首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Muscarinic M2 receptor antagonists with high subtype selectivity (M2/M1) will decrease the toxicity in central nervous system in treatment of AD. The exploration of quantitative structure-selectivity relationship (QSSR) to muscarinic M2 receptor antagonists will provide design information for drug with fewer side effects. In this paper, CoMFA models of pK(i)(M1), pK(i)(M2) and p[K(i)(M2)/K(i)(M1)] (pK(i)(M2)-pK(i)(M1)) were used to study the subtype selectivity (M2/M1) of piperidinyl piperidine derivatives as muscarinic M2 subtype receptor antagonists. The parameters of the three models are: 0.633, 0.636 and 0.726 for cross-validated r(2) (r(cv)(2)), 0.109, 0.204 and 0.09 for the Standard error of estimate (SD), respectively. The results show the model of p[K(i)(M2)/K(i)(M1)] is the best one for design of piperidinyl piperidine derivatives as muscarinic antagonists with high subtype selectivity (M2/M1).  相似文献   

2.
Pirenzepine (2) is one of the most selective muscarinic M(1) versus M(2) receptor antagonists known. A series of 2 analogs, in which the piperazyl moiety was replaced by a cis- and trans-cyclohexane-1,2-diamine (3-6) or a trans- and cis-perhydroquinoxaline rings (7 and 8) were prepared, with the aim to investigate the role of the piperazine ring of 2 in the interaction with the muscarinic receptors. The structural change leading to compounds 3-6 abolished in binding assays the muscarinic M(1)/M(2) selectivity of 2, due to an increased M(2) affinity. Rather, compounds 3-6 displayed a reversed selectivity showing more affinity at the muscarinic M(2) receptor than at all the other subtypes tested.  相似文献   

3.
A series of derivatives of the known M1 selective muscarinic receptor agonist McN-A-343 (1) was designed with the aim of investigating the effects of structural variations on both the butynyl chain and the phenyl ring of 1. The butynyl chain was replaced with an aromatic spacer, and the effects of such a modification on the stereoelectronic properties of the molecules were theoretically studied and considered compatible with muscarinic receptor affinity. Substituents on the phenyl ring of 1 were selected so as to vary their electronic and hydrophobic properties. This design strategy did not produce muscarinic M1 receptor agonists more potent than the prototype 1, even if some analogues displayed functional selectivity for different muscarinic receptor subtypes. Compounds 3 and 7 were selective agonists towards muscarinic M3 receptors, while compounds 14, 16 and 18 were selective muscarinic M2 receptor agonists. The most interesting derivative was 8, a full agonist at muscarinic M3 receptors devoid of activity at both muscarinic M1 and M2 subtypes. The pharmacological profile of the series was further characterized by studying the anticholinesterase and miotic activities of some representative compounds. Compounds 3-8 turned out to be weak acetylcholinesterase inhibitors, while derivatives 4, 6, 8 and 11 were able to significantly reduce the pupillary diameter in rabbit, indicating 8 as an effective miotic agent.  相似文献   

4.
Wallis RM 《Life sciences》1995,56(11-12):861-868
Muscarinic M3 receptor antagonists have therapeutic potential for the treatment of disorders associated with altered smooth muscle contractility or tone. These include irritable bowel syndrome (IBS), chronic obstructive airways disease (COAD) and urinary incontinence. Zamifenacin is a potent muscarinic receptor antagonist on the guinea pig ileum (pA2 value 9.27) with selectivity over M2 receptors in the atria (135-fold) and M1/M4 receptors in the rabbit vas deferens (78-fold). In addition, zamifenacin had lower affinity for the M3 receptor in the salivary gland (pKi 7.97). In animals, zamifenacin potently inhibited gut motility in the absence of cardiovascular effects and with selectivity over inhibition of salivary secretion. In healthy volunteers, zamifenacin inhibited small and large bowel motility and increased the rate of gastric emptying over a dose range which was associated with minimal anticholinergic side effects. These data show that zamifenacin, a selective muscarinic M3 receptor antagonist, was well tolerated in man and was efficacious as an inhibitor of gut motility. Further studies in patients are required with muscarinic M3 receptor antagonists to confirm efficacy against symptoms in diseases associated with altered smooth muscle contractility.  相似文献   

5.
A series of constrained piperidine analogues were synthesized as novel muscarinic M(3) receptor antagonists. Evaluation of these compounds in binding assays revealed that they not only have high affinity for the M(3) receptor but also have high selectivity over the M(2) receptor.  相似文献   

6.
Muscarinic toxin 7 (MT7) is a mamba venom protein antagonist with extremely high selectivity for the M1 muscarinic acetylcholine receptor. To map the sites for the interaction of MT7 with muscarinic receptors we have used chimeric M1:M3 receptors and site-directed mutagenesis of the M3 and M4 receptor subtypes. Two Glu residues in M1, one in extracellular loop 2 and one in extracellular loop 3, were found to be important for the high affinity binding of MT7. Substitution of the corresponding Lys residues in the M3 receptor with Glu converted the M3 mutant to an MT7 binding receptor, albeit with lower affinity compared with M1. A Phe --> Tyr substitution in extracellular loop 2 of M3 together with the 2 Glu mutations generated a receptor with an increased MT7 affinity (apparent Ki = 0.26 nM in a functional assay) compared with the M1 receptor (apparent Ki = 1.31 nM). The importance of the identified amino acid residues was confirmed with a mutated M4 receptor constructs. The results indicate that the high selectivity of MT7 for the M1 receptor depends on very few residues, thus providing good prospects for future design and synthesis of muscarinic receptor-selective ligands.  相似文献   

7.
A series of 2-carbonyl analogues of the muscarinic antagonist diphenidol bearing 1-substituents of different lipophilic, electronic, and steric properties was synthesized and their affinity for the M2 and M3 muscarinic receptor subtypes was evaluated by functional tests. Two derivatives (2g and 2d) showed an M2-selective profile which was confirmed by functional tests on the M1 and M4 receptors. A possible relationship between M2 selectivity and lipophilicity of the 1-substituent was suggested by structure-activity analysis. This work showed that appropriate structural modification of diphenidol can lead to M2-selective muscarinic antagonists of possible interest in the field of Alzheimer's disease.  相似文献   

8.
Muscarinic antagonists in development for disorders of smooth muscle function   总被引:11,自引:0,他引:11  
Wallis RM  Napier CM 《Life sciences》1999,64(6-7):395-401
Compounds with high affinity for muscarinic M3 receptors have been used for many years to treat conditions associated with altered smooth muscle tone or contractility such as urinary urge incontinence, irritable bowel syndrome or chronic obstructive airways disease. M3 selective antagonists have the potential for improved toleration when compared with non-selective compounds. Darifenacin has high affinity (pKi 9.12) and selectivity (9 to 74-fold) for the human cloned muscarinic M3 receptor. Consistent with this profile, the compound potently inhibited M3 receptor mediated responses of smooth muscle preparations (guinea pig ileum, trachea and bladder, pA2 8.66 to 9.4) with selectivity over responses mediated through the M1 (pA2 7.9) and M2 receptors (pA2 7.48). Interestingly, darifenacin also exhibited functional tissue selectivity for intestinal smooth muscle over the salivary gland. The M3 over M1 and M2 selectivity of darifenacin was confirmed in a range of animal models. In particular, in the conscious dog darifenacin inhibited intestinal motility at doses lower than those which inhibit gastric acid secretion (M1 response), increase heart rate (M2 response) or inhibit salivary secretion. Clinical studies are ongoing to determine if darifenacin has improved efficacy and or toleration when compared with non-selective agents.  相似文献   

9.
The aim of the present paper was to investigate the role of the octamethylene spacer of methoctramine (1) on the biological profile. Thus, this spacer was incorporated into a dianiline or dipiperidine moiety to determine whether flexibility and the basicity of the inner nitrogen atoms are important determinants of potency with respect to muscarinic receptors. The most potent compound was 4, which displayed, in the functional assays, a comparable potency at muscarinic M(2) receptors with respect to 1, and, in the binding assays, a loss of potency and selectivity toward muscarinic M(1) and M(3) receptor subtypes. Both compounds were endowed with antinociceptive activity. Furthermore, in microdialysis tests in rat parietal cortex, they enhanced acetylcholine release, most likely by antagonizing presynaptic muscarinic receptor subtypes.  相似文献   

10.
Characterization of muscarinic receptor subtypes in human tissues   总被引:5,自引:0,他引:5  
The affinities of selective, pirenzepine and AF-DX 116, and classical, N-methylscopolamine and atropine, muscarinic cholinergic receptor antagonists were investigated in displacement binding experiments with [3H]Pirenzepine and [3H]N-methylscopolamine in membranes from human autoptic tissues (forebrain, cerebellum, atria, ventricle and submaxillary salivary glands). Affinity estimates of N-methylscopolamine and atropine indicated a non-selective profile. Pirenzepine showed differentiation between the M1 neuronal receptor of the forebrain and the receptors in other tissues while AF-DX 116 clearly discriminated between muscarinic receptors of heart and glands. The results in human tissues confirm the previously described selectivity profiles of pirenzepine and AF-DX 116 in rat tissues. These findings thus reveal the presence also in man of three distinct muscarinic receptor subtypes: the neuronal M1, the cardiac M2 and the glandular M3.  相似文献   

11.
Optimization of the amine part of our original muscarinic M(3) receptor antagonist 1 was performed to identify M(3) receptor antagonists that are superior to 1. Compounds carrying a variety of diamine moieties without hydrophobic substituent on the nitrogen atom were screened against the binding affinity for the M(3) receptor and the selectivity for M(3) over the M(1) and M(2) receptors. This process led to a 4-aminopiperidinamide (2l) with a K(i) value of 5.1 nM and with a selectivity of the M(3) receptor that was 46-fold greater than that of the M(2) receptor. Further derivatization of 2l by inserting a spacer group or by incorporating alkyl group(s) into the amine part resulted in the identification of an 4-(aminoethyl)piperidinamide 2l-b with a K(i) value of 3.7 nM for the M(3) receptor and a selectivity for the M(3) receptor that was 170-fold greater than that of the M(2) receptor.  相似文献   

12.
G proteins play a critical role in transducing a large variety of signals into intracellular responses. Increasingly, there is evidence that G proteins may play other roles as well. Dominant-negative constructs of the alpha subunit of G proteins would be useful in studying the roles of G proteins in a variety of processes, but the currently available dominant-negative constructs, which target Mg2+-binding sites, are rather leaky. A variety of studies have implicated the carboxyl terminus of G protein alpha subunits in both mediating receptor-G protein interaction and in receptor selectivity. Thus we have made minigene plasmid constructs that encode oligonucleotide sequences corresponding to the carboxyl-terminal undecapeptide of Galphai, Galphaq, or Galphas. To determine whether overexpression of the carboxyl-terminal peptide would block cellular responses, we used as a test system the activation of the M2 muscarinic receptor activated K+ channels in HEK 293 cells. The minigenes were transiently transfected along with G protein-regulated inwardly rectifying K+ channels (GIRK) into HEK 293 cells that stably express the M2 muscarinic receptor. The presence of the Galphai carboxyl-terminal peptide results in specific inhibition of GIRK activity in response to agonist stimulation of the M2 muscarinic receptor. The Galphai minigene construct completely blocks agonist-mediated M2 mAChR K+ channel response whereas the control minigene constructs (empty vector, pcDNA3.1, and the Galpha carboxyl peptide in random order, pcDNA-GalphaiR) had no effect on agonist-mediated M2 muscarinic receptor GIRK response. The inhibitory effects of the Galphai minigene construct were specific because overexpression of peptides corresponding to the carboxyl terminus of Galphaq or Galphas had no effect on M2 muscarinic receptor stimulation of the K+ channel.  相似文献   

13.
Slessareva JE  Graber SG 《Biochemistry》2003,42(24):7552-7560
The molecular basis for selectivity of M1 and M2 muscarinic receptor coupling to heterotrimeric G proteins has been studied using receptors expressed in Sf9 cell membranes and reconstituted with purified chimeric G(alpha) subunits containing different regions of Gi1alpha and Gq(alpha). The abilities of G protein heterotrimers containing chimeric alpha subunits to stabilize the high-affinity state of the receptors for agonist and to undergo receptor stimulated guanine nucleotide exchange was compared with G protein heterotrimers containing either native Gi1alpha or Gq(alpha). The data confirm the importance of the proper context of the C-terminus of Galpha by demonstrating that the C-terminus of Gi1alpha, when placed in the context of Gq(alpha), prevents coupling to muscarinic M1 receptors, while the C-terminus of Gq(alpha), when placed in the context of Gi1alpha, prevents coupling to muscarinic M2 receptors. However, C-terminal amino acids of Gq(alpha) placed in the context of Gi1alpha were not sufficient to allow M1 receptor coupling, nor were C-terminal amino acids of Gi1alpha placed in the context of Gq(alpha) sufficient for M2 receptor coupling. The unique six amino acid N-terminal extension of Gq(alpha) when added to the N-terminus of Gi1alpha neither prevented M2 receptor coupling nor permitted M1 receptor coupling. A Gi1alpha-based chimera containing both N- and C-terminal regions of Gq(alpha) gained the ability to productively couple M1 receptors suggesting that the proper context of both N- and C-termini is required for muscarinic receptor coupling.  相似文献   

14.
The structure-activity relationships of novel 1,5-benzodioxepin derivatives as muscarinic M(1)-M(3) receptor antagonists are reported. Some of these compounds were found to possess high binding affinity for the muscarinic M(3) receptor and potent effect on rhythmic increase in bladder pressure in unanesthetized rats following oral administration. These compounds displayed selectivity for the bladder over the salivary gland.  相似文献   

15.
The affinity of the enantiomers of phenglutarimide at three muscarinic receptor subtypes was examined in vitro using field-stimulated rabbit vas deferens (M1 receptors) and guinea pig atria (M2 alpha receptors) and ileum (M2 beta receptors). Extremely high stereoselectivity was observed and higher affinities (up to 6000-fold) were found for the (+)-S-enantiomer. The stereoselectivity ratios were different at the three subtypes, and the stereochemical demands made by the muscarinic receptors were most stringent at M1 receptors. (+)-(S)-Phenglutarimide was found to be a potent M1-selective antagonist (pA2 at M1 = 8.53). Its receptor selectivity profile is qualitatively similar to that of pirenzepine. (-)-(R)-Phenglutarimide showed no comparable discriminatory properties.  相似文献   

16.
A set of new muscarinic antagonists, bridged bicyclic derivatives of 2,2-diphenyl-[1,3]-dioxolan-4-ylmethyl-dimethylamine (1), was synthesized and tested to evaluate their affinity and selectivity for M(1), M(2), M(3) and M(4) receptor subtypes. The conformational constraint of 1 in a bicyclic structure, and the variation in distance and stereochemistry of the active functions allowed us to modulate the selectivity of interaction with the M(1)-M(3) receptor subtypes. The most interesting compound was (cis,trans)-2-(2,2-diphenylethyl)-5-methyl-tetrahydro-[1,3]dioxolo[4,5-c]pyrrole oxalate (6), which is equipotent with Pirenzepine on rabbit vas deferens (M(1)-putative) but shows a better selectivity profile.  相似文献   

17.
In the course of developing a metabolically stable M3 receptor antagonist from the prototype antagonist, J-104129 (1), introduction of certain substituents into the cyclopentane ring of 1 was found to be effective not only in improving metabolic stability but also in greatly enhancing the subtype selectivity. Among the cyclopentane analogues, sulfonamide derivatives (10f) and (10g) displayed 160- and 310-fold selectivity for M3 over M2 receptors, and both were significantly more selective than the prototype antagonist (120-fold). Subsequent derivatization of the sulfonamide series led to the highly selective M3 receptor antagonists (10h, 10i and 10j) with >490-fold selectivity for M3 over M2 receptors. Among them, p-nitrophenylsulfonamide (J-107320, 10h) exhibited 1100-fold selectivity for M3 receptors (Ki = 2.5 nM) over M2 receptors (Ki = 2800 nM) in the human muscarinic receptor binding assay using [3H]-NMS as a radio ligand.  相似文献   

18.
Structure activity studies on [4-(phenylsulfonyl)phenyl]methylpiperazine led to the discovery of 4-cyclohexyl-alpha-[4-[[4-methoxyphenyl(S)-sufinyl]phenyl]-1-pi perazineacetonitrile, 1, an M2 selective muscarinic antagonist. Affinity at the cloned human M2 receptor was 2.7 nM; the M1/M2 selectivity is 40-fold.  相似文献   

19.
There are five subtypes of muscarinic receptors that serve various important physiological functions in the central nervous system and the periphery. Mental functions like attention, learning, and memory are attributed to the muscarinic M1 subtype. These functions decline during natural aging and an early deficit is typical for Alzheimer s disease. In addition, stimulation of the M1 receptor increases non-amyloidogenic processing of the amyloid precursor protein and thus prevents accumulation of noxious beta-amyloid fragments. The selectivity of classical muscarinic agonists among receptor subtypes is very low due to the highly conserved nature of the orthosteric binding site among receptor subtypes. Herein we summarize some recent studies with the functionally-selective M1 agonist xanomeline that indicate complex pharmacological profile of this drug that includes interactions with and activation of receptor from both orthosteric and ectopic binding sites, and the time-dependent changes of ligand binding and receptor activation. These findings point to potential profitability of exploitation of ectopic ligands in the search for truly selective muscarinic receptor agonists.  相似文献   

20.
A new class of 4-acetamidopiperidine derivatives has been synthesized and investigated for human muscarinic receptor subtype selectivity. Introduction of a hydrocarbon chain of appropriate length into the piperidine nitrogen of the racemic N-(piperidin-4-yl)-2-cyclobutyl-2-hydroxy-2-phenylacetamide platform conferred up to 70-fold selectivity for human muscarinic M3 receptors over M2 receptors. Subsequent synthetic derivatizations resulted in highly potent M3 receptor antagonists with selectivity greater than two orders of magnitude for M3 over M2 receptors, from which the analogue 4r was selected. Preparation of both enantiomers of 4r led to the identification of (2R)-N-[1-(4-methyl-3-pentenyl)piperidin-4-yl]-2-cyclopentyl-2-hyd roxy-2-phenylacetamide (J-104129, (R)-4r), which exhibited 120-fold selectivity for M3 receptors (Ki = 4.2 nM) over M2 receptors (Ki = 490 nM). In isolated rat trachea, (R)-4r potently and specifically antagonized acetylcholine (ACh)-induced responses with a K(B) value of 3.3 nM. The highly subtype-selective profile was also seen in isolated rat tissue assays (50-fold) and in anesthetized rats (> 250-fold). Oral administration of J-104129 ((R)-4r) antagonized ACh-induced bronchoconstriction with an ED50 value of 0.58 mg/kg in rats. Thus, J-104129 ((R)-4r) may effectively facilitate bronchodilation in the treatment of obstructive airway disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号