首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Askerlund P  Evans DE 《Plant physiology》1992,100(4):1670-1681
Purification and functional reconstitution of a calmodulin-stimulated Ca2+-ATPase from cauliflower (Brassica oleracea L.) is described. Activity was purified about 120-fold from a microsomal fraction using calmodulin-affinity chromatography. The purified fraction showed a polypeptide at 115 kD, which formed a phosphorylated intermediate in the presence of Ca2+, together with a few polypeptides with lower molecular masses that were not phosphorylated. The ATPase was reconstituted into liposomes by 3-([cholamidopropyl]-dimethylammonio-)1-propanesulfonate (CHAPS) dialysis. The proteoliposomes showed ATP-dependent Ca2+ uptake and ATPase activity, both of which were stimulated about 4-fold by calmodulin. Specific ATPase activity was about 5 μmol min−1 (mg protein)−1, and the Ca2+/ATP ratio was 0.1 to 0.5 when the ATPase was reconstituted with entrapped oxalate. The purified, reconstituted Ca2+-ATPase was inhibited by vanadate and erythrosin B, but not by cyclopiazonic acid and thapsigargin. Activity was supported by ATP (100%) and GTP (50%) and had a pH optimum of about 7.0. The effect of monovalent and divalent cations (including Ca2+) on activity is described. Assay of membranes purified by two-phase partitioning indicated that approximately 95% of the activity was associated with intracellular membranes, but only about 5% with plasma membranes. Sucrose gradient centrifugation suggests that the endoplasmic reticulum is the major cellular location of calmodulin-stimulated Ca2+-pumping ATPase in Brassica oleracea inflorescences.  相似文献   

2.
In Escherichia coli, the biogenesis of both cytochrome bd-type quinol oxidases and periplasmic cytochromes requires the ATP-binding cassette-type cysteine/GSH transporter, CydDC. Recombinant CydDC was purified as a heterodimer and found to be an active ATPase both in soluble form with detergent and when reconstituted into a lipid environment. Two-dimensional crystals of CydDC were analyzed by electron cryomicroscopy, and the protein was shown to be made up of two non-identical domains corresponding to the putative CydD and CydC subunits, with dimensions characteristic of other ATP-binding cassette transporters. CydDC binds heme b. Detergent-solubilized CydDC appears to adopt at least two structural states, each associated with a characteristic level of bound heme. The purified protein in detergent showed a weak basal ATPase activity (approximately 100 nmol Pi/min/mg) that was stimulated ∼3-fold by various thiol compounds, suggesting that CydDC could act as a thiol transporter. The presence of heme (either intrinsic or added in the form of hemin) led to a further enhancement of thiol-stimulated ATPase activity, although a large excess of heme inhibited activity. Similar responses of the ATPase activity were observed with CydDC reconstituted into E. coli lipids. These results suggest that heme may have a regulatory role in CydDC-mediated transmembrane thiol transport.  相似文献   

3.
J.M. Andreu  E. Muñoz 《BBA》1975,387(2):228-233
Micrococcus lysodeikticus ATPase was purified by preparative gel electrophoresis after its “shock wash” release from the membrane. The method afforded the highest yield of pure protein in the minimum time as compared with former purification procedures. The pure protein had a specific activity of 7 μmol Pi·min?1·mg?1 with incubation times not longer than 3 min, 345 000 mol. wt and was not stimulated by trypsin. By gel electrophoresis at alkaline pH (8.5) in 8 M urea or in sodium dodecylsulfate, the ATPase revealed a complex pattern with two major subunits (α and β) and two minor ones (γ and δ). The non-identity between the major subunits was demonstrated.  相似文献   

4.
The ATPase of Ilyobacter tartaricus was solubilized from the bacterial membranes and purified. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified enzyme revealed the usual subunit pattern of a bacterial F1Fo ATPase. The polypeptides with apparent molecular masses of 56, 52, 35, 16.5, and 6.5 kDa were identified as the α, β, γ, , and c subunits, respectively, by N-terminal protein sequencing and comparison with the sequences of the corresponding subunits from the Na+-translocating ATPase of Propionigenium modestum. Two overlapping sequences were obtained for the polypeptides moving with an apparent molecular mass of 22 kDa (tentatively assigned as b and δ subunits). No sequence could be determined for the putative a subunit (apparent molecular mass, 25 kDa). The c subunits formed a strong aggregate with the apparent molecular mass of 50 kDa which required treatment with trichloroacetic acid for dissociation. The ATPase was inhibited by dicyclohexyl carbodiimide, and Na+ ions protected the enzyme from this inhibition. The ATPase was specifically activated by Na+ or Li+ ions, markedly at high pH. After reconstitution into proteoliposomes, the enzyme catalyzed the ATP-dependent transport of Na+, Li+, or H+. Proton transport was specifically inhibited by Na+ or Li+ ions, indicating a competition between these alkali ions and protons for binding and translocation across the membrane. These experiments characterize the I. tartaricus ATPase as a new member of the family of FS-ATPases, which use Na+ as the physiological coupling ion for ATP synthesis.  相似文献   

5.
Ward JM  Sze H 《Plant physiology》1992,99(3):925-931
To determine whether the detergent-solubilized and purified vacuolar H+-ATPase from plants was active in H+ transport, we reconstituted the purified vacuolar ATPase from oat roots (Avena sativa var Lang). Triton-solubilized ATPase activity was purified by gel filtration and ion exchange chromatography. Incorporation of the vacuolar ATPase into liposomes formed from Escherichia coli phospholipids was accomplished by removing Triton X-100 with SM-2 Bio-beads. ATP hydrolysis activity of the reconstituted ATPase was stimulated twofold by gramicidin, suggesting that the enzyme was incorporated into sealed proteoliposomes. Acidification of K+-loaded proteoliposomes, monitored by the quenching of acridine orange fluorescence, was stimulated by valinomycin. Because the presence of K+ and valinomycin dissipates a transmembrane electrical potential, the results indicate that ATP-dependent H+ pumping was electrogenic. Both H+ pumping and ATP hydrolysis activity of reconstituted preparations were completely inhibited by <50 nanomolar bafilomycin A1, a specific vacuolar type ATPase inhibitor. The reconstituted H+ pump was also inhibited by N,N′-dicyclohexylcarbodiimide or NO3 but not by azide or vanadate. Chloride stimulated both ATP hydrolysis by the purified ATPase and H+ pumping by the reconstituted ATPase in the presence of K+ and valinomycin. Hence, our results support the idea that the vacuolar H+-pumping ATPase from oat, unlike some animal vacuolar ATPases, could be regulated directly by cytoplasmic Cl concentration. The purified and reconstituted H+-ATPase was composed of 10 polypeptides of 70, 60, 44, 42, 36, 32, 29, 16, 13, and 12 kilodaltons. These results demonstrate conclusively that the purified vacuolar ATPase is a functional electrogenic H+ pump and that a set of 10 polypeptides is sufficient for coupled ATP hydrolysis and H+ translocation.  相似文献   

6.
The regulation of the phosphorylation of the acetylcholine receptor in electroplax membranes from Torpedo californica and of purified acetylcholine receptor was investigated. The phosphorylation of the membrane-bound acetylcholine receptor was not stimulated by Ca2+/calmodulin, nor was it inhibited by EGTA, but it was stimulated by the catalytic subunit of cAMP-dependent protein kinase, and was blocked by the protein inhibitor of cAMP-dependent protein kinase. Purified acetylcholine receptor was not phosphorylated by Ca2+/calmodulin-dependent protein kinase activity in electroplax membranes, nor by partially purified Ca2+/calmodulin-dependent protein kinases from soluble or particulate fractions from the electroplax. Of the four acetylcholine receptor subunits, termed α, β, γ and δ, only the γ- and δ-subunits were phosphorylated by the cAMP-dependent protein kinase (+cAMP), or by its purified catalytic subunits.  相似文献   

7.
Membrane ATPase of Methanosarcina barkeri was inhibited by N, N'-dicyclohexylcarbodiimide (DCCD), whereas the extrinsic alpha beta complex of the same enzyme was not. Consistent with this finding, a 6,000 dalton (6 kDa) membrane protein was preferentially labeled with radioactive DCCD. The DCCD-sensitive ATPase was solubilized from the membranes with octylglucoside and purified in the presence of this detergent. The purified ATPase contained the alpha and beta subunits and also at least four additional proteins (40, 27, 23 and 6 kDa). The 6 kDa protein in the purified enzyme reacted with DCCD, indicating that it is a subunit of an integral part of the M. barkeri ATPase complex.  相似文献   

8.
Ward JM  Sze H 《Plant physiology》1992,99(1):170-179
The vacuolar H+-translocating ATPase (H+-ATPase), originally reported to consist of three major subunits, has been further purified from oat roots (Avena sativa var Lang) to determine the complete subunit composition. Triton-solubilized ATPase activity was purified by gel filtration on Sephacryl S400 and ion-exchange chromatography (Q-Sepharose). ATP hydrolysis activity of purified preparations was inhibited by 100 nanomolar bafilomycin A1, a specific vacuolar-type ATPase inhibitor. The purified oat H+-ATPase (relative molecular weight = 650,000) was composed of polypeptides of 70, 60, 44, 42, 36, 32, 29, 16, 13, and 12 kilodaltons. To analyze the organization of the H+-ATPase subunits, native vacuolar membranes were treated with KI and MgATP to dissociate peripheral proteins. Release of 70, 60, 44, 42, 36, and 29 kilodalton polypeptides from the membrane was accompanied by a loss of ATP hydrolysis and ATP-dependent H+-pumping activities. Five of the peripheral subunits were released from the membrane as a large complex of 540 kilodaltons. Vesicles that had lost the peripheral sector of the ATPase could hold a pH gradient generated by the proton-translocating pyrophosphatase, suggesting that the integral sector of the ATPase did not form a H+-conducting pathway. Negative staining of native vesicles revealed knob-like structures of 10 to 12 nanometers in dense patches on the surface of vacuolar membranes. These structures were removed by MgATP and KI, which suggested that they were the peripheral sectors of the H+-ATPase. These results demonstrate that the vacuolar H+-ATPase from oat roots has 10 different subunits. The oat vacuolar ATPase is organized as a large peripheral sector and an integral sector with a subunit composition similar, although not identical to, other eukaryotic vacuolar ATPases. Variations in subunit composition observed among several ATPases support the idea that distinct types of vacuolar H+-ATPases exist in plants.  相似文献   

9.
The turnip (Brassica rapa L.) microsome fraction contains both a Mg2+-inhibited acid phosphatase and a salt-stimulated Mg2+-activated ATPase. However, as the pH optimum of the ATPase was 8.0 to 8.5, the acid phosphatase activity could be eliminated by assaying at or above pH 7.8. The ATPase was concentrated in a fraction equivalent to the smooth microsomal membranes and was not due to fragments of mitochondria. The salt-stimulated activity showed specificity for anions rather than cations. The activity was further stimulated by carbonyl cyanide m-chloro-phenylhydrazone (CCCP), 2,4-dinitrophenol, valinomycin, nigericin, and NH4Cl. There was a synergistic effect between CCCP and valinomycin. Activity was insensitive to oligomycin phlorizin, ouabain, and atractylate. Based on similarity to the chloroplast ATPase, it was proposed that this ATPase was situated on the outside of the vesicle.  相似文献   

10.
The coupling factor ATPase complex extracted by Triton X-100 from the photosynthetic bacterium Rhodospirillum rubrum could be incorporated into phospholipid vesicles after removal of the Triton. Vesicles reconstituted with this F0 · F1-type ATPase together with bacteriorhodopsin were found to catalyze, in the light, net ATP synthesis which was inhibited by the energy transfer inhibitors oligomycin and N,N-dicyclohexylcarbodiimide as well as by uncouplers. In vesicles reconstituted with the crude ATPase up to 50% of the observed rate of phosphorylation was independent on light and bacteriorhodopsin and insensitive to the above-listed inhibitors. This dark activity was, however, completely blocked by the adenylate kinase inhibitor, p1,p5-di(adenosine-5′)pentaphosphate, which did not affect at all the net light-dependent phosphorylation nor the ATP-32Pi exchange reaction. Vesicles reconstituted with the purified ATPase catalyzed only the light- and bacteriorhodopsin-dependent diadenosine pentaphosphate-insensitive phosphorylation. The rate of this photophosphorylation was found to be proportional to the amount of ATPase and bacteriorhodopsin, and linear for at least 20 min of illumination. These results indicate that the purified ATPase contains the complete assembly of subunits required to transduce electrochemical gradient energy into chemical energy.  相似文献   

11.
A phospholipid-stimulated adenosine triphosphatase (ATPase) complex was solubilized and partially purified from membrane particles of Escherichia coli ML308-225. The complex was of large molecular size and contained 16 polypeptides, five of which were subunits of the F1-type ATPase of E. coli. Components of the respiratory chain were absent. Enzyme activity was stimulated by lysophosphatidylcholine, phosphatidylcholine, phosphatidylglycerol, and cardiolipin but not by phosphatidylethanolamine. The ATPase activity of the complex was inhibited by N,N′-dicyclohexylcarbodiimide and by Dio-9 at lower inhibitor:protein ratios than required for inhibition of the F1-type ATPase of E. coli. However, the ATPase complex was less sensitive than the membrane-bound enzyme to inhibition by these compounds.  相似文献   

12.
The Ca2+/Mg2+ ATPase, which is activated by millimolar concentrations of Ca2+ or Mg2+, was solubilized from rat heart plasma membrane by employing lysophosphatidylcholine, CHAPS, Nal, EDTA and Tris-HCI at pH 7.4. The enzyme was purified by sucrose density gradient, Affi-Gel Blue column and Sepharose 6B column chromatography. The purified enzyme was seen as a single peptide band in the sodium dodecyl sulfate polyacrylamide gel electrophoresis with a molecular weight of about 90,000. The apparent molecular weight of the holoenzyme as determined under non-dissociating conditions by gel filtration on Sepharose 6B column was about 180,000 indicating two subunits. The enzyme was insensitive to ouabain, verapamil, vanadate, oligomycin, N,N-dicyclohexylcarbodiimide and NaN3, but was markedly inhibited by 20 µM gramacidin S and 50 µM trifluoperazine. Analysis of the purified Ca2+/Mg2+ ATPase revealed the presence of 17 amino acids where leucine, glutamic acid and aspartic acid were the major components and histidine, cysteine and methionine were the minor components. The purified enzyme was associated with 19.7 µmol phospholipid/mg protein which was 60 times higher than the phospholipid content in plasma membrane. The cholesterol content in the purified enzyme preparation was 0.75 µmol/mg protein and this represented an 8-fold enrichment over plasma membrane. The glycoprotein nature of the enzyme was evident from the positive periodic acid-Schiff staining of the purified Cau2+/MgATPase in the sodium dodecyl sulfate polyacrylamide gel. The polysaccharide content of the enzyme was enriched 8-fold over plasma membrane; neurominidase treatment decreased the polysaccharide content. Concanavalin A prevented the ATP-dependent inactivation of the purified Ca2+/Mg2+ ATPase and was found to bind to the purified enzyme with a KD of 576 nM and Bmax of 4.52 nmol/mg protein. The results indicate that Ca2+/Mg2+ ATPase is a glycoprotein and contains a large amount of lipids.  相似文献   

13.
Sealed microsomal vesicles were prepared from corn (Zea mays, Crow Single Cross Hybrid WF9-Mo17) roots by centrifugation of a 10,000 to 80,000g microsomal fraction onto a 10% dextran T-70 cushion. The Mg2+-ATPase activity of the sealed vesicles was stimulated by Cl and NH4+ and by ionophores and protonophores such as 2 micromolar gramicidin or 10 micromolar carbonyl cyanide p-trifluoromethoxyphenyl hydrazone (FCCP). The ionophore-stimulated ATPase activity had a broad pH optimum with a maximum at pH 6.5. The ATPase was inhibited by NO3, was insensitive to K+, and was not inhibited by 100 micromolar vanadate or by 1 millimolar azide.

Quenching of quinacrine fluorescence was used to measure ATP-dependent acidification of the intravesicular volume. Quenching required Mg2+, was stimulated by Cl, inhibited by NO3, was insensitive to monovalent cations, was unaffected by 200 micromolar vanadate, and was abolished by 2 micromolar gramicidin or 10 micromolar FCCP. Activity was highly specific for ATP. The ionophore-stimulated ATPase and ATP-dependent fluorescence quench both required a divalent cation (Mg2+ ≥ Mn2+ > Co2+) and were inhibited by high concentrations of Ca2+. The similarity of the ionophore-stimulated ATPase and quinacrine quench and the responses of the two to ions suggest that both represent the activity of the same ATP-dependent proton pump. The characteristics of the proton-translocating ATPase differed from those of the mitochondrial F1F0-ATPase and from those of the K+-stimulated ATPase of corn root plasma membranes, and resembled those of the tonoplast ATPase.

  相似文献   

14.
1. Stimulation of the Escherichia coli ATPase activity by urea and trypsin shows that the ATPase activity both in the membrane-bound and the solubilized form is partly masked.2. A protein, inhibiting the ATPase activity of Escherichia coli, can be isolated by sodium dodecyl sulphate polyacrylamide gel electrophoresis of purified ATPase. The inhibitor was identified with the smallest of the subunits of E. coli ATPase.3. The molecular weight of the ATPase inhibitor is about 10 000, as determined by sodium dodecyl sulphate polyacrylamide gel electrophoresis and deduced from the amino acid composition.4. The inhibitory action is independent of pH, ionic strength or the presence of Mg2+ or ATP.5. The ATPase inhibitor is heat-stable, insensitive to urea but very sensitive to trypsin degradation.6. The Escherichia coli ATPase inhibitor does not inhibit the mitochondrial or the chloroplast ATPase.  相似文献   

15.
ATPase in lipid body membranes of castor bean endosperm   总被引:1,自引:1,他引:0       下载免费PDF全文
Lipid body membranes purified from castor seed endosperm of dry seeds and 4 d old seedlings were found to have an ATPase activity associated with them. This was confirmed by equilibrium density centrifugation of the membranes using acid lipase as a marker enzyme. The specific activity ranged from 45 to 200 nanomoles per milligram protein per minute. The pH optimum was 9.0 but at pH 7.5 nearly 40% of the maximum activity was retained. The apparent Km for Mg-ATP was 0.5 millimolar. A divalent cation was required for activity and Mg2+ was the most effective. Other nucleoside triphosphates were also hydrolyzed but there was no hydrolysis of pyrophosphate or p-nitrophenylphosphate. The ATPase was not inhibited by oligomycin, vanadate, dicyclohexylcarbodiimide, or molybdate but was inhibited by sodium azide. Washing the membranes with increasing concentrations of NaCl removed up to 60% of the ATPase activity but none was removed by 3 millimolar ethylene-diaminetetraacetate.  相似文献   

16.
In order to search for valuable and extremely thermo-stable enzymes that could be used in the protein hydrolysis industry, the gene corresponding to a leucine aminopeptidase from Geobacillus thermodenitrificans NG80-2 (GtLAP) was cloned and expressed in E. coli. The recombinant enzyme was purified, and its characteristics were examined. Meanwhile, potential applications of GtLAP in the hydrolysis of anchovy proteins were also investigated. GtLAP was overexpressed in IPTG-induced E. coli BL21 (pET28a-LAP) as a soluble protein, and was purified to homogeneity by nickel-chelate chromatography to a specific activity of 125?±?8.75 U/mg proteins. The molecular mass of GtLAP was estimated to be 55?kDa by SDS-PAGE analysis. The optimal reaction temperature and pH of GtLAP were 70?°C and 8.0, respectively. Under optimal conditions, GtLAP showed a marked preference for Leu-p-nitroanilide, followed by Met- and Phe-derivatives. Activity of GtLAP was strongly stimulated by Ni2+ ions, but was strongly inhibited by Hg2+. Conformational studies via circular dichroism spectroscopy indicated that various factors could influence the secondary structure of GtLAP to various extents and further induce changes in enzymatic activity. Results of hydrolytic experiment showed that combining GtLAP with endogenous enzymes could significantly increase the degree of hydrolysis to anchovy proteins and concentrations of free amino acids in hydrolysates. In this regard, GtLAP could potentially be used in the protein hydrolysis industry.  相似文献   

17.
The hydrophobic sector of the mitochondrial ATPase complex was purified by sequential extraction with cholate and octylglucoside, by further differential solubilization with guanidine and cholate in the presence of phosphatidylcholine, and by fractionation with ammonium sulfate. A polypeptide with a mass of 28,000 dalton was present in the purified hydrophobic section which was cleaved by trypsin, resulting in loss of reconstitution activity. In contrast, dicyclohexylcarbodiimide-binding proteolipid remained unimpaired after exposure to trypsin. The32Pi-ATP exchange activity of the reconstituted ATPase complex was inhibited byp-hydroxymercuribenzoate, which reacted primarily with the 28,000-dalton protein, as monitored by acrylamide gel electrophoresis with14C-labeled inhibitor. The function of a 22,000-dalton polypeptide and of some minor components in the region of the proteolipid remains unknown. An examination of the phospholipid requirements for reconstitution of an active complex revealed an unexpected discrepancy. With an excess of phosphatidylethanolamine, optimal reconstitution of32Pi-ATP exchange and ATP synthesis in the presence of bacteriorhodopsin and light was achieved; at a high phosphatidylcholine:phosphatidylethanolamine ratio, the rate of ATP synthesis remained high, but the rate of32Pi-ATP exchange dropped precipitously. A new procedure is described for the reconstitution of the ATPase complex with purified phospholipids which is stable for at least 15 days.Abbreviations DCCD N,N-dicyclohexylcarbodiimide - STE-DTT buffer sucrose (250 mM), Tricine-KOH (50 mM), EDTA (5 mM), DTT (5 mM), pH 8.0 - F o a membranous preparation from mitochondria conferring oligomycin (or rutamycin) sensitivity to F1 - F1F6 coupling factors 1 (ATPase) and 6 - OSCP oligomycin-sensitivity-conferring protein - BSA bovine serum albumin - SDS sodium dodecyl sulfate - DTT dithiothreitol - STE buffer sucrose (250 mM), Tricine-KOH (50 mM), EDTA (5 mM) - TUA particles submitochondrial particles prepared by stepwise exposure of light-layer submitochondrial particles to trypsin and urea, then sonic oscillation in the presence of dilute ammonia (pH 10.4) - OG-cholate buffer glycerol (20%), Tricine (50 mM), MgSO4 (5 mM), DTT (5mM), cholate (0.5%), octylglucoside (0.5%), pH 8.0 - p-HMB p-hydroxymercuribenzoate  相似文献   

18.
The energy transducing adenosine 5′-triphosphatase (ATPase) complex was extracted with deoxycholate from Escherichia coli membranes and purified 20–25 fold. The detergent-solubilized ATPase complex was inhibited more than 80% by dicyclohexylcarbodiimide (DCCD). Its sedimentation velocity coefficient was 14.7s in the presence of deoxycholate. Phospholipid stimulated its hydrolytic activity and maximized DCCD sensitivity. These parameters clearly differentiate the ATPase complex from the DCCD-insensitive, soluble ATPase prepared by extraction with EDTA at low ionic strength. The purified ATPase complex showed twelve discrete bands on lauryl sulfate gel electrophoresis. Five of these components co-electrophresed with subunits of soluble ATPase. Of the seven additional components, primarily two were precipitated with antibody to soluble ATPase. The protein which specifically reacts with DCCD co-migrated with one of these subunits.  相似文献   

19.
Chloride transport, presumably via a Cl-2H+ co-transport system, was investigated in Chara corallina. At pH 6.5, the control influx (3.1 picomoles per centimeter2 per second) was stimulated 4-fold by an 18-hour Cl starvation. The stimulated influx was inhibited to 4.7 picomoles per centimeter2 per second after a 60-minute pre-exposure to 0.5 millimolar 4,4′-diisothiocyano-2,2′-disulfonic acid stilbene (DIDS). This compares with a nonsignificant inhibition of the control under similar conditions. At 2 millimolar DIDS, both stimulated and control influx were inhibited to values of 1.1 and 2.2 picomoles per centimeter2 per second, respectively; in all cases, DIDS inhibition was reversible. Over the pH range 4.8 to 8.5, the control and DIDS-inhibited influx showed only slight pH sensitivity; in contrast, the stimulated flux was strongly pH dependent (pH 6.5 optimum). Inasmuch as changes in pH alter membrane potential, N-ethylmaleimide was used to depolarize the membrane; this had no effect on Cl influx. A transient depolarization of the membrane (about 20 millivolts) was observed on restoration of Cl to starved cells. The membrane also depolarized transiently when starved cells were exposed to 0.5 millimolar DIDS, but the depolarization associated with Cl restoration was inhibited by a 40-minute pretreatment with DIDS. Exposure of control cells to DIDS caused only a small hyperpolarization (about 7 millivolts). DIDS may have blocked Cl influx by inhibiting the putative plasmalemma H+-translocating ATPase. Histochemical studies on intact cells revealed no observable effect of DIDS on plasmalemma ATPase activity. However, DIDS application after fixation resulted in complete inhibition of ATPase activity.

The differential sensitivity of the stimulated and control flux to inhibition by DIDS may reflect an alteration of transport upon stimulation, but could also result from differences in pretreatment. The stimulated cells were pretreated with DIDS in the absence of Cl, in contrast to the presence of Cl during pretreatment of controls. The differential effect could result from competition between Cl and DIDS for a common binding site. Our histochemical ATPase results indicate that Cl transport and membrane ATPase are separate systems, and the latter is only inhibited by DIDS from the inside of the cell.

  相似文献   

20.
Between pH 4–10, basal ATPase activity, measured in the absence of mineral ions, was 10 to 100 times higher in the final cytoplasmic supernatant from potato tuber homogenates than in the membraneous fractions (purified plasmalemma, purified mitochondria and microsomes). The soluble ATPase was slightly inhibited, whereas the membrane-bound ATPases were all stimulated by Mg2+ ions. A further stimulation by Na+ or K+ ions was only observed in purified plasmalemma or mitochondria, at alkaline pH (7.5–9.5). At a fixed (Na++ K+) concentrations (80 mM), this last stimulation was much greater in purified mitochondria (350%) than in plasmalemma (33%); it also increased with (Na++ K+) concentrations up to 200 mM in mitochondria whereas, in plasmalemma, it was roughly constant for monovalent ion concentrations between 20 and 200 mM. General properties of the plasma membrane-bound ATPase have been determined, i.e. substrate specificity, activity variations with quantity of substrate, temperature, pH, etc. Divalent cations stimulated strongly the ATPase in the following order: Mn2+ > Mg2+ > Ca2+. The maximum ATP hydrolysis velocity for that part of ATPase activity which is strictly dependent on Mg2+ ions was 3.85 μmol × mg?1 protein × h?1. This plasma membrane ATPase was not sensitive to ouabaïn or to oligomycin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号