首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Differential display polymerase chain reaction has been used to isolate genes regulated in vascular endothelial cells by the angiogenic factor vascular endothelial cell growth factor (VEGF). Analysis of one of the bands consistently up-regulated by VEGF led us to the identification of a cDNA from a human umbilical vein endothelial cell library that is 77% identical to the human K+-Cl- cotransporter1 (KCC1). We have referred to the predicted protein as K+-Cl- cotransporter 3 (KCC3). Hydrophobicity analysis of the KCC3 amino acid sequence showed an almost identical pattern to KCC1, suggesting 12 membrane-spanning segments, a large extracellular loop with potential N-glycosylation sites, and cytoplasmic N- and C-terminal regions. The KCC3 mRNA was highly expressed in brain, heart, skeletal muscle, and kidney, showing a distinct pattern and size from KCC1 and KCC2. The KCC3 mRNA level in endothelial cells increased on treatment with VEGF and decreased with the proinflammatory cytokine tumor necrosis factor alpha, whereas KCC1 mRNA levels remained unchanged. Stable overexpression of KCC3 cDNA in HEK293 cells produced a glycoprotein of approximately 150 kDa, which was reduced to 120 kDa by glycosidase digestion. An increased initial uptake rate of 86Rb was seen in clones with high KCC3 expression, which was dependent on extracellular Cl- but not Na+ and was inhibitable by the loop diuretic agent furosemide. The KCC3 genomic localization was shown to be 15q13 by fluorescence in situ hybridization. Radiation hybrid analysis placed KCC3 within an area associated with juvenile myoclonic epilepsy. These results suggest KCC3 is a new member of the KCC family that is under distinct regulation from KCC1.  相似文献   

3.
K(+)-Cl(-) cotransporters (KCCs) constitute a branch of the cation-chloride cotransporter (CCC) family. To date, four KCC isoforms (KCC1-KCC4) have been identified and they all mediate obligatorily coupled, electroneutral transmembrane movement of K(+) and Cl(-) ions. KCC2 (gene symbol SLC12A5) is expressed exclusively in neurons within the central nervous system and abnormalities in its expression have been proposed to play a role in pathological conditions such as epilepsy and neuronal trauma. Here we have determined chromosome location of both the human and the mouse genes encoding KCC2, which may assist in future efforts to determine the contribution of KCC2 to inherited human disorders. We assigned human SLC12A5 to 20q12-->q13.1 and its murine homolog, Slc12a5, to 5G2-G3 by fluorescence in situ hybridization (FISH). These mapping data are contradictory to the previously reported human-mouse conserved synteny relationships disrupting an exceptionally well-conserved homology segment between human Chr 20 and mouse Chr 2. We hence suggest the first region of conserved homology between human Chr 20 and mouse Chr 5.  相似文献   

4.
Pathophysiological activity and various kinds of traumatic insults are known to have deleterious long-term effects on neuronal Cl- regulation, which can lead to a suppression of fast postsynaptic GABAergic responses. Brain-derived neurotrophic factor (BDNF) increases neuronal excitability through a conjunction of mechanisms that include regulation of the efficacy of GABAergic transmission. Here, we show that exposure of rat hippocampal slice cultures and acute slices to exogenous BDNF or neurotrophin-4 produces a TrkB-mediated fall in the neuron-specific K+-Cl- cotransporter KCC2 mRNA and protein, as well as a consequent impairment in neuronal Cl- extrusion capacity. After kindling-induced seizures in vivo, the expression of KCC2 is down-regulated in the mouse hippocampus with a spatiotemporal profile complementary to the up-regulation of TrkB and BDNF. The present data demonstrate a novel mechanism whereby BDNF/TrkB signaling suppresses chloride-dependent fast GABAergic inhibition, which most likely contributes to the well-known role of TrkB-activated signaling cascades in the induction and establishment of epileptic activity.  相似文献   

5.
The molecular basis of sickle cell disease (SCD) is well known but the pathophysiology is poorly understood. It remains intractable to therapy. Hyperactivity of several membrane transport systems, including the K+-Cl- cotransporter (termed KCC), cause HbS-containing red cells (termed HbS cells) to dehydrate and sickle, leading to the development of sickle cell crises (SCCs). Contrary to normal red cells (HbA cells), KCC in HbS cells is active at low O2 tensions (PO2s), remaining responsive to low pH or urea. Since these stimuli are usually encountered in hypoxic regions, the abnormal O2 dependence increases the contribution of KCC to dehydration, and hence development of SCCs. These differences with HbA cells may be due to the younger population of cells or to polymerization of HbS. We used 86Rb+ as a K+ congener to investigate the activity of KCC at different PO2s, and density gradient separation to investigate different red cell fractions. We found no correlation of O2 dependence with cell fractions. We also used the substituted benzaldehyde 12C79 to increase the O2 affinity of HbS and found that its effect on HbS O2 saturation and cell sickling correlated with that on both Cl--independent and Cl--dependent K+ transport, implying that, at low PO2s, KCC activity correlated with HbS polymerization. The importance of these results to understanding the pathophysiology of SCD, and for the design of chemotherapeutic agents to ameliorate or prevent SCC, is discussed.  相似文献   

6.
Little is known regarding the quaternary structure of cation-Cl- cotransporters (CCCs) except that the Na+-dependent CCCs can exist as homooligomeric units. Given that each of the CCCs exhibits unique functional properties and that several of these carriers coexist in various cell types, it would be of interest to determine whether the four K+-Cl- cotransporter (KCC) isoforms and their splice variants can also assemble into such units and, more importantly, whether they can form heterooligomers by interacting with each other or with the secretory Na+-K+-Cl- cotransporter (NKCC1). In the present work, we have addressed these questions by conducting two groups of analyses: 1) yeast two-hybrid and pull-down assays in which CCC-derived protein segments were used as both bait and prey and 2) coimmunoprecipitation and functional studies of intact CCCs coexpressed in Xenopus laevis oocytes. Through a combination of such analyses, we have found that KCC2 and KCC4 could adopt various oligomeric states (in the form of KCC2-KCC2, KCC4-KCC4, KCC2-KCC4, and even KCC4-NKCC1 complexes), that their carboxyl termini were probably involved in carrier assembly, and that the KCC4-NKCC1 oligomers, more specifically, could deploy unique functional features. Through additional coimmunoprecipitation studies, we have also found that KCC1 and KCC3 had the potential of assembling into various types of CCC-CCC oligomers as well, although the interactions uncovered were not characterized as extensively, and the protein segments involved were not identified in yeast two-hybrid assays. Taken together, these findings could change our views on how CCCs operate or are regulated in animal cells by suggesting, in particular, that cation-Cl- cotransport achieves higher levels of functional diversity than foreseen.  相似文献   

7.
The neuronal K-Cl cotransporter KCC2 maintains the low intracellular chloride concentration required for the hyperpolarizing actions of inhibitory neurotransmitters gamma-aminobutyric acid and glycine in the central nervous system. This study shows that the mammalian KCC2 gene (alias Slc12a5) generates two neuron-specific isoforms by using alternative promoters and first exons. The novel KCC2a isoform differs from the only previously known KCC2 isoform (now termed KCC2b) by 40 unique N-terminal amino acid residues, including a putative Ste20-related proline alanine-rich kinase-binding site. Ribonuclease protection and quantitative PCR assays indicated that KCC2a contributes 20-50% of total KCC2 mRNA expression in the neonatal mouse brain stem and spinal cord. In contrast to the marked increase in KCC2b mRNA levels in the cortex during postnatal development, the overall expression of KCC2a remains relatively constant and makes up only 5-10% of total KCC2 mRNA in the mature cortex. A rubidium uptake assay in human embryonic kidney 293 cells showed that the KCC2a isoform mediates furosemide-sensitive ion transport activity comparable with that of KCC2b. Mice that lack both KCC2 isoforms die at birth due to severe motor defects, including disrupted respiratory rhythm, whereas mice with a targeted disruption of the first exon of KCC2b survive for up to 2 weeks but eventually die due to spontaneous seizures. We show that these mice lack KCC2b but retain KCC2a mRNA. Thus, distinct populations of neurons show a differential dependence on the expression of the two isoforms: KCC2a expression in the absence of KCC2b is presumably sufficient to support vital neuronal functions in the brain stem and spinal cord but not in the cortex.  相似文献   

8.
We examined the expression of the KCC2 isoform of the K‐Cl cotransporter in the developing and adult brain, using an affinity‐purified antibody directed against a unique region of the KCC2 protein. Expression was shown to be limited to neurons at the cell bodies and cell processes in the hippocampus and cerebellum. Expression seemed to be the highest at the end of processes that originated from the CA1 pyramidal cells. Developmental up‐regulation of KCC2 expression was demonstrated in the entire rat brain by Northern and Western blot analyses, and in the hippocampus by immunofluorescence. Level of KCC2 expression was minimal at birth and increased significantly during postnatal development. This pattern of expression was opposite to the one of the Na‐K‐2Cl cotransporter that is highly expressed in immature brain and decreases during development. The up‐regulation of the K‐Cl cotransporter expression is consistent with the developmental down‐regulation of the intracellular Cl concentration in neurons. The level of intracellular Cl, in turn, determines the excitatory versus inhibitory response of the neurotransmitter γ‐aminobutyric acid in the immature versus mature brain. Finally, KCC2 expression was shown in dorsal root ganglion neurons, demonstrating that expression of the cotransporter is not strictly confined to central nervous system neurons. © 1999 John Wiley & Sons, Inc. J Neurobiol 39: 558–568, 1999  相似文献   

9.
The potassium chloride cotransporter KCC2 plays a major role in the maintenance of transmembrane chloride potential in mature neurons; thus KCC2 activity is critical for hyperpolarizing membrane currents generated upon the activation of gamma-aminobutyric acid type A and glycine (Gly) receptors that underlie fast synaptic inhibition in the adult central nervous system. However, to date an understanding of the cellular mechanism that neurons use to modulate the functional expression of KCC2 remains rudimentary. Using Escherichia coli expression coupled with in vitro kinase assays, we first established that protein kinase C (PKC) can directly phosphorylate serine 940 (Ser(940)) within the C-terminal cytoplasmic domain of KCC2. We further demonstrated that Ser(940) is the major site for PKC-dependent phosphorylation for full-length KCC2 molecules when expressed in HEK-293 cells. Phosphorylation of Ser(940) increased the cell surface stability of KCC2 in this system by decreasing its rate of internalization from the plasma membrane. Coincident phosphorylation of Ser(940) increased the rate of ion transport by KCC2. It was further evident that phosphorylation of endogenous KCC2 in cultured hippocampal neurons is regulated by PKC-dependent activity. Moreover, in keeping with our recombinant studies, enhancing PKC-dependent phosphorylation increased the targeting of KCC2 to the neuronal cell surface. Our studies thus suggest that PKC-dependent phosphorylation of KCC2 may play a central role in modulating both the functional expression of this critical transporter in the brain and the strength of synaptic inhibition.  相似文献   

10.
In red cells from normal individuals (HbA cells), the K+-Cl- cotransporter (KCC) is inactivated by low O2 tension whilst in those from sickle cell patients (HbS cells), it remains fully active. Changes in free intracellular [Mg2+] have been proposed as a mechanism. In HbA cells, KCC activity was stimulated by Mg2+ depletion and inhibited by Mg2+ loading but the effect of O2 was independent of Mg2+. At all [Mg2+]is, the transporter was stimulated in oxygenated cells, minimally active in deoxygenated ones. By contrast, the stimulatory effects of O2 was abolished by inhibitors of protein (de)phosphorylation. HbS cells had elevated KCC activity, which was of similar magnitude in oxygenated and deoxygenated cells, regardless of Mg2+ clamping. In deoxygenated cells, the antisickling agent dimethyl adipimidate inhibited sickling, Psickle and KCC. Results indicate a role for protein phosphorylation in O2 dependence of KCC, with different activities of the relevant enzymes in HbA and HbS cells, probably dependent on Hb.  相似文献   

11.
12.
We examined the expression of the KCC2 isoform of the K-Cl cotransporter in the developing and adult brain, using an affinity-purified antibody directed against a unique region of the KCC2 protein. Expression was shown to be limited to neurons at the cell bodies and cell processes in the hippocampus and cerebellum. Expression seemed to be the highest at the end of processes that originated from the CA1 pyramidal cells. Developmental up-regulation of KCC2 expression was demonstrated in the entire rat brain by Northern and Western blot analyses, and in the hippocampus by immunofluorescence. Level of KCC2 expression was minimal at birth and increased significantly during postnatal development. This pattern of expression was opposite to the one of the Na-K-2Cl cotransporter that is highly expressed in immature brain and decreases during development. The up-regulation of the K-Cl cotransporter expression is consistent with the developmental down-regulation of the intracellular Cl- concentration in neurons. The level of intracellular Cl-, in turn, determines the excitatory versus inhibitory response of the neurotransmitter gamma-aminobutyric acid in the immature versus mature brain. Finally, KCC2 expression was shown in dorsal root ganglion neurons, demonstrating that expression of the cotransporter is not strictly confined to central nervous system neurons.  相似文献   

13.
A C-terminal domain in KCC2 confers constitutive K+-Cl- cotransport   总被引:4,自引:0,他引:4  
The neuron-specific K(+)-Cl(-) cotransporter KCC2 plays a crucial role in determining intracellular chloride activity and thus the neuronal response to gamma-aminobutyric acid and glycine. Of the four KCCs, KCC2 is unique in mediating constitutive K(+)-Cl(-) cotransport under isotonic conditions; the other three KCCs are exclusively swelling-activated, with no isotonic activity. We have utilized a series of chimeric cDNAs to localize the determinant of isotonic transport in KCC2. Two generations of chimeric KCC4-KCC2 cDNAs initially localized this characteristic to within a KCC2-specific expansion of the cytoplasmic C terminus, between residues 929 and 1043. This region of KCC2 is rich in prolines, serines, and charged residues and encompasses two predicted PEST sequences. Substitution of this region in KCC2 with the equivalent sequence of KCC4 resulted in a chimeric KCC that was devoid of isotonic activity, with intact swelling-activated transport. A third generation of chimeras demonstrated that a domain just distal to the PEST sequences confers isotonic transport on KCC4. Mutagenesis of this region revealed that residues 1021-1035 of KCC2 are sufficient for isotonic transport. Swelling-activated K(+)-Cl(-) cotransport is abrogated by calyculin A, whereas isotonic transport mediated by KCC chimeras and KCC2 is completely resistant to this serine-threonine phosphatase inhibitor. In summary, a 15-residue C-terminal domain in KCC2 is both necessary and sufficient for constitutive K(+)-Cl(-) cotransport under isotonic conditions. Furthermore, unlike swelling-activated transport, constitutive K(+)-Cl(-) cotransport mediated by KCC2 is completely independent of serine-threonine phosphatase activity, suggesting that these two modes of transport are activated by distinct mechanisms.  相似文献   

14.
The K+-Cl- cotransporter (KCC) isoforms constitute a functionally heterogeneous group of ion carriers. Emerging evidence suggests that the C terminus (Ct) of these proteins is important in conveying isoform-specific traits and that it may harbor interacting sites for 4beta-phorbol 12-myristate 13-acetate (PMA)-induced effectors. In this study, we have generated KCC2-KCC4 chimeras to identify key functional domains in the Ct of these carriers and single point mutations to determine whether canonical protein kinase C sites underlie KCC2-specific behaviors. Functional characterization of wild-type (wt) and mutant carriers in Xenopus laevis oocytes showed for the first time that the KCCs do not exhibit similar sensitivities to changes in osmolality and that this distinguishing feature as well as differences in transport activity under both hypotonic and isotonic conditions are in part determined by the residue composition of the distal Ct. At the same time, several mutations in this domain and in the proximal Ct of the KCCs were found to generate allosteric-like effects, suggesting that the regions analyzed are important in defining conformational ensembles and that isoform-specific structural configurations could thus account for variant functional traits as well. Characterization of the other mutants in this work showed that KCC2 is not inhibited by PMA through phosphorylation of its canonical protein kinase C sites. Intriguingly, however, the substitutions N728S and S940A were seen to alter the PMA effect paradoxically, suggesting again that allosteric changes in the Ct are important determinants of transport activity and, furthermore, that the structural configuration of this domain can convey specific functional traits by defining the accessibility of cotransporter sites to regulatory intermediates such as PMA-induced effectors.  相似文献   

15.
Effect of peroxynitrite on passive K+ transport in human red blood cells.   总被引:1,自引:0,他引:1  
Peroxynitrite is generated in vivo by the reaction between nitric oxide, from endothelial and other cells, and the superoxide anion. It is therefore pertinent to examine its effects on the membrane permeability of red blood cells. Treatment of human red blood cells with peroxynitrite (nominally 1 mM) markedly stimulated passive K+ permeability. The main effect was on a Cl(-)-independent K+ pathway, which remains unidentified. Although K+-Cl- cotransport (KCC) was stimulated, this was dependent on saline composition, being inhibited by physiological levels of glucose (IC50 4 mM), and also by sucrose and MOPS. Effects on the Cl(-)-independent K+ pathway were less dependent on saline composition, and were not inhibited by amiloride, ethylisopropylamiloride, dimethylamiloride or gadolinium. Na+-K+-2Cl- cotransporter was inhibited whilst there was little effect on the Gardos channel (Ca2+-activated K+ channel). Peroxynitrite was markedly more effective in oxygenated cells than deoxygenated ones. Treatment with peroxynitrite per se did not affect initial cell volume. Anisotonic swelling modestly increased the Cl(-)-independent K+ influx, but did not affect peroxynitrite-stimulated KCC. Decreasing extracellular pH from 7.4 to 7.2 or 7.0 increased KCC stimulation, whilst the Cl(-)-independent component of K+ transport was lowest at pH 7.2. Finally, protein phosphatase inhibition with calyculin A (100 nM) inhibited KCC, implying that, as with other KCC stimuli, peroxynitrite acts via decreased protein phosphorylation; pre-treatment with calyculin A also inhibited the Cl(-)-independent component of K+ transport. These findings are relevant to the actions of peroxynitrite in vivo.  相似文献   

16.
In the mature brain, the neurotransmitter GABA can cause a postsynaptic hyperpolarization via activation of chloride permeant GABAA receptor channels. This hyperpolarizing response critically depends on chloride extrusion via the KCl‐cotransporter KCC2 1 . Its knockdown in mice impairs synaptic inhibition by changing the electrochemical potential for chloride and thus increases neuronal excitability 2 3 . Two independent groups provide first evidence now, published in EMBO reports, that rare variants of KCC2 confer an increased risk of epilepsy in men 4 5 .  相似文献   

17.
The polarity of neurotransmission mediated by the gamma-amino butyric acid (GABA) type A receptor depends crucially on intracellular chloride concentration, which is largely determined by the expression and function of cation/chloride co-transporters. Recent evidence shows how both activity and neurotrophic factors can affect GABAergic transmission in the mammalian central nervous system through their effects on the neuron-specific chloride-extruding transporter KCC2. In particular, GABAergic neurotransmission early in development, sustained neuronal activity in mature networks and brain-derived neurotrophic factor each modulate the expression or function of KCC2. The resulting changes in intracellular chloride concentration alter the nature or strength of fast GABAergic neurotransmission, profoundly affecting the development and function of neuronal networks.  相似文献   

18.
The neuron-specific K-Cl cotransporter (KCC2) is hypothesized to function as an active Cl- extrusion pathway important in postsynaptic inhibition mediated by ligand-gated anion channels, like gamma-aminobutyric acid type A (GABAA) and glycine receptors. To understand better the functional role of KCC2 in the nervous system, we developed polyclonal antibodies to a KCC2 fusion protein and used these antibodies to characterize and localize KCC2 in the rat cerebellum. The antibodies specifically recognized the KCC2 protein which is an approximately 140-kDa glycoprotein detectable only within the central nervous system. The KCC2 protein displayed a robust and punctate distribution in primary cultured retinal amacrine cells known to form exclusively GABAAergic synapses in culture. In immunolocalization studies, KCC2 was absent from axons and glia but was highly expressed at neuronal somata and dendrites, indicating a specific postsynaptic distribution of the protein. In the granule cell layer, KCC2 exhibited a distinct colocalization with the beta2/beta3-subunits of the GABAA receptor at the plasma membrane of granule cell somata and at cerebellar glomeruli. KCC2 lightly labeled the plasma membrane of Purkinje cell somata. Within the molecular layer, KCC2 exhibited a distinctly punctate distribution along dendrites, indicating it may be highly localized at inhibitory synapses along these processes. The distinct postsynaptic localization of KCC2 and its colocalization with GABAA receptor in the cerebellum are consistent with the putative role of KCC2 in neuronal Cl- extrusion and postsynaptic inhibition.  相似文献   

19.
The type of vesicular transporter expressed by a neuron is thought to determine its neurotransmitter phenotype. We show that inactivation of the vesicular inhibitory amino acid transporter (Viaat, VGAT) leads to embryonic lethality, an abdominal defect known as omphalocele, and a cleft palate. Loss of Viaat causes a drastic reduction of neurotransmitter release in both GABAergic and glycinergic neurons, indicating that glycinergic neurons do not express a separate vesicular glycine transporter. This loss of GABAergic and glycinergic synaptic transmission does not impair the development of inhibitory synapses or the expression of KCC2, the K+ -Cl- cotransporter known to be essential for the establishment of inhibitory neurotransmission. In the absence of Viaat, GABA-synthesizing enzymes are partially lost from presynaptic terminals. Since GABA and glycine compete for vesicular uptake, these data point to a close association of Viaat with GABA-synthesizing enzymes as a key factor in specifying GABAergic neuronal phenotypes.  相似文献   

20.
The neuron-specific potassium-chloride cotransporter 2 (KCC2) plays a crucial role, by controlling chloride extrusion, in the development and maintenance of inhibitory neurotransmission. Although it is now well established that activity-dependent mechanisms can down regulate KCC2 gene expression, the role of post-translational mechanisms in controlling KCC2 expression, specifically at the cell-surface, are poorly understood. We therefore set out to identify the mechanisms and motifs regulating KCC2 endocytosis, one important pathway that may control KCC2 membrane expression. Using a fluorescence-based assay, we show KCC2 when expressed in HEK293 cells is constitutively internalized via a dynamin- and clathrin-dependent pathway. Consistent with this, we demonstrate KCC2 from adult mouse brain associates in vivo with the clathrin-binding adaptor protein-2 (AP-2) complex. Using an endocytosis reporter system, we identify the presence of an autonomous endocytosis motif in the carboxyl cytoplasmic terminus of KCC2. By site-directed mutagenesis we define this novel KCC2 endocytic motif as a non-canonical di-leucine motif, (657)LLXXEE(662). Finally by mutating this motif in the context of full-length KCC2 we demonstrate that this novel KCC2 endocytic motif is essential for the constitutive internalization of KCC2 and for binding to the AP-2 complex. Subsequent sequence analysis reveals this motif is highly conserved between the closely related K(+)/Cl(-) family members that mediate chloride efflux, but absent from the more distant related cotransporters controlling chloride influx. In conclusion, our results indicate constitutive internalization of KCC2 is clathrin-mediated and dependent on the binding of AP-2 to this novel endocytic motif. Furthermore, that this process appears to be an evolutionarily conserved mechanism amongst functionally homologous cotransporters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号