首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Jingmei Zhang  Jiaxi Liu  Zukeng Chen  Jinxing Lin   《Flora》2007,202(7):581-588
The calcium inhibitors A23187, EGTA and La3+ inhibit pollen grain germination and growth of pollen tubes of Lilium davidii var. unicolor at different concentrations. Treatment with 10−4 or 10−5 M ionophores A23187 reduced germination rate and resulted in distortion of pollen tube. Addition of 2 or 10 mM of the chelator EGTA disturbed the direction of pollen tube growth and extended the diameter of pollen tube as observed by light and confocal microscopy. The Ca2+-channel blocker lanthanum chloride (La3+) restrained germination or markedly caused transformation of pollen tube. Furthermore, all treatments led to disappearance of any calcium gradient. Calcium distribution in pollen grain and pollen tube was altered as shown by confocal microscopy for each treatment. This indicates that the inhibitors influence pollen development by affecting the calcium gradient which may play a critical role in germination and tube growth. Fourier transform infrared (FTIR) spectra indicated slight increases in contents of amide I and a substantial decrease in the content of aliphatic esters and saturated esters in treated pollen tubes compared with normal pollen tubes. The FTIR analysis confirmed that EGTA and La3+ weakened the accumulation of ester in pollen tubes, which may be associated with an increased content of amide I.  相似文献   

2.
Overwhelming evidence points to an American origin for the sweet potato Ipomoea batatas (L.) Lam. Attempts have been made to identify related diploid species from Mexico, and to use these in hybridisation experiments with I. batatas. The sweet potato is a poor seed setter but abundant bloom occurs in Jamaica very late in the year. Attempts at hybridisation between I. batatas (2n=90) and I. trichocarpa (Elliott) (2n=30) or I. gracilis (2n=30) has been tolerably successful. A very high degree of self-incompatibility was demonstrated in all three species investigated but successful crosses were made using different plants of I. trichocarpa. An investigation of pollen viability showed that in all cases pollen could germinate but pollen tube growth was abnormal in incompatible pollinations. I. trichocarpa hybridised readily with I. batatas when the former was used as female parent. Embryo development in such a cross proceeded slowly, and stopped before cotyledon formation. No viable seeds were obtained. A comparison of embryo development in hybrid and normal seeds brought to light anomalies in development and structure of endosperm and maternal tissue in the hybrid.  相似文献   

3.
McKenna ST  Vidali L  Hepler PK 《Planta》2004,218(6):906-915
Previously, we have shown that excess profilin inhibits pollen tube growth at significantly lower concentrations than it blocks cytoplasmic streaming. To elucidate the mechanism by which profilin achieves this function, we have employed mutant profilins from Schizosaccharomyces pombe [J. Lu and T.D. Pollard (2001) Mol Biol Cell 12:1161–1175], which have defects in actin-binding, ability to inhibit polymerization, and poly-l-proline (PLP)-binding. Using Lilium longiflorum L. pollen and S. pombe profilins as wild-type (wt) standards, mutant profilins have been injected into pollen tubes of Lilium, and examined for their effects on growth rate and cell morphology. Our results show that mutant Y5D (68% actin-binding; 1.1% PLP-binding) is indistinguishable from wt-standard profilins. However mutant K81F (2.7% actin-binding; 77% PLP-binding) and especially mutant K67E (<1% actin-binding; 100% PLP-binding) are significantly less effective than wt-standard profilins in their ability to inhibit pollen tube growth. PLP also inhibits pollen tube growth. However, PLP is not different from K67E/PLP combined, which has no actin-binding, suggesting that PLP does not function by binding to profilin. In addition, there are differences in the morphology and F-actin organization in cells injected with PLP versus wt-profilin. Whereas wt-profilin causes a fragmentation and marked reduction in the amount of F-actin [L. Vidali et al. (2001) Mol Biol Cell 12:2534–2545], PLP generates an extensive disorganization without any apparent reduction in the amount of F-actin. We conclude that along with actin-binding activity of profilin, PLP-containing proteins also participate in the growth control process, and can do so independently of binding to profilin.Abbreviations 3D Three-dimensional - PLP Poly-l-proline - RMS Root mean square - wt Wild type  相似文献   

4.
Ca2+-CaM signaling is involved in pollen tube development. However, the distribution and function of CaM and the downstream components of Ca2+-CaM signal in pollen tube development still need more exploration. Here we obtained the CaM–GFP fusion protein transgenic line of Nicotiana tobacum SRI, which allowed us to monitor CaM distribution pattern in vivo and provided a useful tool to observe CaM response to various exogenous stimulations and afforded solid evidences of the essential functions of CaM in pollen tube growth. CaM–GFP fusion gene was constructed under the control of Lat52-7 pollen-specific promoter and transformed into Nicotiana tobacum SRI. High level of CaM–GFP fluorescence was detected at the germinal pores and the tip-to-base gradient of fluorescence was observed in developing pollen tubes. The distribution of CaM at apical dome had close relationship with the pulsant growth mode of pollen tubes: when CaM aggregated at the apical dome, pollen tubes stepped into growth state; When CaM showed non-polarized distribution, pollen tubes stopped growing. In addition, after affording exogenous Ca2+, calmidazolium (antagonism of CaM) or Brefeldin A (an inhibitor of membrane trafficking), CaM turned to a uniform distribution at the apical dome and pollen tube growth was held back. Taken together, our results showed that CaM played a vital role in pollen tube elongation and growth rate, and the oscillation of tip-to-base gradient of CaM was required for the normal pulsant growth of pollen tube.  相似文献   

5.
Summary The effect of oxygen availability on d-xylose and D-glucose metabolism by Pichia stipitis, Candida shehatae and Pachysolen tannophilus was investigated. Oxygen was not required for fermentation of d-xylose or d-glucose, but stimulated the ethanol production rate from both sugars. Under oxygen-limited conditions, the highest ethanol yield coefficient (Ye/s) of 0.47 was obtained on d-xylose with. P. stipitis, while under similar conditions C. shehatae fermented d-xylose most rapidly with a specific productivity (qpmax) of 0.32 h-1. Both of these yeasts fermented d-xylose better and produced less xylitol than. P. tannophilus. Synthesis of polyols such as xylitol, arabitol, glycerol and ribitol reduced the ethanol yield in some instances and was related to the yeast strain, carbon source and oxygen availability. In general, these yeasts fermented d-glucose more rapidly than d-xylose. By contrast Saccharomyces cerevisiae fermented d-glucose at least three-fold faster under similar conditions.Nomenclature qpmax maximum specific rate of ethanol production (g ethanol per g dry biomass per hour) - Ye/s ethanol yield (g ethanol per g substrate utilized) - Yp/s polyol yield (g polyol per g substrate utilized) - Yx/s biomass yield (g dry biomass per g substrate utilized) - max maximum specific growth rate (per hour)  相似文献   

6.
Summary Pollen size and pistil length data have been collected for 93 species of Rhododendron (Ericaceae) belonging to a number of different subgeneric taxa. For a sample of eight species in section Vireya, pollen tube growth in the style after selfor interspecific pollination has been quantified. Pollen volume and the time taken for pollen tubes to reach the ovary were both related to pistil length. Pollen-tube growth rates were generally greater for species with longer pistils and larger pollen. Increasing temperature increased the rate of pollen-tube growth. There was no detectable effect of pollen tube density on tube growth rate in the style. After interspecific pollinations tube growth rates in foreign styles could be faster or slower than in self styles. A semisterile individual with two viable pollen grains per tetrad and a plant grafted as scion to a longer-styled stock both showed more rapid pollen-tube growth than expected on the basis of pistil size. Data collected for 26 species in section Vireya showed that where extreme disparity of pollen/pistil size causes failure of interspecific crosses, one or more bridging species with intermediate pollen/pistil size can generally be selected.  相似文献   

7.
Effects of Yariv phenylglycoside on cell wall assembly in the lily pollen tube   总被引:18,自引:0,他引:18  
Arabinogalactan-proteins (AGPs) are proteoglycans with a high level of galactose and arabinose. Their current functions in plant development remain speculative. In this study, (β-D-glucosyl)3 Yariv phenylglycoside [(β-D-Glc)3] was used to perturb AGPs at the plasmalemma-cell wall interface in order to understand their functional significance in cell wall assembly during pollen tube growth. Lily (Lilium longiflorum Thunb.) pollen tubes, in which AGPs are deposited at the tip, were used as a model. Yariv phenylglycoside destabilizes the normal intercalation of new cell wall subunits, while exocytosis of the secretory vesicles still occurs. The accumulated components at the tip are segregated between fibrillar areas of homogalacturonans and translucent domains containing callose and AGPs. We propose that the formation of AGP/(β-D-Glc)3 complexes is responsible for the lack of proper cell wall assembly. Pectin accumulation and callose synthesis at the tip may also change the molecular architecture of the cell wall and explain the lack of proper cell wall assembly. The data confirm the importance of AGPs in pollen tube growth and emphasize their role in the deposition of cell wall subunits within the previously synthesized cell wall. Received: 14 August 1997 / Accepted: 9 September 1997  相似文献   

8.
 We examined the influence of pollen competitive environment on pollen performance in Mirabilis jalapa. We used the number of pollen grains and the number of pollen tubes per pistil as measures of pollen competition. Pollen germination, pollen tube penetration into the style, and pollen tube growth rates were used as measures of pollen performance. All three measures of pollen performance were affected by the competitive environment. Pollen germination was greatest at intermediate pollen load sizes. The percentage of germinated pollen grains that penetrated the stigma and grew into the style decreased with pollen load size. Pollen tube growth rate in the style was greater and more variable with larger numbers of pollen tubes in the style. Controlling for the degree of selection at the stigma indicated that pollen-pollen or pollen-style interactions were the likely causes of increased growth rates. Received: 28 October 1996 / Revision accepted: 24 January 1997  相似文献   

9.
Summary Using a continuous flow technique the relationship between growth rate and substrate concentration was investigated with glucose as the limiting factor of a culture of Escherichia coli. Graphical and numerical analysis of the experimental data demonstrated that the application of the Michaelis-Menten equation produced erroneous results, whereas, the constants obtained from the Teissier equation were in agreement with the experimental data. On this basis, new equations defining the steady state cell and substrate concentration in continuous flow cultures were developed and tested against experimental data.Comparison of the specific growth rates, substrate uptake rates and oxygen consumption rates demonstrated that all were directly proportional to each other and could be related to each other by mathematical equations. Specifically it was shown that as the growth rate increased from 0.06 to k m =0.76 the substrate uptake rate increased from 134 to 1420 mg glucose per gram cell weight per hour and the oxygen consumption rate increased from 48.6 to 505 mg O2 per gram cell weight per hour. Independent of the growth rate 37% of the carbohydrate consumed were oxidized. The yield factor varied from 0.44 at low growth rates to 0.54 at high growth rates. Analysis of the growth rate-substrate uptake rate relationship indicated that a minimum substrate uptake rate of 55 mg glucose per gram cell weight per hour existed below which cell reproduction would cease. This was supported by the fact that steady state conditions could not be maintained in the culture at D values below 0.02 when the substrate supply rate decreased below 45 mg glucose per gram cell weight per hour.Material contained in this paper was submitted as a thesis in partial fulfillment of the requirements for the Ph. D. degree of Dr. R. S. Lipe.  相似文献   

10.
Actin is an ancient conserved protein that is encoded by multiple isovariants in multicellular organisms. There are eight functional actin genes in the Arabidopsis genome, and the precise function and mechanism of action of each isovariant remain poorly understood. Here, we report the characterization of ACT11, a reproductive actin isovariant. Our studies reveal that loss of function of ACT11 causes a delay in pollen germination, but enhances pollen tube growth. Cytological analysis revealed that the amount of filamentous actin decreased, and the rate of actin turnover increased in act11 pollen. Convergence of actin filaments upon the germination aperture was impaired in act11 pollen, consistent with the observed delay of germination. Reduction of actin dynamics with jasplakinolide suppressed the germination and tube growth phenotypes in act11 pollen, suggesting that the underlying mechanisms involve an increase in actin dynamics. Thus, we demonstrate that ACT11 is required to maintain the rate of actin turnover in order to promote pollen germination and maintain the normal rate of pollen tube growth.  相似文献   

11.
Reactive oxygen species (ROS) produced by NAD(P)H oxidases play a central role in plant stress responses and development. To better understand the function of NAD(P)H oxidases in plant development, we characterized the Arabidopsis thaliana NAD(P)H oxidases RBOHH and RBOHJ. Both proteins were specifically expressed in pollen and dynamically targeted to distinct and overlapping plasma membrane domains at the pollen tube tip. Functional loss of RBOHH and RBOHJ in homozygous double mutants resulted in reduced fertility. Analyses of pollen tube growth revealed remarkable differences in growth dynamics between Col–0 and rbohh–1 rbohj–2 pollen tubes. Growth rate oscillations of rbohh–1 rbohj–2 pollen tubes showed strong fluctuations in amplitude and frequency, ultimately leading to pollen tube collapse. Prior to disintegration, rbohh–1 rbohj–2 pollen tubes exhibit high‐frequency growth oscillations, with significantly elevated growth rates, suggesting that an increase in the rate of cell‐wall exocytosis precedes pollen tube collapse. Time‐lapse imaging of exocytic dynamics revealed that NAD(P)H oxidases slow down pollen tube growth to coordinate the rate of cell expansion with the rate of exocytosis, thereby dampening the amplitude of intrinsic growth oscillations. Using the Ca2+ reporter Yellow Cameleon 3.6, we demonstrate that high‐amplitude growth rate oscillations in rbohh–1 rbohj–2 pollen tubes are correlated with growth‐dependent Ca2+ bursts. Electrophysiological experiments involving double mutant pollen tubes and pharmacological treatments also showed that ROS influence K+ homeostasis. Our results indicate that, by limiting pollen tube growth, ROS produced by NAD(P)H oxidases modulate the amplitude and frequency of pollen tube growth rate oscillations.  相似文献   

12.
应用荧光显微技术、激光共聚焦扫描显微技术、单克隆抗体免疫荧光标记技术以及傅里叶变换显微红外光谱分析(FTIR)等手段,研究了内钙拮抗剂TMB-8对白皮松花粉管胞内Ca2+分布、花粉管生长以及细胞肇构建等的影响.结果表明,白皮松花粉管经TMB-8处理后,胞内的Ca2+浓度下降,花粉管内典型的Ca2+浓度梯度消失,花粉萌发...  相似文献   

13.
With regard to adaptation of green ash (Fraxinus pennsylvanica Marshall) to ecological conditions in Croatia, pollen germination and pollen tube length after 2, 4 and 6 hours were examined in vitro at 10, 15, 20 and 25°C during two years 2001 and 2002. Narrow leaved ash (F. angustifolia Vahl) pollen served as a control in 2002. The year, time and temperature, and the interaction between time and temperature were significant for both germination percentage and pollen tube length. Interactions year × temperature and year × time were significant for pollen tube length only. The highest germination percentage (17.86% in 2001 and 19.40% in 2002) of green ash pollen was at 15°C after 6 hours. The pollen tube length was greatest at 20°C (393.46 μm) in 2001 and 25°C (899.50 μm) in 2002 after 6 hours. Narrow leaved ash pollen had the highest germination percentage (19.22%) at 20°C after 6 hours and was significantly reduced at 25°C. The pollen tube length was greatest at 25°C (518.90 μm) after 6 hours. It can be concluded that green ash pollen has satisfactory germination in ecological conditions in Croatia and that the optimum temperature for pollen germination is higher than 20°C.  相似文献   

14.
In lily, adhesion of the pollen tube to the transmitting-tract epidermal cells (TTEs) is purported to facilitate the effective movement of the tube cell to the ovary. In this study, we examine the components of the extracellular matrices (ECMs) of the lily pollen tubes and TTEs that may be involved in this adhesion event. Several monoclonal antibodies to plant cell wall components such as esterified pectins, unesterified pectins, and arabinogalactan-proteins (AGPs) were used to localize these molecules in the lily pollen tube and style at both light microscope (LM) and transmission electron microscope (TEM) levels. In addition, (-d-Glc)3 Yariv reagent which binds to AGPs was used to detect AGPs in the pollen tube and style. At the LM level, unesterified pectins were localized to the entire wall in in-vivo- and in-vitro-grown pollen tubes as well as to the surface of the stylar TTEs. Esterified pectins occurred at the tube tip region (with some differences in extent in in-vivo versus in-vitro tubes) and were evenly distributed in the entire style. At the TEM level, esterified pectins were detected inside pollen tube cell vesicles and unesterified pectins were localized to the pollen tube wall. The in-vivo pollen tubes adhere to each other and can be separated by pectinase treatment. At the LM level, AGP localization occurred in the tube tip of both in-vivo- and in-vitro-grown pollen tubes and, in the case of one AGP probe, on the surface of the TTEs. Another AGP probe localized to every cell of the style except the surface of the TTE. At the TEM level, AGPs were mainly found on the plasma membrane and vesicle membranes of in-vivo-grown pollen tubes as well as on the TTE surface, with some localization to the adhesion zone between pollen tubes and style. (-d-Glc)3 Yariv reagent bound to the in-vitro-grown pollen tube tip and significantly reduced the growth of both in-vitro- and in-vivo-grown pollen tubes. This led to abnormal expansion of the tube tip and random deposition of callose. These effects could be overcome by removal of (-d-Glc)3 Yariv reagent which resulted in new tube tip growth zones emerging from the flanks of the arrested tube tip. The possible roles of pectins and AGPs in adhesion during pollination and pollen tube growth are discussed.Abbreviations AGP arabinogalactan-protein - ECM extracellular matrix - Glc glucose - MAbs monoclonal antibodies - LM light microscope - Man mannose - TEM transmission electron microscope - TTE transmitting tract epidermal cell The authors thank Michael Georgiady for assistance with the preparation of material for the TEM immunolocalization, Diana Dang for her help with the pectinase experiment, and Kathleen Eckard for assistance in all aspects of this study. The MAbs were the generous gifts of Dr. J.P. Knox. G.Y. Jauh thanks Dr. E.A. Nothnagel for assistance in making the Yariv reagent and for the gift of the control (-d-Man)3 Yariv reagent. This work is in partial fulfilment of the dissertation requirements for a PhD degree in Botany and Plant Sciences for G.Y. Jauh at the University of California, Riverside. This work was supported by National Science Foundation grant 91-18554 and an R.E.U. grant to E.M.L.  相似文献   

15.
Air temperatures of greater than 35 °C are frequently encountered in groundnut‐growing regions, especially in the semi‐arid tropics. Such extreme temperatures are likely to increase in frequency under future predicted climates. High air temperatures result in failure of peg and pod set due to lower pollen viability. The response of pollen germination and pollen tube growth to temperature was quantified in order to identify differences in pollen tolerance to temperature among 21 groundnut genotypes. Plants were grown from sowing to harvest in a poly‐tunnel under an optimum temperature of 28/22 °C (day/night). Pollen was collected at anther dehiscence and was exposed to temperatures from 10° to 47·5 °C at 2·5 °C intervals. The results showed that a modified bilinear model most accurately described the response to temperature of percentage pollen germination and maximum pollen tube length. Genotypes were found to range from most tolerant to most susceptible based on both pollen characters and membrane thermostability. Mean cardinal temperatures (Tmin, Topt and Tmax) averaged over 21 genotypes were 14·1, 30·1 and 43·0 °C for percentage pollen germination and 14·6, 34·4 and 43·4 °C for maximum pollen tube length. The genotypes 55‐437, ICG 1236, TMV 2 and ICGS 11 can be grouped as tolerant to high temperature and genotypes Kadiri 3, ICGV 92116 and ICGV 92118 as susceptible genotypes, based on the cardinal temperatures. The principal component analysis identified maximum percentage pollen germination and pollen tube length of the genotypes, and Tmax for the two processes as the most important pollen parameters in describing a genotypic tolerance to high temperature. The Tmin and Topt for pollen germination and tube growth, rate of pollen tube growth were less predictive in discriminating genotypes for high temperature tolerance. Genotypic differences in heat tolerance‐based on pollen response were poorly related (R2 = 0·334, P = 0·006) to relative injury as determined by membrane thermostability.  相似文献   

16.
The effects of mycorrhizal infection, soil P availability and fruit production on the male function of reproduction were examined in two cultivars of tomato (Lycopersicon esculentum Mill.). Tomato plants were grown in a greenhouse under three treatment combinations: non‐mycorrhizal, low P (NMPO); non‐mycorrhizal, high P (NMP3); and mycorrhizal, low P (MPO). In addition, all treatment combinations were grown both with and without fruit. Fruit production decreased final leaf biomass, flower production and in vitro pollen tube growth rates, often reducing the beneficial effects of increased P uptake. Thus, fruit production diverted resources from subsequent vegetative growth, flower production and pollen development. As the growing season progressed, mean pollen production per flower and in vitro germination and tube growth decreased. Mycorrhizal infection and high soil P conditions increased final leaf biomass, flower production, mean pollen production per flower (in one cultivar) and in vitro pollen tube growth rates. Thus, mycorrhizal infection and high soil P conditions increased pollen quantity and quality, thereby enhancing fitness through the male function. Similar trends in these treatments suggested that mycorrhizal effects on the male function were largely the result of improved P acquisition.  相似文献   

17.
In flowering plants, the growth of pollen tubes is essential for the delivery of sperm to the egg cells. Although many factors (including cell‐wall properties) are involved in this process, little is known about the underlying molecular mechanisms that regulate the growth of pollen tubes. We report here the characterization of an Arabidopsis mutant male gametophyte defective 4 (mgp4) that is severely defective in pollen tube growth. The mgp4 mutation also impairs root growth of pollen‐rescued mgp4 mutant plants generated by expressing MGP4 cDNA under the control of a pollen grain/tube‐specific promoter. The MGP4 gene encodes a putative xylosyltransferase and is expressed in many organs/tissues, including pollen tubes and roots. MGP4 protein expressed in Pichia pastoris exhibited xylosyltransferase activity and transferred d ‐xylose onto l ‐fucose. The pectic polysaccharide rhamnogalacturonan II (RG‐II), isolated from 7‐day‐old pollen‐rescued mutant seedlings, exhibited a 30% reduction in 2‐O‐methyl d ‐xylose residues. Furthermore, an exogenous supply of boric acid enhanced RG‐II dimer formation and partially restored the root growth of the pollen‐rescued mutant seedlings. Taken together, these results suggest that MGP4 plays important roles in pollen tube and root growth by acting as a xylosyltransferase involved in the biosynthesis of pectic RG‐II.  相似文献   

18.
It has recently been reported that high temperature slows in vivo pollen tube growth rates in Gossypium hirsutum pistils under field conditions. Although numerous physical and biochemical pollen-pistil interactions are necessary for in vivo pollen tube growth to occur, studies investigating the influence of heat-induced changes in pistil biochemistry on in vivo pollen tube growth rates are lacking. We hypothesized that high temperature would alter diurnal pistil biochemistry and that pollen tube growth rates would be dependent upon the soluble carbohydrate content of the pistil during pollen tube growth. G. hirsutum seeds were sown on different dates to obtain flowers exposed to contrasting ambient temperatures but at the same developmental stage. Diurnal pistil measurements included carbohydrate balance, glutathione reductase (GR; EC 1.8.1.7), soluble protein, superoxide dismutase (SOD; EC 1.15.1.1), NADPH oxidase (NOX; EC 1.6.3.1), adenosine triphosphate (ATP), and water-soluble calcium. Soluble carbohydrate levels in cotton pistils were as much as 67.5% lower under high temperature conditions (34.6 °C maximum air temperature; August 4, 2009) than under cooler conditions (29.9 °C maximum air temperature; August 14, 2009). Regression analysis revealed that pollen tube growth rates were highly correlated with the soluble carbohydrate content of the pistil during pollen tube growth (r2 = 0.932). Higher ambient temperature conditions on August 4 increased GR activity in the pistil only during periods not associated with in vivo pollen tube growth; pistil protein content declined earlier in the day under high temperatures; SOD and NOX were unaffected by either sample date or time of day; pistil ATP and water soluble calcium were unaffected by the warmer temperatures. We conclude that moderate heat stress significantly alters diurnal carbohydrate balance in the pistil and suggest that pollen tube growth rate through the style may be limited by soluble carbohydrate supply in the pistil.  相似文献   

19.
Growth rates in terms of area increase per 30 min were measured in flat thalli of several seaweed, species by means of computer-assisted image analysis, at 12 h light per day and a photon fluence rate of 20 μmol · m-2· s?1. Light fields included white fluorescent, imitated underwater, blue, green, and red light. In the green alga Ulva pseudocurvata Koeman et Hoek, blue light caused an immediate reduction of thallus area and growth rate after the onset of light, whereas green light and red light resulted in an initial peak in growth rate followed by inhibition 60 min after the onset of light. More growth was observed in darkness than in blue light in U. pseudocurvata. All brown and red algae tested, with Laminaria saccharina (L.) Lamour. and Palmaria palmata Stackh. as the main investigated species, grew faster during the day than during the night, irrespective of light quality during the main light phase. The upper intertidal red alga Porphyra umbilicalis (L.) J. Ag. achieved most of its thallus expansion per 24 h during the first 3 h of the light phase, with maximum growth rates of 2–3% increase in area per hour. Maximal growth rates were 0.7% for juvenile laminarian sporophytes and were lower than this in Palmaria palmata and other perennial red algae. The temporary growth inhibition by light in Ulva pseudocurvata suggests photomorphogenetic events, similar to the kinetics of stem elongation in higher plant seedlings after blue or red light pulses in darkness.  相似文献   

20.
Tomato pollen germination, pollen tube growth and respiratory activity were recorded during incubation in a liquid medium for 7 h over a temperature range of 15–35°C. Although the initial rate of respiration was highest at 30°C, both at 30°C and 35°C respiration decreased after the first hour of incubation due to high temperature impairment of germination and pollen tube growth. The total per cent germination of pollen over the 7-h period was maximal at 15°C whereas pollen tube length was maximal at 25°C. Although the production of CO2 measured at hourly intervals throughout the incubation period did not correlate to a statistically significant level with either the per cent pollen germination or the length of the pollen tubes alone, nevertheless from 2 h after the start of incubation, it closely correlated with the values for germination × pollen tube length, indicating that the respiratory activity of tomato pollen at a given time is a function of both the per cent germination and the pollen tube growth. We suggest therefore that the rate of respiration might be preferable to a simple germination test for the assessment of pollen germination ability since it expresses not only the pollen germination potential but also the growth vigour of the pollen tubes. In addition, where in vitro tests are designed to assess pollen germination–temperature interactions, they should employ a long incubation period (e.g. 7 h) to permit differences in sensitivity to temperature to be observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号