  相似文献   

18.
19.
The NF-M subunit of human neurofilaments has a C-terminal repeating 13-mer sequence. The 13-mer (Lys-Ser-Pro-Val-Pro-Lys-Ser-Pro-Val-Glu-Glu-Lys-Gly) (NF-M13) and 17-mer (Glu-Glu-Lys-Gly)-(NF-M13) sequences were synthesized, as were both the mono- and diphosphorylated Ser species. Circular dichroism (c.d.) studies and c.d. titrations with Al3+ and Ca2+ were performed. The conformation of the phosphorylated and unphosphorylated material was random in water. Deconvolution of the c.d. spectra, in trifluoroethanol, of the untitrated samples yielded a high content of unordered structure, similar to the poly-L-proline II structure. Titration of the phosphorylated species with Al3+ or Ca2+ caused a surprising conformational change to occur, yielding a high content of beta-pleated sheet structure. A mechanism of metal binding to the phosphofragments is proposed which may be relevant to the formation of neurofibrillary tangles in Alzheimer's disease.  相似文献   

20.
Phosphorylation at unspecified sites is known to regulate the life cycle (assembly, gating, and turnover) of the gap junction protein, Cx43. In this paper, we show that Cx43 is phosphorylated on S365 in cultured cells and heart tissue. Nuclear magnetic resonance structural studies of the C-terminal region of Cx43 with an S365D mutation indicate that it forms a different stable conformation than unphosphorylated wild-type Cx43. Immunolabeling with an antibody specific for Cx43 phosphorylated at S365 shows staining on gap junction structures in heart tissue that is lost upon hypoxia when Cx43 is no longer specifically localized to the intercalated disk. Efficient phosphorylation at S368, an important Cx43 channel regulatory event that increases during ischemia or PKC activation, depends on S365 being unphosphorylated. Thus, phosphorylation at S365 can serve a “gatekeeper” function that may represent a mechanism to protect cells from ischemia and phorbol ester-induced down-regulation of channel conductance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号