首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photoinhibition of white clover seed germination at low water potential   总被引:1,自引:0,他引:1  
Photosensitivity of germination of white clover ( Trifolium repens L. cv. Podkowa) seeds was studied under water deficit (low water potential) conditions at 25°C. The seeds showed negative photoblastism, which was most pronounced at -0.03 MPa polyethylene glycol solution. Inhibition was observed at two different wavelength bands with maxima at 660 nm (R) and around 730 nm (FR). Red light acted identically to white light (maximum inhibition ca 50%). The effect of far-red illumination was less inhibitory (20–30%). The photoresponse required long illuminations (3 h exposures); saturation level was at 0.1 W m−2, independently of the light quality. White clover seed germination showed no reversibility of the effects of R and FR light. Prolonged illumination with R and FR increased the inhibition, and intermittent illumination had a higher effect than a continuous one. It was concluded that the photoinhibition of germination of seeds of Trifolium repens involves a reaction dependent on the rate of phytochrome interconversion, a property that is characteristic for the high irradiance reaction.  相似文献   

2.
Massanori Takaki  V. M. Zaia 《Planta》1984,160(2):190-192
A short period (15–30 min) at 30° C promotes germination of seeds of Lactuca sativa L. cv. Repolhuda in darkness. Far-red light reverses this stimulation, and the escape curves for phytochrome and high-temperature action are quite similar, indicating that the two factors act at a common point in the chain of events leading to germination. It is suggested that high temperature acts by decreasing the threshold of the active, far-red absorbing, form of phytochrome (Pfr) needed to promote germination.Abbreviations FR far-red light - Pfr far-red-absorbing form of phytochrome - R red light  相似文献   

3.
Seedlings of Cuscuta japonica pasted on an acrylic plate developedmany haustoria in response to far-red light after pre-irradiationwith white light. The effect of far-red light was cancelledcompletely by red light irradiated immediately after the far-redlight. In order to elucidate the photoreceptor(s) for photocontrolin the induction of haustoria, action spectra for the photo-inductionand its reversion were determined in the wavelength region from340 nm to 800 nm using the Okazaki Large Spectrograph. The action spectrum for the induction of haustoria had a pronouncedpeak at 740 nm and a small peak at 420 nm, while the actionspectrum for reversal of the induction had a pronounced peakat 660 nm and a small peak at 380 nm. These results indicatethat phytochrome is involved in the photocontrol of inductionof haustoria in Cuscuta japonica. Considering the far-red /redreversibility, it was suggested that phytochrome B is the photorecepter.This is the first reliable evidence of phytochome participationon development of haustoria in parasitic plants. 4Present address: Graduate School of Science Division of BiologicalScience, Nagoya University, Nagoya, 464-01 Japan.  相似文献   

4.
Stimulation of de novo synthesis of δ-aminolevulinate dehydralasc of radishes grown under far-red light .
Density labelling studies of δ-aminolevulinate dehydratase (ALAD) in cotyledons of radish ( Raphanus sativus L. cv. Longue Rave Saumonée) seedlings demonstrate that far-red light stimulates de novo synthesis of ALAD and that the turn-over of this enzyme is very poor. Cycloheximide reduces considerably both the increase of ALAD activity and the incorporation of deuterium in ALAD, which indicates that ALAD synthesis depends upon cytoplasmic ribosomes.  相似文献   

5.
6.
The effects of the fluence rate of continuous light (far-red, fluorescent white, blue and red light) on the increase of epinastic percentage of cotyledons were recorded for six days. The epinastic photoresponse was compared to the cotyledonary enlargement and to the inhibition of the hypocotyl extension of irradiated Sinapis alba L. seedlings. Fluence rate response curves and wavelength response curves showed that the photoepinasty is a typical high irradiance response (as is the inhibition of hypocotyl extension) with two maxima, one in the blue and one in the far-red. The epinastic photoresponse was not directly related to cotyledonary growth, which was greater in red and far-red light than in blue light.  相似文献   

7.
P. Rollin  R. Malcoste  D. Eude 《Planta》1970,91(3):227-234
Summary After a long exposure to far-red light (20 hrs, 715 mn) a short red irradiation does not induce germination again. After shorter exposure to far-red (10 hrs) the reversible red far-red reaction takes place. The germination in complete darkness is probably due to the presence of Pfr 1 in dry seeds.The photoinhibition of the germination by far-red light depends on the level of the photostationary state (P730/PTotal) and on the quantum flux density.

Equipe de recherche associée au C.N.R.S. »Phytochrome et perméabilité membranaire«  相似文献   

8.
Summary After inhibition of Nemophila insignis seeds by far-red (FR) light, a short exposure to blue (Bl) will not induce germination again but stimulation by red (R), with reversion by FR, can be observed. Germination is inhibited by long exposures to Bl (maxima at 455 and 475 nm). These radiations are absorbed either directly by phytochrome or through intermediary pigments such as flavoproteins.Abbreviations Bl blue - FR far-red - R red  相似文献   

9.
Germination of certain dry seeds (achenes) of Lactuca sativa L. cv. Grand Rapids was increased to ca. 75% after irradiation with 665 nm red light (R; 1x103 J m-2); this response was eliminated by far-red light (FR) following the R. The response of dry seeds required an order of magnitude more light than that of wetted seeds, and was not maximal until 48 h after irradiation. Other seeds, which could not be stimulated by R in dry state, showed a partial response after 10 min hydration. Irradiation of dry seeds (or seeds wetted 1 h) with FR (1x103 J m-2) reduced dark germination from 26% to 2%. Seeds dehydrated in an oven (60°C, 90 min) showed a decrease in germination if irradiated with R (1x105 J m-2) before wetting. The results show that phytochrome is present in dry lettuce seeds (and functional in some seed lots) prior to wetting; and that in other seed lots the molecule becomes functional within minutes after wetting the seeds. Transformation of the FR absorbing from of phytochrome (PFR) to the inactive from (PR) occurs at lower seed moisture content than the reverse reaction. It appears that dormancy in seeds ripened in sunlight might be assured during seed drying and maturation by the more effective transformation of PFR to PR than vice versa as phytochrome is dehydrated.Abbreviations FR far-red - R red - CAL seeds from California - NC seeds from North Carolina (see text)  相似文献   

10.
Plant-derived smoke extracts mimics the effect of red light on germination in light-sensitive lettuce seeds and partially overcomes the inhibitory effect of far-red light. Interaction between a smoke extract and gibberellins, cytokinins, abscisic acid and ethephon was investigated. Smoke acted synergistically with GA3 and increased the sensitivity of the lettuce seeds to ABA. It seems likely that smoke affects membrane permeability or receptor sensitivity rather than influencing the phytochrome system of these seeds.Abbreviations R red light - FR far-red light - SM smoke extract  相似文献   

11.
M. G. Holmes  E. Schäfer 《Planta》1981,153(3):267-272
Detailed action spectra are presented for the inhibition of hypocotyl extension in dark-grown Sinapis alba L. seedlings by continuous (24 h) narrow waveband monochromatic light between 336 nm and 783 nm. The results show four distinct wavebands of major inhibitory action; these are centred in the ultra-violet (max=367 nm), blue (max=446 nm), red (max=653 nm) and far-red (max=712 nm) wavebands. Previous irradiation of the plants with red light (which also decreases Ptot) causes decreased inhibitory action by all wavelengths except those responsible for the red light inhibitory response. Pre-irradiation did not alter the wavelength of the action maxima. It is concluded that ultra-violet and blue light act mainly on a photoreceptor which is different from phytochrome.Abbreviations B blue - D dark - FR far-red - HIR high irradiance reaction - HW half power bandwith - Pr R absorbing form of phytochrome - Pfr FR absorbing form of phytochrome - Ptot total phytochrome=Pr+Pfr - R red - UV ultra violet  相似文献   

12.
Seed germination of an aurea mutant of tomato ( Lycopersicon esculentum Mill.) is promoted by continuous irradiation with red, far-red or long-wavelength far-red (758 nm) light as well as by cyclic irradiations (5 min red or 5 min far-red/25 min darkness). Far-red light applied immediately after each red does not change the germination behaviour. Seed germination of the isogenic wild-type, cv. UC-105, is promoted by continuous and cyclic red light while it is inhibited by continuous and cyclic far-red light and by continious 758 nm irradiation. Far-red irradiation reverses almost completely the promoting effect of red light. The promoting effect (in the aurea mutant) and the inhibitory effect (in the wild-type) of continuous far-red light do not show photon fluence rate dependency above 20 nmol m−2 s−1. It is concluded that phytochrome controls tomato seed germination throgh low energy responses in both the wild type and the au mutant. The promoting effect of continuous and cyclic far-red light in the au mutant can be attributed to a greater sensitivity to Pfr.  相似文献   

13.
The effects of long-term seed storage on the physiological properties of phytochrome-mediated germination including water uptake, the temperature and light flunnce dependencies of germination and dark germination were studied. The fluenceresponse relationships of the brief irradiation with monochromatic red (660 nm, 7.5 W m−2) and far-red (750 nm, 6.6 W m−2) light at various times after sowing were also studied. The samples used consisted of three lots of seeds ofLactuca sativa L. cv. MSU-16, which had been harvested in 1976, 1979 and 1985 and stored dry for 9, 6 and 0 years, respectively, in darkness at 23±2 C until the experiments were carried out in July–August, 1985. Seeds with the longer storage periods showed the higher ability to germinate in both continuous darkness and continuous white fluorescent light at 20–30 C. In the seeds stored for 6 or 9 years, red light irradiation for 20 sec given at 15 min or more after sowing at 25 C induced as high a percent germination (85–95%) as those under continuous white fluorescent light. In the freshly harvested seeds, however, germination under continuous white fluorescent light (46%) was considerably lower than the germination induced by the red pulse (97%). Germination of the seeds decreased when the intervals between sowing and a far-red irradiation for 20 sec increased up to 100 min (or 30 min in the freshly harvested seeds). The far-red pulse given later than 100 min (or 6 hr in the freshly harvested seeds) after sowing resulted in an increased germination up to the dark-germination levels with increasing intervals between sowing and the pulse irradiation. Before or at 3 min after sowing, the seeds stored for 6 or 9 years were responsive to the far-red pulse although they were not or hardly responsive to the red pulse, while the freshly harvested seeds were responsive to both the far-red and the red pulses. These data indicate that normal functions of phytochrome completely survived in the dry seeds during storage at 25 C for as long as 6 or 9 years and that these functions are restored into full operation by means of imbibition. The differences in the dependence of germination on the time and fluence of a single pulse of red or far-red light seems to be related to the smaller water content throughout the imbibition in the seeds with the longer storage periods. The greater ability to germinate in the dark indicates the greater amounts of PFR or the greater responsivity to PFR, in the seeds with the longer storage periods.  相似文献   

14.
Young leaves of white clover are subjected to low irradiance and low red to far-red (R:FR) ratio within canopies. The objectives were to investigate the consequences of low R:FR ratio on morphology, net CO2 assimilation and photochemical activity of leaves developed under simulated light environment of canopy. We used far-red (FR) light emitting diodes to modify the R:FR ratio only at the developing leaf under a low irradiance. Net CO2 assimilation rate, stomatal conductance and leaf morphology were not affected by low R:FR ratio. FR exposure slightly reduced the photochemical quantum yield of PSII but there were no consequences on electron flow through photosystem II. The carbon fixation by the leaf was therefore not modified by light quality. However, low R:FR ratio decreased the leaf chlorophyll content by 21 %. Those effects were only attributed to just unfolded leaves as they were not persistent in mature leaves and there were no consequences on plant biomass accumulation.  相似文献   

15.
Summary Floral initiation in strawberry cv. Cambridge Favourite, a facultative short-day plant, was inhibited by a daylength extension with red light (R) during the second half of a 16-hour night but not during the first half, and by far-red light (FR) in the first half but not during the second. Mixed R plus FR light was inhibitory to flowering at both times. This change in sensitivity to R and FR light in the evening and morning resembles the pattern for flower induction in long-day plants but differs from the pattern for flower inhibition in several other short-day plants, examples of which are given. These experiments afford further support for the hypothesis that the control of flower initiation in strawberry depends on the production of a flower inhibitor by leaves exposed to long photoperiods.Abbreviations R red - FR far-red - SD short day - LD long day - SDP short-day plant - LDP long-day plant  相似文献   

16.
One short red (R) irradiation increases the ATP content of Kalanchoë blossfeldiana Poelln. cv Feuerblüte seeds before onset of germination. Phytochrome control is demonstrated by the full R/far-red light (FR) reversibility of the effect in water imbibed seeds. In seeds imbibed in the presence of gibberellin A3 (GA3, one short R exposure already increases the ATP content when given 2h after start of imbibition, showing phytochrome control at the energy-metabolic level when one R pulse cannot yet induce germination. After longer imbibition periods in the presence of GA3, one short FR irradiation also increases the ATP content of ungerminated Kalanchoë seeds. The time course of the ATP levels after a R or FR germination inducing irradiation shows an initial increase that clearly preceeds germination. A second increase starts about 15 h after irradiation and is most probably the consequence of the germination itself. The results suggest that, in Kalanchoë seeds, the increase in ATP levels, induced by irradiation(s) and preceding germination, is a phytochrome-mediated process, supplying energy, required for germination.  相似文献   

17.
Photocontrol of stem elongation in light-grown plants of Fuchsia hybrida   总被引:1,自引:1,他引:0  
D. Vince-Prue 《Planta》1977,133(2):149-156
Stems of the caulescent long-day plant, Fuchsia hybrida cv Lord Byron, showed 2 types of response to light. In one, internode length was increased by far-red irradiation given at the end of an 8 h photoperiod: the response was no greater with prolonged exposure and was less when the start of far-red was delayed. The effect of far-red was reversible by a subsequent exposure to red light. Internode length was inversely proportional to the Pfr/P ratio established before entry to darkness and there was no evidence for loss of Pfr during a 16 h dark period. The inhibitory effect of Pfr acted at a relatively late stage of internode growth. With the development of successive internodes a second response appeared in which stems lengthened following prolonged daily exposures to red or far-red light, or mixtures of the two, or to brief breaks with red or white light. In these later internodes, a short exposure to far-red near the middle of the night was not reversible by red because red alone promoted elongation at this time. Internode length increased with increase in the daily duration of light and, when light was given throughout an otherwise dark period of 16 h, with increase in illuminance to a saturation value of 200 lx from tungsten lamps. Elongation increased as a linear function of decrease in photostationary state of phytochrome down to Pfr/P0.3; however, internodes were shorter in far-red light than in 25% red/red+far-red. It was concluded that stem length is a net response to two modes of phytochrome action. An inductive effect of Pfr inhibits a late stage in internode expansion, and a phytochrome reaction which operates only in light (and may involve pigment cycling) promotes an early stage of internode development. Stem elongation is thus a function both of the daily duration of light and its red/red+far-red content. The outgrowth of axillary buds was controlled by the first type of phytochrome action only.Abbreviations and symbols FR far red light - R red light - P phytochrome - Pfr phytochrome in the far-red light absorbing form - SD 8 h short days - LDP long-day plant - SDP short-day plant  相似文献   

18.
A. Lecharny  R. Jacques 《Planta》1979,146(5):575-577
The elongation of the fourth internode of fully green Chenopodium polyspermum L. is strongly stimulated by far-red light (FR) given at the end of the day. The end-of-day effect is more important when the plants had been cultivated for several days with a main light period of 140 Wm-2 than with a main light period of 85 Wm-2. There exists a quantitative relationship between the FR end-of-day effect mediated by phytochrome and the value of the light fluence during the day.Abbreviations D darkness - FR far-red light - HWL white light at 140 Wm-2 - LWL white light at 85 Wm-2 - PAR photosynthetically active radiation - R red light - WL white light  相似文献   

19.
Several aspects of the photophysiology of wild-type Arabidopsis thaliana seedlings were compared with those of a phytochrome A null mutant, phyA-1, and a mutant, fhy1, that is putatively involved in the transduction of light signals from phytochrome A. Although phyA seedlings display a near wild-type phenotype when grown in white light (W), they nevertheless display several photomorphogenic abnormalities. Thus, whereas the germination of wild-type and fhy1 seeds is almost fully promoted by a pulse of red light (R) or by continuous far-red light (FR), phyA seed germination is responsive only to R. Following growth under day/night cycles, but not under continuous W, the hypocotyls of light-grown phyA and fhy1 seedlings are more elongated than those of wild-type seedlings. For seedlings grown under low red/far-red (R/FR) ratio light conditions, phyA and fhy1 seedlings display a more marked promotion of hypocotyl elongation than wild-type seedlings. Similarly, seedlings that are doubly null for phytochrome A and phytochrome B(phyA phyB) also have more elongated hypocotyls under low R/FR ratio conditions than phyB seedlings. This indicates that phytochrome A action in light-grown seedlings is antagonistic to the action of phytochrome B. Although wild-type, fhy1, and phyA seedlings flower at essentially the same time under both short-day and long-day conditions, an obvious consequence of phytochrome A deficiency is a pronounced late flowering under conditions where a short day of 8 h of fluorescent W is extended by 8 h of low-fluence-rate incandescent light. The evidence thus indicates that phytochrome A plays a role in seed germination, in the control of elongation growth of light-grown seedlings, and in the perception of daylength.  相似文献   

20.
The stomatal response to blue light (BL) in wheat seedlings ( Triticum aestivum L. cv. Starke II, Weibull) was enhanced by background red light (R). This enhancement was only slightly affected by the addition of background far-red light (FR). Under similar light treatments, the addition of FR induced a 43% transformation from the far-red-absorbing form towards the red-absorbing form of phytochrome from etiolated oat ( Avena sativa L. cv. Sol II), immobilized on phenyl-sepharose. Furthermore, the enhancement of the stomatal BL-response by 15 min R was not reversed by a subsequent irradiation with 5 min FR. It is concluded that the red-light-enhancement of the stomatal blue-light-response in wheat seedlings does not involve a change in the photostationary state of phytochrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号