首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Underground water use by Eucalyptus trees in an arid climate   总被引:1,自引:0,他引:1  
 Expanding the area of tree plantations in the Negev desert of Israel requires prior quantification of the water resources in small watersheds. Combined hydrological and physiological measurements were used to study a “liman” (floodwater irrigated plot) in the Negev highlands, where Eucalyptus and other tree species are grown successfully. The amount of water flowing into the liman, surplus water flowing out of the liman, temporal soil moisture distribution, and water uptake by the trees were determined. Depending on rainfall intensity and distribution during the season, the liman received 2 – 3 times the total seasonal rainfall. Although the study was conducted during a year with a negligible amount of rainfall, the transpiration rate was closely correlated with potential transpiration throughout the year. The amount of water extracted from the soil was less than the time-integrated transpiration rate from the trees, suggesting that a water source other than soil water storage was available to the trees. We suggest that the trees extracted water from the rock fractures and/or utilized the lateral flows over the rock/soil interface.  相似文献   

2.
Potassium deficient (−K) and potassium sufficient (+K) plants were exposed to four days of water stress. Well watered −K and +K plants had comparable rates of transpiration. But +K plants had a larger leaf area and depleted the soil moisture to a greater extent on day 1 of stress. For days 2 and 3 their transpiration rate, leaf water potential and relative water content fell below those of −K plants. Well watered −K plants had a significantly lower rate of photosynthesis than +K plants. Photosynthesis of −K plants was more sensitive to reduction in plant water potential than that of +K plants. Reduction of photosythesis in −K leaves was due to impairment of photosynthetic capacity and not to stomatal closure. Growth was significantly reduced in −K plants.  相似文献   

3.
 采用LI—6000便携式光合分析系统对毛乌素沙区主要植物种油蒿、中间锦鸡儿、旱柳进行了不同时期光合作用,蒸腾作用日进程的测定,并同步测定有效光辐射、空气相对湿度、叶温、气温、胞间CO2浓度、气孔阻力、叶片水势及土壤水势等因子;结果表明:不同时期、不同植物种其光合、蒸腾特征各异;植物的光合、蒸腾与环境因子和植物内部因子之间有密切关系,其中有效光辐射是影响光合作用、蒸腾作用诸因子中的主导因子,而气孔阻力变化则在调节光合和蒸腾中起着重要作用;不同植物种间气孔对环境条件变化的响应程度不同,以中间锦鸡儿最为灵敏;3种植物的水分利用效率表明,中间锦鸡儿的水分利用效率较油蒿、旱柳为高。  相似文献   

4.
Rates of water uptake by individual trees in a native Australian forest were measured on the Liverpool Plains, New South Wales, Australia, using sapflow sensors. These rates were up-scaled to stand transpiration rate (expressed per unit ground area) using sapwood area as the scalar, and these estimates were compared with modelled stand transpiration. A modified Jarvis-Stewart modelling approach (Jarvis 1976), previously used to calculate canopy conductance, was used to calculate stand transpiration rate. Three environmental variables, namely solar radiation, vapour pressure deficit and soil moisture content, plus leaf area index, were used to calculate stand transpiration, using measured rates of tree water use to parameterise the model. Functional forms for the model were derived by use of a weighted non-linear least squares fitting procedure. The model was able to give comparable estimates of stand transpiration to those derived from a second set of sapflow measurements. It is suggested that short-term, intensive field campaigns where sapflow, weather and soil water content variables are measured could be used to estimate annual patterns of stand transpiration using daily variation in these three environmental variables. Such a methodology will find application in the forestry, mining and water resource management industries where long-term intensive data sets are frequently unavailable.  相似文献   

5.
Increased leaf phosphorus (P) concentration improved the water-use efficiency (WUE) and drought tolerance of regularly defoliated white clover plants by decreasing the rate of daily transpiration per unit leaf area in dry soil. Night transpiration was around 17% of the total daily transpiration. The improved control of transpiration in the high-P plants was associated with an increased individual leaf area and WUE that apparently resulted from net photosynthetic assimilation rate being reduced less than the reductions in the transpiration (27% vs 58%). On the other hand, greater transpiration from low-P plants was associated with poor stomatal control of transpirational loss of water, less ABA in the leaves when exposed to dry soil, and thicker and smaller leaf size compared with high-P leaves. The leaf P concentration was positively related with leaf ABA, and negatively with transpiration rates, under dry conditions ( P < 0.001). However, leaf ABA was not closely related to the transpiration rate, suggesting that leaf P concentration has a greater influence than ABA on the transpiration rates.  相似文献   

6.
桃树冠层蒸腾动态的数学模拟   总被引:1,自引:0,他引:1  
将气孔导度公式、Penman—Monteith公式和土壤水分限制模型相结合,可以模拟出不同环境因子对植物蒸腾进程的影响。通过对盆栽桃树(Prunus persica var.nectadna Maxim.)数值模拟发现:影响桃树蒸腾速率的主要气象因子是太阳辐射、大气温度和湿度。植物通过气孔导度的改变来响应气象因子的变化,蒸腾的日变化主要是由气象因子的日变化引起的。土壤的水分状况也对气孔导度有显著的影响,进而影响植物的蒸腾大小。通过数值模拟还发现植物的蒸腾量并不总是随叶面积的增大而增大,对于桃树而言叶面积指数为4左右时日蒸腾量达到最大值。通过对气孔导度和蒸腾速率的模拟值和实测值进行检验发现,两者基本吻合,说明利用数学模拟的方法可以求出不同环境条件和不同叶面积桃树冠层的蒸腾速率。  相似文献   

7.
宁夏沙湖几种主要荒漠植物成丛性分析   总被引:9,自引:1,他引:9       下载免费PDF全文
该文对宁夏沙湖地区几种主要荒漠植物成丛或聚集分布的空间特征进行了研究,提出应用成丛性表征植物丛聚水平,并以丛生植物的丛径或散生植物的聚集分布尺度范围衡量植物成丛性的发育程度。其中散生植物的聚集尺度以Riplay's K点格局法进行计算。结果表明,植物的丛聚水平与生境条件密切相关,强日照、干热风、空旷的立地、较高土壤含水率、强透水蓄水能力等生境条件会促进植物成丛性的发育,而蒸腾胁迫低、土壤供水能力较差的生境条件下植物成丛性发育较弱。荒漠植物通过成丛或聚集分布可以形成局部微生境,减少地上部分的水分胁迫,是植物在群落水平适应环境的重要途径。  相似文献   

8.
试验采用人工控制土壤水分的方法,测定不同土壤含水量条件及有效辐射强度下沙地柏苗木的蒸腾速率、净光合速率、水分利用效率等指标,分析沙地柏在不同土壤含水量和光照条件下影响的光合生理响应特征及其变化规律。土壤含水量(SWC)用称重法测定,将硬塑盆中的土壤水分含量设置为7.5%,10%,12.5%,15%,17.5%,20%等6个不同的处理,每天进行称重,瞬时土壤水分含量用TDR100土壤水分测速仪(上海赛弗生物公司)测定,用Li-6400光合测定仪(美国LI-COR公司)测定沙地柏在不同土壤水分条件下光合生理指标。研究表明沙地柏的蒸腾速率、净光合速率均随着土壤含水量的增加呈先上升后下降的趋势。光合有效辐射在400—2000μmol·m-2·s-1范围内,沙地柏的净光合速率、蒸腾速率和水分利用率均呈现最高值。土壤水分含量在18.71%,17.99%和12.44%时,沙地柏的净光合速率、蒸腾速率和水分利用率达到最高值。土壤含水量12.44%—18.71%是沙地柏生长最适宜的土壤水分区间。在实践中利用沙地柏最适宜的土壤水分区间对沙地柏的栽植和生长可以进行...  相似文献   

9.
In environments where the amount of water is limiting growth, water-use efficiency (biomass production per unit water use) is an important trait. We studied the relationships of plant growth and water use efficiency with the pattern of biomass allocation, using 10 wheat cultivars, grown at two soil moisture levels in a growth chamber. Allocation pattern and relative growth rate were not correlated, whereas allocation pattern and water use efficiency were. Variation in transpiration per plant resulted from variation in the rate of transpiration per unit leaf area or root weight, rather than from differences in leaf area or root weight per plant. Transpiration per unit leaf area or root weight was lower when the leaf area or root weight per unit plant weight was larger. Also, the efficiency of water use at the plant and leaf levels was higher for plants with a higher leaf area per unit plant weight, and it was not correlated with the plant's growth rate. Differences in water-use efficiency at the leaf level were related to variation in stomatal conductance, rather than in the rate of photosynthesis. A high photosynthetic water-use efficiency was associated with a low efficiency of nitrogen use for photosynthesis.  相似文献   

10.
A study was conducted during the 1996–97 crop growth season at ICARDA in northern Syria, to investigate the influence of wheat canopy architecture on the partitioning of moisture between soil evaporation and crop transpiration, on a soil with high hydraulic conductivity. The study was conducted on the long-term two course wheat-lentil rotation trial, established on a swelling clay soil (Calcixerollic xerochrept). The wheat canopy architecture was manipulated by sowing the crop at either of two row-spacings, 0.17 or 0.30 m, both at a constant sowing rate equivalent to 120 kg ha–1. In this study, evapotranspiration from the crop was inferred from changes in soil moisture content over time, evaporation and rainfall interception were measured daily using microlysimetry, drainage was estimated as being the difference between potential daily evapotranspiration, and the evapotranspiration estimated from the soil water deficit. Between sowing and day 80 (tillering stage), evapotranspiration was calculated to consist mainly of soil evaporation. However, after day 80, transpiration became an increasingly dominant component of evapotranspiration. For both row-spacings, cumulative evapotranspiration over the season was approximately 373 mm. In the narrow-row crop, transpiration and soil evaporation were approximately 185 mm and 183 mm of water respectively. Conversely for the wide row-spaced crop, 172 mm of water was transpired while about 205 mm of water evaporated from the soil surface. While green leaf area index did not differ between row-spacings, the architecture of the crops as a result of sowing affected solar radiation penetration such that more incident radiation was intercepted at the soil surface of the wide row-spaced crop. This is likely to have made some contribution to the elevated levels of evaporation from the soil beneath the canopy of the wide-sown crop.  相似文献   

11.
黄玉清  王晓英  陆树华  汪青  赵平   《广西植物》2006,26(2):171-177
针对西南岩溶石漠化地区干旱缺水的特点,采用Li-6400对其先锋树种任豆、金银花、狗骨木的光合、蒸腾及水分利用效率等特征进行分析,以揭示先锋树种利用水分生理生态学特征,从而提出植被恢复的对策。光响应模拟结果表明金银花和狗骨木符合Walker的非直线双曲线模型。蒸腾临界值狗骨木(幼树期)最小,金银花次之,任豆树较大,说明阳性树种任豆具有较大的蒸腾拉力,能够从土壤提取更多的水分,以减少岩溶石漠化地区强光引起的高温灼伤。任豆树、金银花、狗骨木具有同地带干性或沙漠优势植物的光合速率特征。任豆树有较耐受强光的能力,这与其在石漠化地区总是能够成为优势层片优势种的地位相符。三种植物光有效辐射与叶片蒸腾的呈极显著的线性关系;任豆树的蒸腾作用受气孔调节明显;狗骨木有较高的水分利用效率。上午9点左右和下午5∶00~6∶00是这些石漠化地区植物水分利用最高时间段。可以说这三种植物具有适应石漠化地区干旱和高温的生理生态学适应特征和避旱避高温策略,并保持旺盛的生物生产力。从植物固定碳水化合物效率并提高水分利用效率而言,三种植物套种,任豆树能够对藤灌植物适当遮荫,对加速狗骨木生长,提高金银花的产量将具有较好的效益。  相似文献   

12.
解李娜  魏亚冉  马成仓 《生态学报》2015,35(6):1672-1678
本文采用改良的冲洗法,比较了内蒙古高原西部荒漠区锦鸡儿属(Caragana) 4 种优势植物—柠条锦鸡儿(C. korshinsk)、狭叶锦鸡儿(C. stenophylla)、垫状锦鸡儿(C. tibetica)和荒漠锦鸡儿(C. roborovoskyi)的水力结构日变化和季节变化,目的是了解4种锦鸡儿属植物对荒漠区环境的适应性及其差异。研究发现:4种锦鸡儿属植物的比导率、叶比导率均为早晚高、中午低的单谷日变化曲线;三个季节相比较,夏季的比导率、叶比导率最大;胡伯尔值春季>夏季>秋季。三个季节比导水率日平均值、夏季和秋季的叶比导率、三个季节的胡伯尔值都表现为:柠条锦鸡儿>荒漠锦鸡儿>狭叶锦鸡儿>垫状锦鸡儿;三个季节比导水率日变幅和春季叶比导率表现为:柠条锦鸡儿>荒漠锦鸡儿>垫状锦鸡儿>狭叶锦鸡儿。4个种比导水率日平均值的季节变幅相似。这些结果表明:(1)荒漠区锦鸡儿属植物的水力结构限制了水分运输,使其避免了中午的高蒸腾。(2)荒漠区锦鸡儿属植物通过较高的水分运输效率及较好的叶供水效率适应夏季的高温和强辐射,维持水分平衡;锦鸡儿属植物胡伯尔值的季节变化保证了其在春、夏季快速生长期有较好的水分供应。(3)较高的比导率、叶比导率和胡伯尔值导致了柠条锦鸡儿良好的水分供应和高蒸腾速率,进而导致了柠条锦鸡儿较快的生长速度,这说明柠条锦鸡儿对荒漠环境的适应性好于其它三个种;柠条锦鸡儿的输水效率高,但易发生严重的空穴和栓塞。  相似文献   

13.
In this study we evaluated daily whole plant transpiration and net photosynthetic rates in Stipa tenacissima L. (Poaceae) tussocks of different sizes subjected to three levels of soil moisture. The crown architecture of 12 tussocks was reconstructed with the 3D computer model Yplant taking into account the morphology and physiology of the leaves determined at different soil moisture levels. We also calculated whole plant transpiration by extrapolating leaf transpiration in different senescence conditions measured with a diffusion porometer. This extrapolated transpiration overestimated transpiration, particularly when the soil moisture level was high (>15% of volumetric soil water content). At this high level of soil moisture, large tussocks (>60 cm in diameter), which were sexually mature and had a large leaf surface area, were the most efficient with regard to daily water use efficiency (whole plant net photosynthesis/whole plant transpiration). Whole plant water use efficiency decreased with tussock size primarily because small tussocks exhibited high transpiration rates. Small tussocks were more sensitive to soil drying than large and intermediate ones, presenting a faster rate of leaf senescence as water deficit increased. Leaf acclimation to irradiance, which was significantly influenced by the degree of mutual shading among neighbouring leaves, along with the ontogeny of the tussock and its effect upon leaf senescence were found to be the main mechanisms involved in the different responses to water limitations found in whole plant gas exchange variables. Our results show that the size of each individual plant must be taken into account in processes of scaling-up of carbon gain and transpiration from leaf to stand, as this is a particularly relevant aspect in estimating water use by semiarid vegetation.  相似文献   

14.
We investigated the hydraulic properties in relation to soil moisture, leaf habit, and phylogenetic lineage of 17 species of oaks (Quercus) that occur sympatrically in northern central Florida (USA). Leaf area per shoot increased and Huber values (ratio of sapwood area to leaf area) decreased with increasing soil moisture of species’ habitats. As a result, maximum hydraulic conductance and maximum transpiration were positively correlated with mean soil moisture when calculated on a sapwood area basis, but not when calculated on a leaf area basis. This reveals the important role that changes in allometry among closely related species can play in co‐ordinating water transport capacity with soil water availability. There were significant differences in specific conductivity between species, but these differences were not explained by leaf habit or by evolutionary lineage. However, white oaks had significantly smaller average vessel diameters than red oaks or live oaks. Due to their lower Huber values, maximum leaf specific conductivity (KL) was higher in evergreen species than in deciduous species and higher in live oaks than in red oaks or white oaks. There were large differences between species and between evolutionary lineages in freeze–thaw‐induced embolism. Deciduous species, on average, showed greater vulnerability to freezing than evergreen species. This result is strongly influenced by evolutionary lineage. Specifically, white oaks, which are all deciduous, had significantly higher vulnerability to freezing than live oaks (all evergreen) and red oaks, which include both evergreen and deciduous species. These results highlight the importance of taking evolutionary lineage into account in comparative physiological studies.  相似文献   

15.
岩溶石漠化地区几种生态恢复植物的生理生态学特征   总被引:10,自引:0,他引:10  
何成新  黄玉清  李先琨  王晓英  汪青   《广西植物》2007,27(1):53-61,126
选择石漠化地区树种任豆树、金银花和苦丁茶的植株为对象,测定其光响应曲线和光合、蒸腾、气孔导度的日变化,研究其光合、蒸腾、气孔导度与环境因子间的关系。在岩石裸露率高、地表水缺乏、白天温度极高的石漠化地区,对任豆和苦丁茶进行光响应模拟表明,两者的最大净光合速率分别为15.88μmol.m-2.s-1、4.58μmol.m-2.s-1。从气体交换特征日变化看出,这三种植物均有光合午休现象,任豆午休程度最弱而苦丁茶最强,光合与气孔导度均呈显著的正相关关系;通过对胞间CO2浓度Ci与气孔限制Ls关系分析,任豆和金银花的光合作用上午以气孔限制为主,下午有非气孔因素影响,而苦丁茶则以非气孔限制为主。任豆树具有较高的水分利用效率,金银花次之,而苦丁茶最小。通过综合分析,认为地表缺水并不是石漠化地区简单唯一的限制因子,高温胁迫也造成该区植物同化CO2减少的原因。根系的下扎能力也应是石漠化地区植物长期存活的关键。因此通过人工诱导构建石漠化地区植物群落时一定要考虑植物本身的根系遗传性状。  相似文献   

16.
Since drought is a major factor limiting global potato production, identification of Solanum germplasm with drought resistance features is essential. The current study compared responses of Solanum tuberosum L. ‘Kennebec’ to those of the wild tuber bearing species, Solanum gandarillasii Cardenas, with respect to drought and heat stress. The cultivar Kennebec exhibited more leaf water loss as well as increased osmotic adjustment compared to S. gandarillasii during the imposition of progressively severe drought. In Kennebec, this stress led to severe leaf wilting and eventual canopy loss. However, S. gandarillasii was less sensitive to prolonged drought in terms of reduced loss of above ground biomass. The conservative “water saving” responses of S. gandarillasii included drought sensitive stomata resulting in low transpiration rates. Coupled with this apparent loss of an effective cooling mechanism, S. gandarillasii demonstrated superior thermal tolerance. Decreased intrinsic water use efficiency (WUE) at the leaf level was evident in Kennebec compared to S. gandarillasii when exposed to increasing levels of soil moisture stress and regardless of radiation level. This difference in WUE could be attributed to differences in transpiration rate and not to photosynthetic rate. S. gandarillasii may be appropriate for growth areas exhibiting drought conditions where reduced desiccation and thermal damage to leaf tissues are assets. Kennebec, however, was a ‘water spender’ that would be more appropriately grown under temperate growing conditions with an adequate water supply.  相似文献   

17.
Hydraulic conductances of alfalfa and soybean plants grown in controlled environment chambers at the current ambient carbon dioxide concentration and at twice the current ambient concentration were determined from measurements of transpiration rate and leaf and stem water potentials in the growth conditions. Growth at elevated carbon dioxide concentration reduced both transpiration rate and hydraulic conductance from the soil to the leaf in both species. Hydraulic conductance from the soil to the base of the stem was also lower at elevated carbon dioxide in soybean, but not alfalfa. These measurements identified the stem to leaf hydraulic pathway as a major target of the carbon dioxide effect in both species. The conductance of excised stem segments was much less in plants grown at elevated carbon dioxide in soybeans.  相似文献   

18.
Water‐use efficiency in grapevines is dependent on the aerial and below‐ground environment of the plant. Specifically, transpiration efficiency, the ratio of net carbon fixation to water loss, may be influenced by soil moisture and the leaf‐to‐air vapour pressure deficit (VPD) in the soil–plant–atmosphere continuum. The interactive effect of these abiotic parameters, however, has not been suitably investigated in field‐grown grapevines. Accordingly, gas exchange of an anisohydric variety, Semillon, was assessed across a number of vineyards in two warm grape‐growing regions of New South Wales (NSW) to ascertain how soil moisture and VPD interact to affect transpiration efficiency at the leaf level. Leaf gas exchange measurements demonstrated that the rate of transpiration (E) was driven by VPD, particularly under high soil moisture. Both high VPD and low soil moisture decreased photosynthesis (A) and instantaneous leaf transpiration efficiency (A/E). Increased intrinsic leaf transpiration efficiency (A/g) in response to drying soil was limited to vines growing in a non‐irrigated vineyard. In this site, A/g was negatively related to vine water status. VPD did not have a substantial influence on A/g in any vineyard. While VPD is the main driver for A/E, soil moisture is an important determinant of A/g. Under high VPD, stomatal closure in Semillon leaves was not substantial enough to suitably curtail transpiration, and as a consequence A/E declined. These data indicate that in warm climates, irrigation scheduling of anisohydric varieties must take into account both VPD and soil moisture so that vine water status can be maintained.  相似文献   

19.
韩路  王海珍 《生态学报》2024,44(2):832-843
探讨荒漠河岸林土壤水分、物种多样性的空间变异性及其相互关系,可为干旱区天然林保护、可持续经营和生态恢复提供科学依据。以塔里木荒漠河岸林为研究对象,基于野外样带调查和采样测定,系统分析了地下水埋深(GWD)梯度下林地土壤水分与物种多样性的空间变异及其权衡关系。结果表明:随GWD增加和土壤水分减少,荒漠河岸林群落物种数减少、结构简化、群落发生退化,退化顺序为浅根系的中生草本植物和灌木,最后留存的是抗旱性较强的乔灌木或灌木;同时土壤水分和物种丰富度、物种多样性指数均呈显著的线性递减趋势,而物种均匀度指数降幅较小。GWD与土壤水分、物种多样性之间均呈极显著的相关(P<0.01),土壤水分与物种多样性的相对收益随GWD增加而逐渐降低,表明GWD是控制荒漠河岸林土壤水分和物种多样性空间变异的关键因素。荒漠河岸林土壤水分与物种多样性权衡关系的转折点为GWD 4.5m左右,转折点以下(GWD<4.5m)二者沿GWD以相同速率变化,呈协同关系;转折点以上(GWD>4.5m)土壤水分与物种多样性的权衡明显增大,土壤水分相对收益剧降,即维持当前相应的物种多样性以消耗土壤水分为代价,系统通过反馈调节使物种多样性降低。综上表明,维持塔里木荒漠河岸林物种多样性和生态系统功能的合理GWD在4.5m左右,这为塔里木河流域荒漠河岸林保育与生态输水工程实施提供科学依据。  相似文献   

20.
不同土壤型羊草光合和蒸腾作用特性的比较研究   总被引:27,自引:0,他引:27  
不同土壤型羊草(Aneurolepidium chinense)的光合和蒸腾作用特性有所不同。当土壤由湿变干时,差异最为显著的是光饱和光合速率和最大蒸腾速率的降低率。典型栗钙土型比暗栗钙土型和盐化草甸土型羊草的光合速率下降幅度小;其蒸腾速率下降幅度比其他两种类型大。因此,典型栗钙土型羊草在土壤干旱条件下光能利用效率和水分利用效率均较高,对干旱的适应性较强。这些差异表明,在自然条件下,羊草可能存在着不同的土壤生态型  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号