首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A field study was conducted over 2 yr to determine the effects of transgenic sweet corn containing a gene from the bacterium Bacillus thuringiensis (Bt) on the diversity and abundance of nontarget arthropods. The Bt hybrid (expressing Cry1Ab endotoxin for lepidopteran control) was compared with near-isogenic non-Bt and Bt hybrids treated with a foliar insecticide and with a near-isogenic non-Bt hybrid without insecticides. Plant inspections, sticky cards, and pitfall traps were used to sample a total of 573,672 arthropods, representing 128 taxonomic groups in 95 families and 18 orders. Overall biodiversity and community-level responses were not significantly affected by the transgenic hybrid. The Bt hybrid also had no significant adverse effects on population densities of specific nontarget herbivores, decomposers, and natural enemies enumerated at the family level during the crop cycle. As expected, the insecticide lambda-cyhalothrin had broad negative impacts on the abundance of many nontarget arthropods. One insecticide application in the Bt plots reduced the overall abundance of the natural enemy community by 21-48%. Five applications in the non-Bt plots reduced natural enemy communities by 33-70%. Nontarget communities affected in the insecticide-treated Bt plots exhibited some recovery, but communities exposed to five applications showed no trends toward recovery during the crop cycle. This study clearly showed that the nontarget effects of Bt transgenic sweet corn on natural enemies and other arthropods were minimal and far less than the community-level disruptions caused by lambda-cyhalothrin.  相似文献   

2.
A glasshouse experiment was undertaken to provide baseline data on the variation between conventional maize (Zea mays L.) varieties and genetically modified maize plants expressing the insecticidal Bacillus thuringiensis protein (Bt, Cry1Ab). The objective was to determine whether the variation in soil parameters under a range of conventional maize cultivars exceeded the differences between Bt and non-Bt maize cultivars. Variations in plant growth parameters (shoot and root biomass, percentage carbon, percentage nitrogen), Bt protein concentration in shoots, roots and soil, soil nematode abundance and soil microbial community structure were determined. Eight paired varieties (i.e. varieties genetically modified to express Bt protein and their near-isogenic control varieties) were investigated, together with a Bt variety for which no near-isogenic control was available (NX3622, a combined transformant expressing both Bt and herbicide tolerance) and a conventional barley (Hordeum vulgare L.) variety which was included as a positive control. The only plant parameter which showed a difference between Bt varieties and near-isogenic counterparts was the shoot carbon to nitrogen ratio; this was observed for only two of the eight varieties, and so was not attributable to the Bt trait. There were no detectable differences in the concentration of Bt protein in plant or soil with any of the Bt-expressing varieties. There were significant differences in the abundance of soil nematodes, but this was not related to the Bt trait. Differences in previously published soil nematode studies under Bt maize were smaller than these varietal effects. Soil microbial community structure, as determined by phospholipid fatty acid (PLFA) analysis, was strongly affected by plant growth stage but not by the Bt trait. The experimental addition of purified Cry1Ab protein to soil confirmed that, at ecologically relevant concentrations, there were no measurable effects on microbial community structure.  相似文献   

3.
Concerns have been raised that Bt maize pollen may have adverse effects on non‐target organisms; consequently, there is a general call for Bt maize risk assessment evaluating lethal and sublethal side effects. Spiders play an important economic and ecological role as pest predators in various crops, including maize. Web‐building spiders, especially, may be exposed to the Cry1Ab toxin of Bt maize by the ingestion of pollen via ‘recycling’ of pollen‐dusted webs and intentional pollen feeding. In this study, the potential Bt maize pollen exposure of orb‐web spiders was quantified in maize fields and adjacent field margins, and laboratory experiments were conducted to evaluate the possible effects of Bt maize pollen consumption on juvenile garden spiders, Araneus diadematus (Clerck) (Araneae: Araneidae). In maize fields and neighbouring field margins, web‐building spiders were exposed to high amounts of Bt maize pollen. However, a laboratory bioassay showed no effects of Bt maize pollen on weight increase, survival, moult frequency, reaction time, and various web variables of A. diadematus. A pyrethroid insecticide (Baythroid) application affected weight increase, survival, and reaction time of spiders negatively. In conclusion, the insecticide tested showed adverse effects on the garden spider, whereas the consumption of Bt maize pollen did not. This study is the first one on Bt maize effects on orb‐web spiders, and additional research is recommended in order to account for further spider species, relative fitness parameters, prey‐mediated effects, and possible long‐term chronic consequences of Bt exposure.  相似文献   

4.
One of the major applications of transgenic crops in agriculture are the so‐called Bacillus thuringiensis Berliner (Bt) plants, in particular Bt maizes, which produce insecticidal Cry proteins that target specific orders, such as the Lepidoptera or Coleoptera. We reviewed publications that reported on the direct toxic effects of Bt‐maize and/or Cry proteins of current Bt‐maize events on larvae of non‐target butterflies and moths (Lepidoptera). In total, 20 peer‐reviewed publications were identified, of which 16 papers contributed laboratory‐based data and seven field‐based data. An adverse effect on caterpillars was recorded in 52% of all laboratory‐based and in 21% of all field‐based observations. The variables most often studied and having the highest occurrence of effects were larval survival, body mass, and developmental time. Parameters of the adult stage were under‐represented in the studies. Overall, 11 lepidopteran species were tested. The majority of the studies originated from the USA, with the Monarch butterfly being the most studied, whereas other species and other parts of the world were widely neglected. Laboratory experiments were often run under unrealistic conditions from an ecological point of view. Although the papers we reviewed indicated a potential hazard for Lepidoptera that are exposed to and feed on lepidopteran‐specific Bt‐maize pollen, a general conclusion on the level of risk for butterflies and moths cannot as yet be drawn. A comprehensive risk characterization would require thorough hazard identification, exposure assessment, and impact assessment. However, our review showed that even the basic level of hazard characterization is as yet incomplete. Reasons for this are the still‐limited numbers of publications and concurrent lack of knowledge, the restriction of data to only a few species, the over‐representation of North American species, and the identified limitations of both laboratory and field experiments. The findings of this review suggest that more realistic, ecologically meaningful, and detailed experiments and analyses are crucial to improve the present assessment of Bt‐maize cultivation effects on Lepidoptera.  相似文献   

5.
The cultivation of Lepidoptera‐resistant Bt‐maize may affect nontarget butterflies. We assessed the risk posed by event MON89034 × MON88017 (expressing Cry1A.105 and Cry2Ab2 against corn borers) to nontarget Lepidoptera. Using the small tortoiseshell Aglais urticae, a butterfly species common in central Europe, as a test organism we (i) assessed the toxicity of Bt‐maize pollen on butterfly larvae; (ii) measured pollen deposition on leaves of the host plant Urtica dioica; (iii) mapped the occurrence and distribution of host plants and larvae in two arable landscapes in Germany during maize anthesis; and (iv) described the temporal occurrence of a 1‐year population of A. urticae. (i) Larvae‐fed 200 Bt‐maize pollen grains/cm2 had a reduced feeding activity. Significant differences in developmental time existed at pollen densities of 300 Bt‐maize pollen grains/cm2 and in survival at 400 grains/cm2. (ii) The highest pollen amount found was 212 grains/cm2 at the field margin. Mean densities were much lower. (iii) In one region, over 50% of A. urticae nests were located within 5 m of a maize field, while in the other, all nests were found in more than 25 m distance to a maize field. (iv) The percentage of larvae developing during maize anthesis was 19% in the study area. The amount of pollen from maize MON89034 × MON88017 found on host plants is unlikely to adversely affect a significant proportion of larvae of A. urticae. This paper concludes that the risk of event MON89034 × MON88017 to populations of this species is negligible.  相似文献   

6.
We investigated the effects of Bacillus thuringiensis variety kurstaki x aizawai (Bt) on infestation levels of two lepidopteran insects as well as on seed quality in Norway spruce, Picea abies L. (Karst.) in central Sweden. Spruce flowers (female strobili) were sprayed with a 0.2% suspension (wt:wt) of the Bt preparation Turex 50 WP, 25,000 IU/mg in water. To expose even those lepidopteran larvae that feed exclusively embedded within the cone tissue, the Bt treatment was applied to open flowers, before they closed and developed into cones. The experimental design included three main factors: treatment (untreated control, water, or Bt), spruce genotype (three clones), and spraying time (spraying before, during, and after the phase of highest pollen receptivity). The Bt treatment reduced the proportion of cones infested by the cone worm Dioryctria abietella Den. et Schiff. (Lepidoptera: Pyralidae) from approximately 30 to 15%. There was no statistically significant treatment effect on the infestation rate of Cydia strobilella (L.) (Lepidoptera: Tortricidae). The Bt variety kurstaki x aizawai treatment caused no reduction in seed quality as measured by seed weight or percentage of nonfilled seeds. There was no difference in number of seeds per cone between the Bt-treated and untreated control cones. There was a significant effect of genotype on insect infestation rates, as well as on number of seeds per cone and seed weight. Neither level of insect damage nor any seed quality parameters were affected by time of application of the treatments.  相似文献   

7.
Effects of exposure to maize pollen of event Bt176 (cultivar “Navares”) on the larvae of the European common swallowtail (Papilio machaon L.) were studied in the laboratory. First instar larvae were exposed to different pollen densities applied to leaf disks of Pastinaca sativa L. for 48 h. Pollen densities applied in this study were in the range recorded from the field. Larvae which were exposed to higher Bt maize pollen densities consumed more pollen and had a lower survival rate. The LD50 with regard to larvae surviving to adulthood was 13.72 pollen grains consumed by first-instar larva. Uptake of Bt maize pollen led to a reduced plant consumption, to a lower body weight, and to a longer development time of larvae. Effects on pupal weight and duration of the pupal period were present but less pronounced and smaller than effects on larvae. Larvae having consumed Bt-maize pollen as first instars had a lower body weight as adult females and smaller forewings as adult males. We conclude that possible effects of Bt maize on European butterflies and moths must be evaluated more rigorously before Bt maize should be cultivated over large areas.  相似文献   

8.
转Bt基因玉米的生态安全性研究进展   总被引:3,自引:0,他引:3  
随着转基因作物的应用和推广 ,转 Bt基因作物释放后对生态环境及其它方面产生的潜在影响越来越受到重视。分别从生物活性杀虫晶体蛋白在土壤中的残留特性、杀虫晶体蛋白对土壤中非目标生物的影响、转 Bt基因玉米植株体成分的变化、转Bt基因玉米花粉中杀虫晶体蛋白的表达特性及其在田间和马力筋叶片上的散积状况、花粉中表达的杀虫晶体蛋白对君主斑蝶的毒性、君主斑蝶幼虫暴露在 Bt花粉中的概率及综合风险评价估算等方面对转 Bt基因玉米产生的杀虫晶体蛋白与土壤生态环境的相互作用、花粉对非目标生物影响的研究现状进行了综述。通过对转 Bt基因作物生态安全性的科学评价和广泛宣传 ,以确保生物技术的健康发展。  相似文献   

9.
研究了取食转Bt-cry1Ah基因玉米花粉对龟纹瓢虫Propylaea japonica(Thunberg)体内解毒酶和中肠蛋白酶活性的影响。利用饲喂结合比色方法,比较龟纹瓢虫取食转Bt-cry1Ah基因玉米花粉和非转基因玉米花粉后体内α-乙酸萘酯酶、乙酰胆碱酯酶、谷胱甘肽-S-转移酶、中肠总蛋白酶、类胰蛋白酶和类胰凝乳蛋白酶的酶活性。结果发现:在解毒酶方面,取食Bt玉米花粉的龟纹瓢虫4龄幼虫和蛹的α-乙酸萘酯酶活性显著低于取食非Bt玉米花粉的龟纹瓢虫(对照组),取食Bt玉米花粉的龟纹瓢虫的乙酰胆碱酯酶和谷胱甘肽-S-转移酶活性在各个发育时期与对照相比均无显著差异。在中肠蛋白酶方面,与对照组相比,取食Bt玉米花粉的龟纹瓢虫的总蛋白酶和强碱性类胰蛋白酶活性在各个发育时期均无显著差异;但取食Bt玉米花粉的龟纹瓢虫的弱碱性类胰凝蛋白酶和类胰凝乳蛋白酶活性在蛹期显著低于取食非Bt玉米花粉的龟纹瓢虫。由此可见,龟纹瓢虫取食含有Cry1Ah杀虫蛋白的玉米花粉后,体内代谢解毒酶和中肠蛋白酶与Cry1Ah杀虫蛋白相互作用,可能会引起某些酶活性的变化。因此,转cry1Ah基因玉米花粉对龟纹瓢虫的潜在影响还需要进一步的研究。  相似文献   

10.
The effect of Bt maize on aphid parasitism and the aphid–parasitoid complex was measured in field conditions on three transgenic varieties, two derived from Event MON810 and one from Bt176, and their near-isogenics in a two-year study. No differences in aphid abundance were found between Bt maize varieties and their near-isogenics. Differences within Bt and within near-isogenic varieties were found, but only in one year. Differences in aphid abundance were probably better accounted for the variety background and year conditions than by the transgenesis or Event. Lysiphlebus testaceipes (Cresson), Lipolexis gracilis Förster (Hymenoptera, Braconidae, Aphidiinae) and Aphelinus sp. (Hymenoptera, Aphelinidae) were the prevalent parasitoids. Bt maize did not alter the aphid–parasitoid associations and had no effect on the aphid parasitism and hyperparasitism rates. The results suggest that Bt maize has no negative impact on second, third and fourth levels of the trophic relationships studied.  相似文献   

11.
Wan P  Wu K  Huang M  Yu D  Wu J 《Environmental entomology》2008,37(4):1043-1048
Genetically modified cotton that produces a crystalline protein from Bacillus thuringiensis subsp. kurstaki (Berliner) (Bt) has been widely deployed to manage lepidopteran insect pests in cotton growing areas worldwide. However, susceptibility of different insect species to Bt protein varies, which may affect lepidopteran pest populations in the field. Studies on effects of two transgenic cotton lines (BG1560 and GK19) carrying a Cry1A gene on common cutworm Spodoptera litura F. (Lepidoptera: Noctuidae), were conducted during 2002-2005 in the cotton planting region of the Yangtze River valley of China. Results showed that common cutworm larvae had low susceptibility to Bt cotton. There was no significant difference in larval population densities in conventional and Bt cotton fields. However, the larval populations of the insect on conventional plants treated with chemical insecticides for control of target pest of Bt cotton were significantly lower than that in Bt cotton fields. These results indicated that the common cutworm was the potential to become a major and alarming pest in Bt cotton fields, and therefore efforts to develop an effective alternative management strategy are needed.  相似文献   

12.
Abstract:   Three lepidopteran species were tested to determine their susceptibility against the ingestion of pollen from genetically modified maize plants. To prove the existence of dose–response relations between the applied amount of pollen (Bt-maize) and the damages on the tested larvae, a method was developed which makes it possible to feed caterpillars with defined amounts of pollen. If their food plants were contaminated with pollen of a cultivar of the Bt-176 maize-line Pieris brassicae , Pieris rapae and Plutella xylostella -larvae fed less, grew more slowly and showed a higher mortality than caterpillars of an untreated control group. The 50% lethality (LD50)-values were calculated for P.xylostella (L4) with 19.2, for P. rapae (L2) with 39.0 and also for P. brassicae (L2) with 139.2 pollen of the transgenic maize Pactol CB. Studies with P. brassicae -caterpillars of different larval stages indicated, that older individuals showed a higher tolerance against pollen from Bt-maize than younger ones. It must be stated on the basis of the present studies, that ingestion of non-transgenic maize pollen has neither a positive nor a negative effect on caterpillars. It becomes clear from the information presented here that it is still difficult to make general statements about the endangering of butterflies, arising from cultivation of genetically modified maize lines. Further investigations on this issue are needed. Initially, the LD50-values concerning the larvae of certain butterfly species have to be determined to anticipate the risks, and in addition the distances between habitats with caterpillar host plants and maize fields, and the abundance of these plants have to be considered.  相似文献   

13.
苏云金杆菌营养期杀虫蛋白的研究   总被引:11,自引:0,他引:11  
营养期杀虫蛋白 (vegetativeinsecticidalproteins ,VIPs)是苏云金杆菌 (Bacillusthuringiensis,Bt)在对数生长中期分泌的一类新型杀虫毒蛋白。VIPs主要分为VIP1、VIP2和VIP3三种。VIP1和VIP2构成二元毒素 ,对鞘翅目叶甲科的昆虫具有杀虫特异性 ;而VIP3对鳞翅目昆虫具有较广谱的杀虫活性。VIP1和VIP2的杀虫作用机理还不清楚 ;VIP3通过诱发细胞凋亡 ,最终导致昆虫死亡 ,这种作用机理与Bt杀虫晶体蛋白的作用机理完全不同 ,这为筛选新的杀虫活性物质提供了新的思路。vip基因现已被应用于转基因杀虫植物的构建 ,得到高效抗虫的多价转基因玉米。此外 ,VIPs嵌合蛋白的构建、vip及其融合基因导入其它许多宿主微生物等方面的研究也具有诱人的潜在应用前景。  相似文献   

14.
Bt cotton plants expressing Cry1Ac protein have high specificity for the control of lepidopteran larvae. However, studies conducted in several countries have shown these plants have a differential impact on nontarget herbivores. The aim of this study was to compare the colonization rates and population abundance of the cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae) and the boll weevil, Anthonomus grandis Boheman (Coleoptera: Curculionidae), in plots of Bt (Nuopal) and non-Bt cotton (Delta Opal) in an experimental field in Brasilia, DF, Brazil. No difference was observed in the preference and colonization by winged aphids to plants from the two treatments. There was no significant difference in abundance of wingless aphids or in the production of winged aphids between treatments. Apparently, the parameters that control factors such as fecundity, survival, and dispersal were similar on both Bt and non-Bt plants. Monitoring of plants for coccinellids, a specialist predator of aphids, and ants that act on the dispersal of aphids among plants showed no significant difference between Bt and non-Bt plants, supporting the inference above. Regarding the effect on boll weevil, there was also no significant difference between treatments in the total number of fruiting structures attacked in each plot, the percentage of fruiting structures attacked per plant or on the number of weevils emerging from fruits with boll weevil damage from egg-laying, when damaged fruit samples were held in the laboratory. Based on these results, we conclude that there is no impact of Bt cotton crop expressing Cry1Ac on the nontarget herbivores tested under field conditions.  相似文献   

15.
Bt水稻"克螟稻”花粉对家蚕生长发育的影响   总被引:13,自引:0,他引:13  
本试验以家蚕为供试对象研究Bt水稻"克螟稻”花粉对家蚕生长发育的影响.结果发现,与正常无花粉处理相比,无论是非Bt水稻花粉处理,还是Bt水稻花粉处理,对初孵家蚕幼虫的致死率无多大影响,而对家蚕的体重有较大影响,其中三龄期家蚕体重存在极显著差异.还发现Bt水稻花粉处理组家蚕在3龄时期大小很不一致,最轻体重为18.1mg,而最重体重为183.8mg.这是由于采用人工抖粉桑叶上花粉浓度不均匀造成的.鉴于实际生态条件下桑叶上的花粉浓度可能远远低于试验条件,因此,在实际稻桑共作环境下,Bt水稻"克螟稻”花粉对家蚕生长发育可能不会造成太大的影响。 Abstract:The effect on the development of silkworm larvae of Bt transgenic rice pollen containing cry1 Ab gene from Bacillus thuringiensis were investigated.Compared with normal treatment,mortality of newly hatched silkworm lar vae in either Bt rice pollen or susceptible rice pollen treatment were not significantly different,while the variances of silkworm larvae weight at third instar were significant at 0.01level.In addition,the weight of each silkworm larva at third instar in Bt rice pollen treatment showed a big difference,the biggest and smallest silkworm larvae were 183.8rug and 18.lmg respectively,which was probably caused by the difference of Bt rice pollen concentration on the mulberry leaves.As pollen concentration on the mulberry leaves in actual field was lower than in lab,the influence on the development of newly hatched silkworm larvae of Bt rice pollen is not likely significant in actual ecological cnvi ronment.  相似文献   

16.
Bt玉米秸秆杀虫蛋白对赤子爱胜蚓酶活性的影响   总被引:1,自引:0,他引:1  
Shu YH  Ma HH  Du Y  Wang JW 《应用生态学报》2011,22(8):2133-2139
Bt玉米分泌的Bt蛋白可通过秸秆还田、根系分泌、花粉飘落等途径进入土壤.本文模拟秸秆还田,在土壤中添加5%或7.5%的Bt玉米及其同源常规玉米秸秆饲养赤子爱胜蚓,分别于7、14d后检测蚯蚓总蛋白含量、乙酰胆碱酯酶(AchE)、谷胱甘肽过氧化物酶(GSH-PX)、超氧化物歧化酶(SOD)和过氧化氢酶(CAT)的活性.结果表明:同一玉米品种,同一秸秆添加量处理下,与培养7d相比,培养14d的蚯蚓总蛋白含量下降,AchE、CAT和SOD酶活性提高,GSH-PX酶活性降低.同一培养时间、同一秸秆添加量处理下,与常规相比,Bt玉米培养的蚯蚓SOD活性提高,AchE和GSH-PX活性下降,总蛋白含量和CAT活性无显著变化.表明Bt玉米秸秆处理对蚯蚓总蛋白没有抑制作用,能降低AchE和GSH-PX活性,对CAT没有诱导作用,但在短时间内能诱导蚯蚓SOD酶活性.  相似文献   

17.
Considerable effort has been expended to determine if crops genetically engineered to produce Bacillus thuringiensis (Bt) toxins harm non‐target arthropods. However, if Bt crops kill target pests and thereby reduce insecticide use, this could benefit some non‐target arthropods. We analyzed data from 21 commercial cotton fields in Arizona to test the effects of Bt cotton on insecticide use and abundance of two non‐target arthropods, the generalist predators Chrysoperla carnea Stephens (Neuroptera: Chrysopidae) and Orius tristicolor (White) (Heteroptera: Anthocoridae). The number of insecticide sprays was more than double for non‐Bt cotton compared with Bt cotton that produced Cry1Ac. The abundance of both predators was negatively associated with the number of insecticide sprays, although significantly so for only one of two sampling periods for each species tested. With the effects of insecticides statistically removed, field type (Bt or non‐Bt cotton) did not affect the abundance of either predator. Accordingly, without adjusting for the effects of insecticide sprays, the abundance of C. carnea was higher in Bt cotton fields than in non‐Bt cotton fields, but significantly so during only one of two sampling periods. The abundance of O. tristicolor did not differ between field types, even without adjusting for effects of insecticide sprays. The results indicate that Bt crops can affect insecticide use, which in turn can affect the relative abundance of non‐target arthropods in Bt and non‐Bt fields. Thus, environmental impact assessment should incorporate analysis of the effects of transgenic crops on management practices, as well as evaluation of the direct effects of such crops.  相似文献   

18.
抗虫转基因水稻和化学杀虫剂对稻田节肢动物群落的影响   总被引:11,自引:3,他引:11  
刘志诚  叶恭银  胡萃 《应用生态学报》2004,15(12):2309-2314
从功能团优势度、功能团内科组成及其优势度、功能团个体数量、群落主要参数及群落结构相异性等方面,就含crylAb/crylAc融合基因的Bt水稻和化学杀虫剂对稻田节肢动物群落影响进行比较研究.结果表明,与对照田相比,Bt稻田的节肢动物功能团组成及其优势度、各功能团内科组成及其优势度分布、功能团内个体数量的时间动态、群落参数(物种丰富度、Shannon-Wiener多样性指数、均匀性指数、优势集中性指数)及时间动态在大多情况下均无显著差异,两者间群落结构相似性较高.Bt水稻对稻田节肢动物群落基本无明显的负效应、而化防田的功能团优势度等群落特征指标与对照田相比,有时具有明显甚至显著的差异;群落结构相似性也较低.综合分析表明,Bt水稻对稻田节肢动物群落的影响明显弱于化学杀虫剂。  相似文献   

19.
Laboratory bioassays were conducted to evaluate the response of first instar larvae of the monarch butterfly, Danaus plexippus L. (Lepidoptera: Danaidae), a non‐target species, to pollen from corn, Zea mays L. (Commelinales: Poaceae), from two new corn hybrids genetically modified to express different types of insecticidal proteins derived from the bacterium Bacillus thuringiensis Berliner (Bacillales: Bacillaceae) (Bt). One hybrid expresses both Cry1Ab and Cry2Ab2 proteins (MON 810 × MON 84006), active against lepidopteran pests, and the other expresses Cry3Bb1 protein (MON 863), targeted against coleopteran pests. First instar larvae were placed on milkweed leaves (Asclepias syriaca L.) (Gentianales: Asclepiadaceae) dusted with doses of either Bt pollen or its nonexpressing (isoline) pollen counterpart ranging from 50 to 3200 grains cm?2 of milkweed leaves, or no pollen at all. Larvae were exposed to pollen for 4 days, then moved to pollen‐free leaves and observed for another 6 days. Survival was observed after 2, 4, and 10 days. Weight gain was estimated after 4 and 10 days, leaf consumption after 2 and 4 days, and larval development after 10 days. Exposure to pollen of the Cry1Ab/Cry2Ab2‐Bt expressing hybrid reduced larval survival approximately 7.5–23.5% at the dose ranges tested relative to a no pollen control. Larval weight gain and consumption were reduced for larvae exposed to pollen of this hybrid and a small minority of larvae (3.1%) never developed past the third instar after 10 days of observation. Exposure to pollen of the Cry3Bb1‐Bt expressing hybrid had no negative effects on larval mortality, weight gain, consumption, or development relative to the consumption of Bt‐free corn pollen. The relevance of these findings to the risk that these Bt corn hybrids pose to monarch populations is discussed.  相似文献   

20.
Field studies were done in 1995-1996 to assess the efficacy of three sweet corn hybrids that express the Bacillus thuringiensis (Bt) toxin, CrylAb, against two lepidopteran pests, Ostrinia nubilalis (Hubner) and Helicoverpa zea (Boddie). The Bt hybrids tested were developed by Novartis Seeds, using the event BT-11, which expresses Bt toxin in green tissue as well as reproductive tissues including the tassel, silk, and kernel. Bt hybrids were compared with a standard non-Bt control or the non-Bt isoline for each hybrid; none of the hybrids were treated with insecticides during the study. Hybrid efficacy was based on larval control of each pest, as well as plant or ear damage associated with each pest. In both years, control of O. nubilalis larvae in primary ears of all Bt hybrids was 99-100% compared with the appropriate non-Bt check. Plant damage was also significantly reduced in all Bt hybrids. In 1996, control of H. zea in Bt hybrids ranged from 85 to 88% when compared with the appropriate non-Bt control. In 1996, a University of Minnesota experimental non-Bt hybrid (MN2 x MN3) performed as well as the Bt hybrids for control of O. nubilalis. Also, in 1996, two additional University of Minnesota experimental non-Bt hybrids (A684su X MN94 and MN2 X MN3) performed as well as Bt hybrids for percent marketable ears (ears with no damage or larvae). In addition, compared with the non-Bt hybrids, percent marketable ears were significantly higher for all Bt hybrids and in most cases ranged from 98 to 100%. By comparison, percent marketable ears for the non-Bt hybrids averaged 45.5 and 37.4% in 1995 and 1996, respectively. Results from the 2-yr study strongly suggest that Bt sweet corn hybrids will provide high levels of larval control for growers in both fresh and processing markets. Specifically, Bt sweet corn hybrids, in the absence of conventional insecticide use, provided excellent control of O. nubilalis, and very good control of H. zea. However, depending on location of specific production regions, and the associated insect pests of sweet corn in each area, some insecticide applications may still be necessary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号