首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA polymerases (pols) catalyse the synthesis of DNA. This reaction requires a primer-template DNA in order to grow from the 3'OH end of the primer along the template. On the other hand terminal deoxyribonucleotidyl transferase (TdT) catalyses the addition of nucleotides at the 3'OH end of a DNA strand, without the need of a template. Pol lambda and pol micro are ubiquitous enzymes, possess both DNA polymerase and terminal deoxyribonucleotidyl transferase activities and belong to pol X family, together with pol beta and TdT. Here we show that pol lambda, pol micro and TdT, all possess the ability to synthesise in vitro short fragments of DNA in the absence of a primer-template or even a primer or a template in the reaction. The DNA synthesised de novo by pol lambda, pol micro and TdT appears to have an unusual structure. Furthermore we found that the amino acid Phe506 of pol lambda is essential for the de novo synthesis. This novel catalytic activity might be related to the proposed functions of these three pol X family members in DNA repair and DNA recombination.  相似文献   

2.
DNA polymerase lambda is a novel enzyme of the family X of DNA polymerases. The recent demonstration of an intrinsic 5'-deoxyribose-5'-phosphate lyase activity, a template/primer dependent polymerase activity, a distributive manner of DNA synthesis and sequence similarity to DNA polymerase beta suggested a novel beta-like enzyme. All these properties support a role of DNA polymerase lambda in base excision repair. On the other hand, the biochemical properties of the polymerisation activity of DNA polymerase lambda are still largely unknown. Here we give evidence that human DNA polymerase lambda has an intrinsic terminal deoxyribonucleotidyl transferase activity that preferentially adds pyrimidines onto 3'OH ends of DNA oligonucleotides. Furthermore, human DNA polymerase lambda efficiently elongates an RNA primer hybridized to a DNA template. These two novel properties of human DNA polymerase lambda might suggest additional roles for this enzyme in DNA replication and repair processes.  相似文献   

3.
4.
DNA polymerase lambda contains template-dependent (DNA polymerase) and template-independent (terminal transferase) activities. In this study we enzymologically characterized the terminal transferase activity of polymerase lambda (pol lambda-tdt). Pol lambda-tdt activity was strongly influenced by the nature of the 3'-terminal sequence of the DNA substrate, and it required a single-stranded (ss) DNA 3'-overhang of about 9-12 nucleotides for optimal activity. The strong preference observed for pyrimidine versus purine nucleotide incorporation was found to be due, at least partially, to a steric block imposed by the residue Tyr-505 in the active site of pol lambda. Pol lambda-tdt was found to be able to elongate a 3'-ssDNA end by two alternative mechanisms: first, a template-independent one resulting in addition of 1 or 2 nucleotides, and second, a template-dependent one where a homopolymeric tract as short as 3 nucleotides at the 3'-end could be used as a template to direct DNA polymerization by a looping back mechanism. Furthermore repetitive cycles of DNA synthesis resulted in the expansion of such a short homopolymeric terminal sequence. Most importantly we found that the proliferating cell nuclear antigen was able to selectively block the looping back mechanism while stimulating the single terminal nucleotide addition. Finally replication protein A completely suppressed the transferase activity of pol lambda while stimulating the polymerase activity, suggesting that proliferating cell nuclear antigen and replication protein A can coordinate the polymerase and the terminal transferase activities of pol lambda.  相似文献   

5.
DNA polymerase lambda (Pol lambda) is a DNA polymerase beta (Pol beta)-like enzyme with both DNA synthetic and 5'-deoxyribose-5'-phosphate lyase domains. Recent biochemical studies implicated Pol lambda as a backup enzyme to Pol beta in the mammalian base excision repair (BER) pathway. To examine the interrelationship between Pol lambda and Pol beta in BER of DNA damage in living cells, we disrupted the genes for both enzymes either singly or in combination in the chicken DT40 cell line and then characterized BER phenotypes. Disruption of the genes for both polymerases caused hypersensitivity to H(2)O(2)-induced cytotoxicity, whereas the effect of disruption of either polymerase alone was only modest. Similarly, BER capacity in cells after H(2)O(2) exposure was lower in Pol beta(-/-)/Pol lambda(-/-) cells than in Pol beta(-/-), wild-type, and Pol lambda(-/-) cells, which were equivalent. These results suggest that these polymerases can complement for one another in counteracting oxidative DNA damage. Similar results were obtained in assays for in vitro BER capacity using cell extracts. With MMS-induced cytotoxicity, there was no significant effect on either survival or BER capacity from Pol lambda gene disruption. A strong hypersensitivity and reduction in BER capacity was observed for Pol beta(-/-)/Pol lambda(-/-) and Pol beta(-/-) cells, suggesting that Pol beta had a dominant role in counteracting alkylation DNA damage in this cell system.  相似文献   

6.
Human DNA polymerase lambda (Pol lambda) is a family X member with low frameshift fidelity that has been suggested to perform gap-filling DNA synthesis during base excision repair and during repair of broken ends with limited homology. Here, we present a 2.1 A crystal structure of the catalytic core of Pol lambda in complex with DNA containing a two nucleotide gap. Pol lambda makes limited contacts with the template strand at the polymerase active site, and superimposition with Pol beta in a ternary complex suggests a shift in the position of the DNA at the active site that is reminiscent of a deletion intermediate. Surprisingly, Pol lambda can adopt a closed conformation, even in the absence of dNTP binding. These observations have implications for the catalytic mechanism and putative DNA repair functions of Pol lambda.  相似文献   

7.
DNA polymerase (Pol) lambda is a DNA repair enzyme involved in base excision repair, non-homologous end joining and translesion synthesis. Recently, we identified Pol lambda as an interaction partner of cyclin-dependent kinase 2 (CDK2) that is central to the cell cycle G1/S transition and S-phase progression. This interaction leads to in vitro phosphorylation of Pol lambda, and its in vivo phosphorylation pattern during cell cycle progression mimics the modulation of CDK2/cyclin A. Here, we identify several phosphorylation sites of Pol lambda. Experiments with phosphorylation-defective mutants suggest that phosphorylation of Thr 553 is important for maintaining Pol lambda stability, as it is targeted to the proteasomal degradation pathway through ubiquitination unless this residue is phosphorylated. In particular, Pol lambda is stabilized during cell cycle progression in the late S and G2 phases. This most likely allows Pol lambda to correctly conduct repair of damaged DNA during and after S phase.  相似文献   

8.
DNA polymerase lambda (Pol lambda) is a novel enzyme of the family X of DNA polymerases. Pol lambda has some properties in common with DNA polymerase beta (Pol beta). The substrate properties of Pol lambda were compared to Pol beta using DNAs mimicking short-patch (SP) and long-patch (LP) base excision repair (BER) intermediates as well as recessed template primers. In the present work, the influence of several BER proteins such as flap-endonuclease-1 (FEN1), PCNA, and apurinic/apyrimidinic endonuclease-1 (APE1) on the activity of Pol lambda was investigated. Pol lambda is unable to catalyze strand displacement synthesis using nicked DNA, although this enzyme efficiently incorporates a dNMP into a one-nucleotide gap. FEN1 and PCNA stimulate the strand displacement activity of Pol lambda. FEN1 processes nicked DNA, thus removing a barrier to Pol lambda DNA synthesis. It results in a one-nucleotide gapped DNA molecule that is a favorite substrate of Pol lambda. Photocrosslinking and functional assay show that Pol lambda is less efficient than Pol beta in binding to nicked DNA. APE1 has no influence on the strand displacement activity of Pol lambda though it stimulates strand displacement synthesis catalyzed with Pol beta. It is suggested that Pol lambda plays a role in the SP BER rather than contributes to the LP BER pathway.  相似文献   

9.
10.
11.
12.
13.
The biochemical and cell cycle-dependent properties of proliferating cell nuclear antigen (OsPCNA) and flap endonuclease-1 (OsFEN-1) were characterized from rice (Oryza sativa). OsPCNA was physically associated with OsFEN-1 and increased the flap-endonuclease activity of OsFEN-1 by 2.5-fold. Northern and Western blotting analysis revealed that OsPCNA and OsFEN-1 were present in meristematic tissues such as cultured cells, shoot apical meristem and root apical meristem. No expression was detected in the mature leaves, although they were exposed to UV. Both of these proteins were localized in the nuclei of the interphase cells including G1, S and G2, and in the nuclear region at telophase. The distribution patterns of plant PCNA and FEN-1 in meiotic cell progression were investigated using microsporocytes of lily (Lilium longiflorum cv. Hinomoto). During the leptotene to pachytene stages, PCNA and FEN-1 were localized in the nuclear region. The florescence gradually disappeared from diplotene to metaphase I. Interestingly, signals for PCNA formed 10-20 intense spots at leptotene. The number of spots decreased to 1-5 at zygotene and finally to 1 at pachytene. The roles of OsPCNA and OsFEN-1 in mitotic and meiotic cell cycles are discussed.  相似文献   

14.
A new gene (POLL) encoding a novel DNA polymerase (Pol lambda) has been identified at mouse chromosome 19. Murine Pol lambda, consisting of 573 amino acid residues, has a 32% identity to Pol beta, involved in nuclear DNA repair in eukaryotic cells. It is interesting that Pol lambda contains all the critical residues involved in DNA binding, nucleotide binding and selection, and catalysis of DNA polymerization, that are conserved in Pol beta and other DNA polymerases belonging to family X. Murine Pol lambda, overproduced in Escherichia coli, displayed intrinsic DNA polymerase activity when assessed by in situ gel analysis. Pol lambda also conserves the critical residues of Pol beta required for its intrinsic deoxyribose phosphate lyase (dRPase) activity. The first 230 amino acid residues of Pol lambda, that have no counterpart in Pol beta, contain a BRCT domain, present in a variety of cell-cycle check-point control proteins responsive to DNA damage and proteins involved in DNA repair. Northern blotting, in situ hybridization analysis and immunostaining showed high levels of Pol lambda specifically expressed in testis, being developmentally regulated and mainly associated to pachytene spermatocytes. These first evidences, although indirect, suggest a potential role of Pol lambda in DNA repair synthesis associated with meiosis.  相似文献   

15.
Uchiyama Y  Suzuki Y  Sakaguchi K 《Planta》2008,227(6):1233-1241
In plants, there are no DNA polymerase β (Pol β) and DNA ligase III (Lig3) genes. Thus, the plant short-patch base excision repair (short-patch BER) pathway must differ considerably from that in mammals. We characterized the rice (Oryza Sativa L. cv. Nipponbare) homologue of the mammalian X-ray repair cross complementing 1 (XRCC1), a well-known BER protein. The plant XRCC1 lacks the N-terminal domain (NTD) which is required for Pol β binding and is essential for mammalian cell survival. The recombinant rice XRCC1 (OsXRCC1) protein binds single-stranded DNA (ssDNA) as well as double-stranded DNA (dsDNA) and also interacts with rice proliferating cell nuclear antigen (OsPCNA) in a pull-down assay. Through immunoprecipitation, we demonstrated that OsXRCC1 forms a complex with PCNA in vivo. OsXRCC1 mRNA was expressed in all rice organs and was induced by application of bleomycin, but not of MMS, H2O2 or UV-B. Bleomycin also increased the fraction of OsXRCC1 associated with chromatin. These results suggest that OsXRCC1 contributes to DNA repair pathways that differ from the mammalian BER system.  相似文献   

16.
Base excision repair (BER) is a major repair pathway in eukaryotic cells responsible for repair of lesions that give rise to abasic (AP) sites in DNA. Pivotal to this process is the 5'-deoxyribose-5-phosphate lyase (dRP lyase) activity of DNA polymerase beta (Pol beta). DNA polymerase lambda (Pol lambda) is a recently identified eukaryotic DNA polymerase that is homologous to Pol beta. We show here that human Pol lambda exhibits dRP lyase, but not AP lyase, activity in vitro and that this activity is consistent with a beta-elimination mechanism. Accordingly, a single amino acid substitution (K310A) eliminated more than 90% of the wild-type dRP lyase activity, thus suggesting that Lys(310) of Pol lambda is the main nucleophile involved in the reaction. The dRP lyase activity of Pol lambda, in coordination with its polymerization activity, efficiently repaired uracil-containing DNA in an in vitro reconstituted BER reaction. These results suggest that Pol lambda may participate in "single-nucleotide" base excision repair in mammalian cells.  相似文献   

17.
A growing number of DNA polymerases have been identified, although their physiological function and relation to human disease remain mostly unknown. DNA polymerase lambda (Pol lambda; also known as Pol beta2) has recently been identified as a member of the X family of DNA polymerases and shares 32% amino acid sequence identity with DNA Pol beta within the polymerase domain. With the use of homologous recombination, we generated Pol lambda(-/-) mice. Pol lambda(-/-) mice develop hydrocephalus with marked dilation of the lateral ventricles and exhibit a high rate of mortality after birth, although embryonic development appears normal. Pol lambda(-/-) mice also show situs inversus totalis and chronic suppurative sinusitis. The surviving male, but not female, Pol lambda(-/-) mice are sterile as a result of spermatozoal immobility. Microinjection of sperm from male Pol lambda(-/-) mice into oocytes gives rise to normal offspring, suggesting that the meiotic process is not impaired. Ultrastructural analysis reveals that inner dynein arms of cilia from both the ependymal cell layer and respiratory epithelium are defective, which may underlie the pathogenesis of hydrocephalus, situs inversus totalis, chronic sinusitis, and male infertility. Sensitivity of Pol lambda(-/-) cells to various kinds of DNA damage is indistinguishable from that of Pol lambda(+/+) cells. Collectively, Pol lambda(-/-) mice may provide a useful model for clarifying the pathogenesis of immotile cilia syndrome.  相似文献   

18.
Recently we have reported the characterization of a novel single subunit 62-kDa polypeptide with ddNTP-sensitive DNA polymerase activity from the developing seeds of mungbean (Vigna radiata). The protein showed higher expression and activity level during nuclear endoreduplication stages of mungbean seeds and similarity with mammalian DNA polymerase β in many physicochemical properties.1 The enzyme was found to specifically interact with PCNA (proliferating cell nuclear antigen),2 and expressed in both meristematic and meiotic tissues. Functional assays have demonstrated binding of the enzyme to normal and mismatched DNA substrates and with fidelity DNA synthesis in moderately processive mode, suggesting probable involvement of the enzyme in both replication and recombination.3 Here we have discussed the position of mungbean DNA polymerase as a homologue of DNA Pol λ, one of the newly identified member of family-X DNA polymerase in plants and illustrated the functional relevance of this enzyme in maintaining the coordination between DNA replication and repair in plant genome.Key words: family X-DNA polymerase, DNA polymerase λ, mungbean DNA polymerase, BRCT module, DNA repair  相似文献   

19.
DNA polymerase mu (pol mu), which is related to terminal deoxynucleotidyl transferase and DNA polymerase beta, is thought to be involved in non-homologous end joining and V(D)J recombination. Pol mu is induced by ionizing radiation and exhibits low fidelity. Analysis of translesion replication by purified human pol mu revealed that it bypasses a synthetic abasic site with high efficiency, using primarily a misalignment mechanism. It can also replicate across two tandem abasic sites, using the same mechanism. Pol mu extends primers whose 3'-terminal nucleotides are located opposite the abasic site. Most remarkably, this extension occurs via a mode of nucleotidyl transferase activity, which does not depend on the sequence of the template. This is not due to simple terminal nucleotidyl transferase activity, because pol mu is unable to add dNTPs to an oligo(dT)29 primer or to a blunt end duplex oligonucleotide under standard conditions. Thus, pol mu is a dual mode DNA-synthesizing enzyme, which can act as either a classical DNA polymerase or as a non-canonical, template-dependent, but sequence-independent nucleotidyl transferase. To our knowledge, this is the first report on a DNA-synthesizing enzyme with such properties. These activities may be required for its function in non-homologous end joining in the processing of DNA ends prior to ligation.  相似文献   

20.
There exist two major base excision DNA repair (BER) pathways, namely single-nucleotide or “short-patch” (SP-BER), and “long-patch” BER (LP-BER). Both pathways appear to be involved in the repair of small base lesions such as uracil, abasic sites and oxidized bases. In addition to DNA polymerase β (Polβ) as the main BER enzyme for repair synthesis, there is evidence for a minor role for DNA polymerase lambda (Polλ) in BER. In this study we explore the potential contribution of Polλ to both SP- and LP-BER in cell-free extracts. We measured BER activity in extracts of mouse embryonic fibroblasts using substrates with either a single uracil or the chemically stable abasic site analog tetrahydrofuran residue. The addition of purified Polλ complemented the pronounced BER deficiency of POLB-null cell extracts as efficiently as did Polβ itself. We have developed a new approach for determining the relative contributions of SP- and LP-BER pathways, exploiting mass-labeled nucleotides to distinguish single- and multinucleotide repair patches. Using this method, we found that uracil repair in wild-type and in Polβ-deficient cell extracts supplemented with Polλ was ∼80% SP-BER. The results show that recombinant Polλ can contribute to both SP- and LP-BER. However, endogenous Polλ, which is present at a level ˜50% that of Polβ in mouse embryonic fibroblasts, appears to make little contribution to BER in extracts. Thus Polλ in cells appears to be under some constraint, perhaps sequestered in a complex with other proteins, or post-translationally modified in a way that limits its ability to participate effectively in BER.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号