首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The 'EF-hand' Ca2+-binding motif plays an essential role in eukaryotic cellular signalling, and the proteins containing this motif constitute a large and functionally diverse family. The EF-hand is defined by its helix-loop-helix secondary structure as well as the ligands presented by the loop to bind the Ca2+ ion. The identity of these ligands is semi-conserved in the most common (the 'canonical') EF-hand; however, several non-canonical EF-hands exist that bind Ca2+ by a different co-ordination mechanism. EF-hands tend to occur in pairs, which form a discrete domain so that most family members have two, four or six EF-hands. This pairing also enables communication, and many EF-hands display positive co-operativity, thereby minimizing the Ca2+ signal required to reach protein saturation. The conformational effects of Ca2+ binding are varied, function-dependent and, in some cases, minimal, but can lead to the creation of a protein target interaction site or structure formation from a molten-globule apo state. EF-hand proteins exhibit various sensitivities to Ca2+, reflecting the intrinsic binding ability of the EF-hand as well as the degree of co-operativity in Ca2+ binding to paired EF-hands. Two additional factors can influence the ability of an EF-hand to bind Ca2+: selectivity over Mg2+ (a cation with very similar chemical properties to Ca2+ and with a cytoplasmic concentration several orders of magnitude higher) and interaction with a protein target. A structural approach is used in this review to examine the diversity of family members, and a biophysical perspective provides insight into the ability of the EF-hand motif to bind Ca2+ with a wide range of affinities.  相似文献   

2.
Guanylate cyclase-activating proteins (GCAPs) are neuronal calcium sensors that activate membrane bound guanylate cyclases (EC 4.6.1.2.) of vertebrate photoreceptor cells when cytoplasmic Ca2+ decreases during illumination. GCAPs contain four EF-hand Ca2+-binding motifs, but the first EF-hand is nonfunctional. It was concluded that for GCAP-2, the loss of Ca2+-binding ability of EF-hand 1 resulted in a region that is crucial for targeting guanylate cyclase [Ermilov, A.N., Olshevskaya, E.V. & Dizhoor, A.M. (2001) J. Biol. Chem.276, 48143-48148]. In this study we tested the consequences of mutations in EF-hand 1 of GCAP-1 with respect to Ca2+ binding, Ca2+-induced conformational changes and target activation. When the nonfunctional first EF-hand in GCAP-1 is replaced by a functional EF-hand the chimeric mutant CaM-GCAP-1 bound four Ca2+ and showed similar Ca2+-dependent changes in tryptophan fluorescence as the wild-type. CaM-GCAP-1 neither activated nor interacted with guanylate cyclase. Size exclusion chromatography revealed that the mutant tended to form inactive dimers instead of active monomers like the wild-type. Critical amino acids in EF-hand 1 of GCAP-1 are cysteine at position 29 and proline at position 30, as changing these to glycine was sufficient to cause loss of target activation without a loss of Ca2+-induced conformational changes. The latter mutation also promoted dimerization of the protein. Our results show that EF-hand 1 in wild-type GCAP-1 is critical for providing the correct conformation for target activation.  相似文献   

3.
The calcium binding proteins of the EF-hand super-family are involved in the regulation of all aspects of cell function. These proteins exhibit a great diversity of composition, structure, Ca2+-binding and target interaction properties. Here, our current understanding of the Ca2+-binding mechanism is assessed. The structures of the EF-hand motifs containing 11-14 amino acid residues in the Ca2+-binding loop are analyzed within the framework of the recently proposed two-step Ca2+-binding mechanism. A hypothesis is put forward that in all EF-hand proteins the Ca2+-binding and the resultant conformational responses are governed by the central structure connecting the Ca2+-binding loops in the two-EF-hand domain. This structure, named EFbeta-scaffold, defines the position of the bound Ca2+, and coordinates the function of the N-terminal (variable and flexible) with the C-terminal (invariable and rigid) parts of the Ca2+-binding loop. It is proposed that the nature of the first ligand of the Ca2+-binding loop is an important determinant of the conformational change. Additional factors, including the interhelical contacts, the length, structure and flexibility of the linker connecting the EF-hand motifs, and the overall energy balance provide the fine-tuning of the Ca2+-induced conformational change in the EF-hand proteins.  相似文献   

4.
5.
Koch M  Fritz G 《The FEBS journal》2012,279(10):1799-1810
S100A2 is an EF-hand calcium ion (Ca(2+))-binding protein that activates the tumour suppressor p53. In order to understand the molecular mechanisms underlying the Ca(2+) -induced activation of S100A2, the structure of Ca(2+)-bound S100A2 was determined at 1.3 ? resolution by X-ray crystallography. The structure was compared with Ca(2+) -free S100A2 and with other S100 proteins. Binding of Ca(2+) to S100A2 induces small structural changes in the N-terminal EF-hand, but a large conformational change in the C-terminal EF-hand, reorienting helix III by approximately 90°. This movement is accompanied by the exposure of a hydrophobic cavity between helix III and helix IV that represents the target protein interaction site. This molecular reorganization is associated with the breaking and new formation of intramolecular hydrophobic contacts. The target binding site exhibits unique features; in particular, the hydrophobic cavity is larger than in other Ca(2+)-loaded S100 proteins. The structural data underline that the shape and size of the hydrophobic cavity are major determinants for target specificity of S100 proteins and suggest that the binding mode for S100A2 is different from that of other p53-interacting S100 proteins. Database Structural data are available in the Protein Data Bank database under the accession number 4DUQ  相似文献   

6.
Total-reflection X-ray fluorescence has been used to study whether the Leishmania infantum kinetoplastid membrane protein-11 is a Ca2+-binding protein. The 108 amino acid helix-loop-helix protein has the loop region located between residues 45 and 57, having similarity to the EF-hand motifs. In particular, the sequence alignment of the putative motif revealed the existence of 67% similarity and 33% identity with the EF-hand of the plasmodia-specific 40-kDa protein from Physarum polycephalum. To address the type of conformational changes induced by Ca2+ binding, circular dichroism and fluorescence spectroscopy were used. The data showed that Ca2+ induces changes in both the secondary and tertiary structure of the protein in a temperature- and pH-dependent way. It also induces the precipitation of the protein at pH 7.5, in contrast with what occurs at pH 5.0, and the precipitation process can be reverted by addition of EGTA. At acidic pH values the complex EGTA-Ca2+ causes drastic structural changes, forcing the protein to adopt a structure close to that of a random coil. Because, at acidic pH values, protein:Ca2+:EGTA ternary complexes may be formed, the drastic change may be attributed to the presence of a high density of EGTA negative charges in the neighborhood of the alpha-helices.  相似文献   

7.
We have previously identified a single inhibitory Ca2+-binding site in the first EF-hand of the essential light chain of Physarum conventional myosin (Farkas, L., Malnasi-Csizmadia, A., Nakamura, A., Kohama, K., and Nyitray, L. (2003) J. Biol. Chem. 278, 27399-27405). As a general rule, conformation of the EF-hand-containing domains in the calmodulin family is "closed" in the absence and "open" in the presence of bound cations; a notable exception is the unusual Ca2+-bound closed domain in the essential light chain of the Ca2+-activated scallop muscle myosin. Here we have reported the 1.8 A resolution structure of the regulatory domain (RD) of Physarum myosin II in which Ca2+ is bound to a canonical EF-hand that is also in a closed state. The 12th position of the EF-hand loop, which normally provides a bidentate ligand for Ca2+ in the open state, is too far in the structure to participate in coordination of the ion. The structure includes a second Ca2+ that only mediates crystal contacts. To reveal the mechanism behind the regulatory effect of Ca2+, we compared conformational flexibilities of the liganded and unliganded RD. Our working hypothesis, i.e. the modulatory effect of Ca2+ on conformational flexibility of RD, is in line with the observed suppression of hydrogen-deuterium exchange rate in the Ca2+-bound form, as well as with results of molecular dynamics calculations. Based on this evidence, we concluded that Ca2+-induced change in structural dynamics of RD is a major factor in Ca2+-mediated regulation of Physarum myosin II activity.  相似文献   

8.
The cooperative binding of Ca2+ ions is an essential functional property of the EF-hand family of Ca2+-binding proteins. To understand how these proteins function, it is essential to characterize intermediate binding states in addition to the apo- and holo-proteins. The three-dimensional solution structure and fast time scale internal motional dynamics of the backbone have been determined for the half-saturated state of the N56A mutant of calbindin D9k with Ca2+ bound only in the N-terminal site. The extent of conformational reorganization and a loss of flexibility in the C-terminal EF-hand upon binding of an ion in the N-terminal EF-hand provide clear evidence of the importance of site-site interactions in this family of proteins, and demonstrates the strength of long-range effects in the cooperative EF-hand Ca2+-binding domain.  相似文献   

9.
Ca2+-regulated photoproteins are members of the EF-hand calcium-binding protein family. The addition of Ca2+ produces a blue bioluminescence by triggering a decarboxylation reaction of protein-bound hydroperoxycoelenterazine to form the product, coelenteramide, in an excited state. Based on the spatial structures of aequorin and several obelins, we have postulated mechanisms for the Ca2+ trigger and for generation of the different excited states that are the origin of the different colors of bioluminescence. Here we report the crystal structure of the Ca2+-discharged photoprotein obelin at 1.96-A resolution. The results lend support to the proposed mechanisms and provide new structural insight into details of these processes. Global conformational changes caused by Ca2+ association are typical of the class of calcium signal modulators within the EF-hand protein superfamily. Accommodation of the Ca2+ ions into the loops of the EF-hands is seen to propagate into the active site of the protein now occupied by the coelenteramide where there is a significant repositioning and flipping of the His-175 imidazole ring as crucially required in the trigger hypothesis. Also the H-bonding between His-22 and the coelenterazine found in the active photoprotein is preserved at the equivalent position of coelenteramide, confirming the proposed rapid excited state proton transfer that would lead to the excited state of the phenolate ion pair, which is responsible for the blue emission of bioluminescence.  相似文献   

10.
Ababou A  Shenvi RA  Desjarlais JR 《Biochemistry》2001,40(42):12719-12726
Proteins within the EF-hand protein family exhibit different conformational responses to Ca(2+) binding. Calmodulin and other members of the EF-hand protein family undergo major changes in conformation upon binding Ca(2+). However, some EF-hand proteins, such as calbindin D9k (Clb), bind Ca(2+) without a significant change in conformation. Here, we investigate the effects of replacement of a leucine at position 39 of the N-terminal domain of calmodulin (N-Cam) with a phenylalanine derived from Clb. This variant is studied alone and in the context of other mutations that affect the conformational properties of N-Cam. Strikingly, the introduction of Phe39, which is distant from the calcium binding sites, leads to a significant enhancement of Ca(2+) binding affinity, even in the context of other mutations which trap the protein in the closed form. The results yield novel insights into the evolution of EF-hand proteins as calcium sensors versus calcium buffers.  相似文献   

11.
S100A4, also known as mts1, is a member of the S100 family of Ca2+-binding proteins that is directly involved in tumor invasion and metastasis via interactions with specific protein targets, including nonmuscle myosin-IIA (MIIA). Human S100A4 binds two Ca2+ ions with the typical EF-hand exhibiting an affinity that is nearly 1 order of magnitude tighter than that of the pseudo-EF-hand. To examine how Ca2+ modifies the overall organization and structure of the protein, we determined the 1.7 A crystal structure of the human Ca2+-S100A4. Ca2+ binding induces a large reorientation of helix 3 in the typical EF-hand. This reorganization exposes a hydrophobic cleft that is comprised of residues from the hinge region,helix 3, and helix 4, which afford specific target recognition and binding. The Ca2+-dependent conformational change is required for S100A4 to bind peptide sequences derived from the C-terminal portion of the MIIA rod with submicromolar affinity. In addition, the level of binding of Ca2+ to both EF-hands increases by 1 order of magnitude in the presence of MIIA. NMR spectroscopy studies demonstrate that following titration with a MIIA peptide, the largest chemical shift perturbations and exchange broadening effects occur for residues in the hydrophobic pocket of Ca2+-S100A4. Most of these residues are not exposed in apo-S100A4 and explain the Ca2+ dependence of formation of theS100A4-MIIA complex. These studies provide the foundation for understanding S100A4 target recognition and may support the development of reagents that interfere with S100A4 function.  相似文献   

12.
The EF-hand protein with a helix-loop-helix Ca(2+) binding motif constitutes one of the largest protein families and is involved in numerous biological processes. To facilitate the understanding of the role of Ca(2+) in biological systems using genomic information, we report, herein, our improvement on the pattern search method for the identification of EF-hand and EF-like Ca(2+)-binding proteins. The canonical EF-hand patterns are modified to cater to different flanking structural elements. In addition, on the basis of the conserved sequence of both the N- and C-terminal EF-hands within S100 and S100-like proteins, a new signature profile has been established to allow for the identification of pseudo EF-hand and S100 proteins from genomic information. The new patterns have a positive predictive value of 99% and a sensitivity of 96% for pseudo EF-hands. Furthermore, using the developed patterns, we have identified zero pseudo EF-hand motif and 467 canonical EF-hand Ca(2+) binding motifs with diverse cellular functions in the bacteria genome. The prediction results imply that pseudo EF-hand motifs are phylogenetically younger than canonical EF-hand motifs. Our prediction of Ca(2+) binding motifs provides not only an insight into the role of Ca(2+) and Ca(2+)-binding proteins in bacterial systems, but also a way to explore and define the role of Ca(2+) in other biological systems (calciomics).  相似文献   

13.
The relative orientations of adjacent structural elements without many well-defined NOE contacts between them are typically poorly defined in NMR structures. For apo-S100B(betabeta) and the structurally homologous protein calcyclin, the solution structures determined by conventional NMR exhibited considerable differences and made it impossible to draw unambiguous conclusions regarding the Ca2+-induced conformational change required for target protein binding. The structure of rat apo-S100B(betabeta) was recalculated using a large number of constraints derived from dipolar couplings that were measured in a dilute liquid crystalline phase. The dipolar couplings orient bond vectors relative to a single-axis system, and thereby remove much of the uncertainty in NOE-based structures. The structure of apo-S100B(betabeta) indicates a minimal change in the first, pseudo-EF-hand Ca2+ binding site, but a large reorientation of helix 3 in the second, classical EF-hand upon Ca2+ binding.  相似文献   

14.
S100 proteins (16 members) show a very divergent pattern of cell- and tissue-specific expression, of subcel-lular localizations and relocations, of post-translational modifications, and of affinities for Ca 2+ , Zn 2+ , and Cu 2+ , consistent with their pleiotropic intra- and extracellular functions. Up to 40 target proteins are reported to interact with S100 proteins and for S100A1 alone 15 target proteins are presently known. Therefore it is not surprising that many functional roles have been proposed and that several human disorders such as cancer, neurodegenerative diseases, cardiomyopathies, inflammations, diabetes, and allergies are associated with an altered expression of S100 proteins. It is not unlikely that their biological activity in some cases is regulated by Zn 2+ and Cu 2+ , rather than by Ca 2+ Despite the numerous putative functions of S100 proteins, their three-dimensional structures of, e.g., S100B, S100A6, and S100A7 are surprisingly similar. They contain a compact dimerization domain whose conformation is rather insensitive to Ca 2+ binding and two lateral a-helices III and III, which project outward of each subunit when Ca 2+ is bound. Target docking depends on the two hydrophobic patches in front of the paired EF-hand generated by the binding of Ca 2+. The selec-tivity in target binding is assured by the central linker between the two EF-hands and the C-terminal tail. It appears that the S100-binding domain in some target proteins contains a basic amphiphilic a-helix and that the mode of interaction and activation bears structural similarity to that of calmodulin.© Kluwer Academic Publishers  相似文献   

15.
16.
Mts1 is a member of the S100 family of Ca2+-binding proteins and is implicated in promoting tumor progression and metastasis. To better understand the structure-function relationships of this protein and to begin characterizing its Ca2+-dependent interaction with protein binding targets, the three-dimensional structure of mts1 was determined in the apo state by NMR spectroscopy. As with other S100 protein family members, mts1 is a symmetric homodimer held together by noncovalent interactions between two helices from each subunit (helices 1, 4, 1', and 4') to form an X-type four-helix bundle. Each subunit of mts1 has two EF-hand Ca2+-binding domains: a pseudo-EF-hand (or S100-hand) and a typical EF-hand that are brought into proximity by a small two-stranded antiparallel beta-sheet. The S100-hand is formed by helices 1 and 2, and is similar in conformation to other members of the S100 family. In the typical EF-hand, the position of helix 3 is similar to that of another member of the S100 protein family, calcyclin (S100A6), and less like that of other S100 family members for which three-dimensional structures are available in the calcium-free state (e.g., S100B and S100A1). The differences in the position of helix 3 in the apo state of these four S100 proteins are likely due to variations in the amino acid sequence in the C-terminus of helix 4 and in loop 2 (the hinge region) and could potentially be used to subclassify the S100 protein family.  相似文献   

17.
P26olf from olfactory tissue of frog, which may be involved in olfactory transduction or adaptation, is a Ca2+-binding protein with 217 amino acids. The p26olf molecule contains two homologous parts consisting of the N-terminal half with amino acids 1-109 and the C-terminal half with amino acids 110-217. Each half resembles S100 protein with about 100 amino acids and contains two helix-loop-helix Ca2+-binding structural motifs known as EF-hands: a normal EF-hand at the C-terminus and a pseudo EF-hand at the N-terminus. Multiple alignment of the two S100-like domains of p26olf with 18 S100 proteins indicated that the C-terminal putative EF-hand of each domain contains a four-residue insertion when compared with the typical EF-hand motifs in the S100 protein, while the N-terminal EF-hand is homologous to its pseudo EF-hand. We constructed a three-dimensional model of the p26olf molecule based on results of the multiple alignment and NMR structures of dimeric S100B(betabeta) in the Ca2+-free state. The predicted structure of the p26olf single polypeptide chain satisfactorily adopts a folding pattern remarkably similar to dimeric S100B(betabeta). Each domain of p26olf consists of a unicornate-type four-helix bundle and they interact with each other in an antiparallel manner forming an X-type four-helix bundle between the two domains. The two S100-like domains of p26olf are linked by a loop with no steric hindrance, suggesting that this loop might play an important role in the function of p26olf. The circular dichroism spectral data support the predicted structure of p26olf and indicate that Ca2+-dependent conformational changes occur. Since the C-terminal putative EF-hand of each domain fully keeps the helix-loop-helix motif having a longer Ca2+-binding loop, regardless of the four-residue insertion, we propose that it is a new, novel EF-hand, although it is unclear whether this EF-hand binds Ca2+. P26olf is a new member of the S100 protein family.  相似文献   

18.
The thermodynamic change in the binding of Ca2+ to a mutant human lysozyme having an engineered Ca2+ binding site (Kuroki, R., Taniyama, Y., Seko, C., Nakamura, H., Kikuchi, M., and Ikehara, M. (1989) Proc. Natl. Acad. Sci. U. S. A. 86, 6903-6907) was analyzed by calorimetry and interpreted in terms of structural information obtained from x-ray crystallography. It was found that the enthalpic contribution for the Ca2+ binding reaction was small, driven primarily by entropy release (10 kcal/mol). This release of entropy was also observed in some organic chelators. Moreover, through the information of the tertiary structures of the apo- and holomutant lysozyme, it was confirmed that the entropy release (10 kcal/mol) upon the binding of Ca2+ arises primarily from the release of bound water molecules hydrating the free Ca2+. Previous studies of Ca2+ binding to proteins have involved significant changes in protein conformation. They can now be reevaluated to determine the contribution of conformational changes to Ca2+ binding. After removing the thermodynamic contribution of Ca2+ binding itself, it is found that upon the binding of Ca2+ the enthalpy change is negative but is almost compensated by the negative entropy change. The negative change in both enthalpy and entropy is characteristic of values seen in the thermodynamic change upon the folding of proteins.  相似文献   

19.
Calmodulin and other members of the EF-hand protein family are known to undergo major changes in conformation upon binding Ca(2+). However, some EF-hand proteins, such as calbindin D9k, bind Ca(2+) without a significant change in conformation. Here, we show the importance of a precise balance of solvation energetics to conformational change, using mutational analysis of partially buried polar groups in the N-terminal domain of calmodulin (N-cam). Several variants were characterized using fluorescence, circular dichroism, and NMR spectroscopy. Strikingly, the replacement of polar side chains glutamine and lysine at positions 41 and 75 with nonpolar side chains leads to dramatic enhancement of the stability of the Ca(2+)-free state, a corresponding decrease in Ca(2+)-binding affinity, and an apparent loss of ability to change conformation to the open form. The results suggest a paradigm for conformational change in which energetic strain is accumulated in one state in order to modulate the energetics of change to the alternative state.  相似文献   

20.
GCAP-2, a mammalian photoreceptor-specific protein, is a Ca2+-dependent regulator of the retinal membrane guanylyl cyclases (Ret-GCs). Sensing the fall in intracellular free Ca2+ after photo-excitation, GCAP-2 stimulates the activity of Ret-GC leading to cGMP production. Like other members of the recoverin superfamily, GCAP-2 is a small N-myristoylated protein containing four EF-hand consensus motifs. In this study, we demonstrate that like recoverin and neurocalcin, GCAP-2 alters its conformation in response to Ca2+-binding as measured by a Ca2+-dependent change in its far UV CD spectrum. Differences in the conformation of the Ca2+-bound and Ca2+-free forms of GCAP-2 were also observed by examining their relative susceptibility to V8 protease. In contrast to recoverin, we do not observe proteolytic cleavage of the myristoylated N-terminus of Ca2+-bound GCAP-2. NMR spectra also show that, in contrast to recoverin, the chemical environment of the N-terminus of GCAP-2 is not dramatically altered by Ca2+ binding. Despite the similarity of GCAP-2 and recoverin, the structural consequences of Ca2+-binding for these two proteins are significantly dissimilar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号