首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study examines the relationship between insulin-stimulated glucose transport and insulin-induced translocation of glucose transporters in isolated rat adipocytes. Adipose cells were incubated with or without cycloheximide, a potent inhibitor of protein synthesis, for 60 min and then for an additional 30 min with or without insulin. After the incubation we measured 3-O-methylglucose transport in the adipose cells, and subcellular membrane fractions were prepared. The numbers of glucose transporters in the various membrane fractions were determined by the cytochalasin B binding assay. Basal and insulin-stimulated 3-O-methylglucose uptakes were not affected by cycloheximide. Furthermore, cycloheximide affected neither Vmax. nor Km of insulin-stimulated 3-O-methylglucose transport. In contrast, the number of glucose transporters in plasma membranes derived from cells preincubated with cycloheximide and insulin was markedly decreased compared with those from cells incubated with insulin alone (10.5 +/- 0.8 and 22.2 +/- 1.8 pmol/mg of protein respectively; P less than 0.005). The number of glucose transporters in cells incubated with cycloheximide alone was not significantly different compared with control cells. SDS/polyacrylamide-gel-electrophoretic analysis of [3H]cytochalasin-B-photolabelled plasma-membrane fractions revealed that cycloheximide decreases the amount of labelled glucose transporters in insulin-stimulated membranes. However, the apparent molecular mass of the protein was not changed by cycloheximide treatment. The effect of cycloheximide on the two-dimensional electrophoretic profile of the glucose transporter in insulin-stimulated low-density microsomal membranes revealed a decrease in the pI-6.4 glucose-transporter isoform, whereas the insulin-translocatable isoform (pI 5.6) was decreased. Thus the observed discrepancy between insulin-stimulated glucose transport and insulin-induced translocation of glucose transporters strongly suggests that a still unknown protein-synthesis-dependent mechanism is involved in insulin activation of glucose transport.  相似文献   

2.
Plasma membrane vesicles prepared from adipocytes incubated with insulin exhibited accelerated D-glucose transport activity characteristic of insulin action on intact fat cells. Both control and insulin-stimulated D-glucose transport activities were inhibited by cytochalasin B and thiol reagents. Extraction of plasma membranes with dimethylmaleic anhydride eluted 80% of the protein from plasma membrane vesicles. The two major glycoprotein bands (94,000 and 78,000 daltons) and small amounts of a 56,000-dalton band were retained in dodecyl sulfate gels of the extracted membranes. Both control and insulin-activated D-glucose transport activities were retained by plasma membrane vesicles extracted with dimethylmaleic anhydride. Cytochalasin B binding activity was also retained by extracted membrane vescles and D-glucose uptake into extracted vescles derived from untreated or insulin-treated fat cells was inhibited by cytochalasin B. These results suggest that the modification of the adipocyte hexose transport system elicited by insulin action is not altered by a major purification step which involves quantitative extraction of extrinsic membrane proteins.  相似文献   

3.
In muscle and fat, insulin causes the cellular redistribution of glucose transporters and insulin-like growth factor II receptors from an intracellular pool of membranes (low density microsomes) to the plasma membrane. This translocation is a major mechanism by which insulin stimulates cellular glucose uptake. Our aim was to purify and characterize the insulin-regulatable exocytic intracellular membranes that are enriched in glucose transporter. Low density microsome and plasma membrane fractions were isolated from basal and insulin-stimulated rat adipocytes by differential centrifugation. In cells exposed to insulin, glucose transporters were decreased in the low density microsomes and correspondingly increased in the plasma membranes as determined by immunoblotting and cytochalasin B binding. Low density microsomes were further fractionated by sucrose density gradient centrifugation. Membranes containing glucose transporters were separated from the major protein-containing peaks and from plasma membranes, Golgi, and endoplasmic reticulum. Further fractionation was achieved by agarose gel electrophoresis. Overall, the intracellular membranes enriched in transporter were purified 9-fold compared to low density microsomes. These purified membranes had the following characteristics: 1) uniformly sized vesicles, diameter 60-100 nm; 2) insulin-regulatable protein composition, one constituent being an Mr 43,000 protein that co-migrated with immunoblotted glucose transporters; 3) enrichment in insulin-like growth factor II receptors, but of a lesser degree than the enrichment in transporters. Thus, using a three-step procedure, insulin-sensitive translocatable vesicles from adipocytes have been highly purified. These are similar in size and density to endosomes, and the glucose transporter is a major constituent of this distinct vesicle population.  相似文献   

4.
Insulin's rapid action to increase glucose transport is believed to occur primarily through the translocation of glucose transporters from an intracellular pool to the plasma membrane. To better understand the mechanism involved, we studied the role of protein synthesis in glucose transporter translocation by using the protein synthesis inhibitor, cycloheximide. Isolated rat epididymal adipose cells were incubated in the presence or absence of cycloheximide (10 micrograms/ml) for a total of 120 min. Insulin (7 nM) was added to half of the cells from both groups for the final 30 min. Protein synthesis was inhibited by approximately 90%, as measured by [14C]leucine incorporation, in the cells exposed to cycloheximide. The 3-O-methylglucose uptake in intact cells was slightly increased in the basal state with cycloheximide treatment, but the insulin-stimulated 3-O-methylglucose uptake was unchanged by cycloheximide. The distribution of glucose transporters in the different subcellular membrane fractions, as measured by the cytochalasin B binding assay, was unchanged by cycloheximide. These results suggest that insulin's stimulation of glucose transport and translocation of glucose transporters can occur without acute protein synthesis.  相似文献   

5.
The effects of temperature alterations between 22 degrees C and 48 degrees C on basal and insulin-stimulated 2-deoxy-D-[1-14C]glucose uptake were examined in isolated rat adipocytes. A distinct optimum was found near physiological temperature for uptake in the presence of maximally effective insulin concentrations where insulin stimulation and hexose uptake were both conducted at each given assay temperature. Basal uptake was only subtly affected. Control and maximally insulin-stimulated cells incubated at 35 degrees C subsequently exhibited minimal temperature-sensitivity of uptake measured between 30 and 43 degrees C. The data are mostly consistent with the concept that insulin-sensitive glucose transporters are, after stimulation by insulin, functionally similar to basal transporters. Adipocyte plasma membranes were labelled with various spin- and fluorescence-label probes in lipid structural studies. The temperature-dependence of the order parameter S calculated from membranes labelled with 5-nitroxide stearate indicated the presence of a lipid phase change at approx. 33 degrees C. Membranes labelled with the fluorescence label 1,6-diphenylhexa-1,3,5-triene, or the cholesterol-like spin label nitroxide cholestane, reveal sharp transitions at lower temperatures. We suggest that a thermotropic lipid phase separation occurs in the adipocyte membrane that may be correlated with the temperature-dependence of hexose transport and insulin action in the intact cells.  相似文献   

6.
Plasma membranes and light microsomes were isolated from fused L6 muscle cells. Pre-treatment of cells with insulin did not affect marker enzyme or protein distribution in isolated membranes. The number of glucose transporters in the isolated membranes was calculated from the D-glucose-protectable binding of [3H]cytochalasin B. Glucose transporter number was higher in plasma membranes and lower in intracellular membranes derived from insulin-treated cells than in the corresponding fractions from untreated cells. The net increase in glucose transporters in plasma membranes was identical to the net decrease in glucose transporters in light microsomes (2 pmol/1.23 x 10(8) cells). The fold increase in glucose transporter number/mg protein in plasma membranes (2-fold) was similar to the fold increase in glucose transport caused by insulin. This suggests that recruitment of glucose transporters from intracellular membranes to the plasma membrane is the major mechanism of stimulation of hexose transport in L6 muscle cells. This is the first report of isolation of the two insulin-sensitive membrane elements from a cell line, and the results indicate that, in contrast to rat adipocytes, there is not change in the intrinsic activity of the transporters in response to insulin.  相似文献   

7.
The effects of insulin therapy in streptozotocin diabetic rats on the glucose transport response to insulin in adipose cells have been examined. At sequential intervals during subcutaneous insulin infusion, isolated cells were prepared and incubated with or without insulin, and 3-O-methylglucose transport was measured. Insulin treatment not only reversed the insulin-resistant glucose transport associated with diabetes, but resulted in a progressive hyperresponsiveness, peaking with a 3-fold overshoot at 7-8 days (12.1 +/- 0.3 versus 3.4 +/- 0.1 fmol/cell/min, mean +/- S.E.) and remaining elevated for more than 3 weeks. During the peak overshoot, glucose transporters in subcellular membrane fractions were assessed by cytochalasin B binding. Insulin therapy restored glucose transporter concentration in the plasma membranes of insulin-stimulated cells from a 40% depleted level previously reported in the diabetic state to approximately 35% greater than control (38 +/- 4 versus 28 +/- 2 pmol/mg of membrane protein). Glucose transporter concentration in the low-density microsomes from basal cells was also restored from an approximately 45% depleted level back to normal (50 +/- 4 versus 50 +/- 6 pmol/mg of membrane protein), whereas total intracellular glucose transporters were further increased due to an approximately 2-fold increase in low-density microsomal membrane protein. However, these increases remained markedly less than the enhancement of insulin-stimulated glucose transport activity in the intact cell. Thus, insulin treatment of diabetic rats produces a marked and sustained hyperresponsive insulin-stimulated glucose transport activity in the adipose cell with little more than a restoration to the non-diabetic control level of glucose transporter translocation. Because this enhanced glucose transport activity occurs through an increase in Vmax, insulin therapy appears to be associated with a marked increase in glucose transporter intrinsic activity.  相似文献   

8.
It has previously been shown that phenylarsine oxide (PhAsO), an inhibitor of protein internalization, also inhibits stereospecific uptake of D-glucose and 2-deoxyglucose in both basal and insulin-stimulated rat adipocytes. This inhibition of hexose uptake was found to be dose-dependent. PhAsO rapidly inhibited sugar transport into insulin-stimulated adipocytes, but at low concentrations inhibition was transient. Low doses of PhAsO (1 microM) transiently inhibit stereospecific hexose uptake and near total (approx. 90%) recovery of transport activity occurs within 20 min. Interestingly, once recovered, the adipocytes can again undergo rapid inhibition and recovery of transport activity upon further treatment with PhAsO (1 microM). In addition, PhAsO is shown to inhibit cytochalasin B binding to plasma membranes from insulin-stimulated adipocytes in a concentration-dependent manner which parallels the dose-response inhibition of hexose transport by PhAsO. The data presented suggest a direct interaction between the D-glucose transporter and PhAsO, resulting in inhibition of transport. The results are consistent with the current recruitment hypothesis of insulin activation of sugar transport and indicate that a considerable reserve of intracellular glucose carriers exists within fat cells.  相似文献   

9.
Insulin-stimulated glucose uptake requires the activation of several signaling pathways to mediate the translocation and fusion of GLUT4 vesicles to the plasma membrane. Our previous studies demonstrated that GLUT4-mediated glucose uptake is a myosin II-dependent process in adipocytes. The experiments described in this report are the first to show a dual role for the myosin IIA isoform specifically in regulating insulin-stimulated glucose uptake in adipocytes. We demonstrate that inhibition of MLCK but not RhoK results in impaired insulin-stimulated glucose uptake. Furthermore, our studies show that insulin specifically stimulates the phosphorylation of the RLC associated with the myosin IIA isoform via MLCK. In time course experiments, we determined that GLUT4 translocates to the plasma membrane prior to myosin IIA recruitment. We further show that recruitment of myosin IIA to the plasma membrane requires that myosin IIA be activated via phosphorylation of the RLC by MLCK. Our findings also reveal that myosin II is required for proper GLUT4-vesicle fusion at the plasma membrane. We show that once at the plasma membrane, myosin II is involved in regulating the intrinsic activity of GLUT4 after insulin stimulation. Collectively, our results are the first to reveal that myosin IIA plays a critical role in mediating insulin-stimulated glucose uptake in 3T3-LI adipocytes, via both GLUT4 vesicle fusion at the plasma membrane and GLUT4 activity.  相似文献   

10.
Insulin is thought to exert its effects on cellular function through the phosphorylation or dephosphorylation of specific regulatory substrates. We have analyzed the effects of okadaic acid, a potent inhibitor of type 1 and 2A protein phosphatases, on the ability of insulin to stimulate glucose transport in rat adipocytes. Insulin and okadaic acid caused a 20-25- and a 3-6-fold increase, respectively, in the rate of 2-deoxyglucose accumulation by adipose cells. When added to cells previously treated with okadaic acid, insulin failed to stimulate 2-deoxyglucose accumulation beyond the levels observed with okadaic acid alone. Treatment of cells with okadaic acid did not inhibit the effect of insulin to stimulate tyrosine autophosphorylation of its receptor. These results indicate that okadaic acid potently inhibits the effects of insulin to stimulate glucose uptake and/or utilization at a step after receptor activation. To clarify the mechanism of inhibition by okadaic acid, the intrinsic activity of the plasma membrane glucose transporters was analyzed by measuring the rate of uptake of 3-O-methylglucose by adipose cells, and the concentration of adipocyte/skeletal muscle isoform of the glucose transporter (GLUT-4) in plasma membranes isolated from these cells. Insulin caused a 15-20-fold stimulation of 3-O-methylglucose uptake and a 2-3-fold increase in the levels of GLUT-4 detected by immunoblotting of isolated plasma membranes; okadaic acid caused a 2-fold increase in 3-O-methylglucose uptake, and a 1.5-fold increase in plasma membrane GLUT-4. Pretreatment of cells with okadaic acid blocked the effect of insulin to stimulate 3-O-methylglucose uptake and to increase the plasma membrane concentration of GLUT-4 beyond the levels observed with okadaic acid alone. These results indicate that the effect of okadaic acid to inhibit the effect of insulin on glucose uptake is exerted at a step prior to the recruitment of glucose transporters to the cell surface, and suggest that a phosphatase activity may be critical for this process.  相似文献   

11.
Previous studies suggest that regulation of hexose uptake in Chinese hamster ovary fibroblasts can occur by alterations in glucose transporter intrinsic activity without changes in cell surface transporter number (Harrison, S. A., Buxton, J. M., Helgerson, A. L., MacDonald, R. G., Chlapowski, F. J., Carruthers, A., and Czech, M. P. (1990) J. Biol. Chem. 265, 5793-5801). We tested this hypothesis using 3T3-L1 fibroblasts and adipocytes which exhibit 5-6-fold increases in 2-deoxyglucose or 3-O-methylglucose uptake when exposed to low micromolar concentrations of cadmium for 18 h. Cadmium treatment decreased the apparent Km of 3T3-L1 fibroblasts for 3-O-methylglucose influx from approximately 28 to 9 mM and increased the apparent Vmax by 2-3-fold. These fibroblasts lack the skeletal muscle/adipocyte-type (GLUT4) transporter and showed only a small increase in total cellular immunoreactive HepG2 type (GLUT1) transporter in response to cadmium. Furthermore, cell surface GLUT1 levels did not change in 3T3-L1 fibroblasts exposed to cadmium, as assessed by the binding to intact cells of an antibody which recognizes an extracellular GLUT1 epitope. Insulin enhanced 2-deoxyglucose uptake 2-fold in 3T3-L1 fibroblasts, but did not further stimulate cadmium-activated transport rates. In contrast, insulin stimulated hexose transport 15-fold in 3T3-L1 adipocytes, which express both GLUT1 and GLUT4 proteins, and this effect was fully additive with the 5-fold effect of cadmium. Cadmium had little or no effect on immunoreactive GLUT1 or GLUT4 in isolated 3T3-L1 adipocyte plasma membranes. In contrast, insulin action led to marked recruitment (3-fold) of GLUT4 to the plasma membrane fraction in adipocytes treated with or without cadmium. Taken together, these data are consistent with the hypothesis that cadmium-activated sugar uptake is catalyzed by GLUT1, whereas insulin-stimulated sugar uptake is catalyzed predominantly by GLUT4 in 3T3-L1 adipocytes. Furthermore, the data suggest that the GLUT1 transporter can undergo significant increases in intrinsic catalytic activity in response to cadmium treatment of 3T3-L1 fibroblasts and adipocytes.  相似文献   

12.
K Lange  U Brandt 《FEBS letters》1990,261(2):459-463
The recently proposed mechanistic concept of a receptor-regulated entrance compartment for hexose transport formed by microvilli on 3T3-L1 adipocytes predicted a preferential localization of glucose transporters in these structures. The cytochalasin B-binding technique was used to determine in basal and insulin-stimulated cells the distribution of glucose transporters between plasma membranes, low density microsomes (LDM) and two cell surface-derived membrane fractions prepared by a hydrodynamic shearing technique. The shearing procedure applied prior to homogenization yielded a low density surface-derived vesicle (LDSV) fraction which contained nearly 60% of the cellular glucose transporters and the total insulin-sensitive transporter pool. The rest of the glucose transporter population was localized within the plasma membrane (5%) and the LDM fraction (37%). Pretreatment of the cells with insulin (20 mU/ml for 10 min) reduced the transporter content of the LDSV fraction by 40% and increased that of the plasma membrane fraction 4-fold. The transporter containing LDSV fraction was clearly differentiated from the LDM fraction by its low specific galactosyltransferase activity and its insulin-sensitivity. Scanning electron microscopy revealed that the LDSV fraction contained a rather uniform population of spherical vesicles of 100-200 nm in diameter.  相似文献   

13.
Irradiation of intact rat adipocytes with high intensity ultraviolet light in the presence of 0.5 microM [3H] cytochalasin B results in the labeling of Mr 43,000 and 46,000 proteins that reside in the plasma membrane fraction. In contrast to the Mr 46,000 protein, the Mr 43,000 component is not observed in the microsome fraction and exhibits lower affinity for [3H]cytochalasin B. Photolabeling of the Mr 43,000 protein is inhibited by cytochalasin D, indicating it is not a hexose transporter component. The Mr 46,000 protein exhibits characteristics expected for the glucose transporter such that D-glucose or 3-O-methylglucose but not cytochalasin D inhibits its photolabeling with [3H] cytochalasin B. Furthermore, insulin addition to intact cells either prior to or after photoaffinity labeling of the Mr 46,000 protein causes a redistribution of this component from the low density microsomes to the plasma membrane fraction, as expected for the hexose transporter. Photolabeling of transporters in both the low density microsome and plasma membrane fractions is inhibited when intact cells are equilibrated with 50 mM ethylidene glucose prior to irradiation with [3H]cytochalasin B. Incubation of intact cells with 50 mM ethylidene glucose for 1 min at 15 degrees C leads to an intracellular concentration of only 2 mM. Under these conditions, the photoaffinity labeling in intact cells of hexose transporters that fractionate with the low density microsomes is unaffected, indicating these transporters are not exposed to the extracellular medium. In contrast, photolabeling in intact insulin-treated cells of hexose transporters that fractionate with the plasma membrane is inhibited under these incubation conditions. The results demonstrate that insulin action results in the exposure to the extracellular medium of previously sequestered hexose transporters.  相似文献   

14.
Physical training increases maximally insulin-stimulated glucose assimilation and 3-O-methylglucose transport in epididymal fat cells. In the present report, glucose-inhibitable cytochalasin B binding in subcellular fractions of epididymal adipocytes was measured to assess changes in number of glucose transporters induced by training. Groups of rats trained by swimming were compared to control groups of the same age, matched with respect to body weight by restricted feeding. It was found that in trained rats the number of glucose transporters in the low density microsome fractions from non-insulin-stimulated fat cells was larger than in untrained rats. In both groups of rats, insulin stimulation of adipocytes decreased the number of glucose transporters in low-density microsomes by about 60% and increased the number of glucose transporters in the plasma membrane fractions. The number of glucose transporters in the plasma membrane fractions from maximally insulin-stimulated fat cells was larger in trained rats than in control rats. [U-14C]Glucose incorporation into lipids varied in proportion to plasma membrane cytochalasin B binding per cell under all conditions tested. The results explain the enhancing effect of training on insulin responsiveness transport of hexose in fat cells.  相似文献   

15.
This study describes the biochemical characterization and subcellular distribution of glucose transporters from isolated rat brain cortical microvessels. The D-glucose inhibitable [3H]cytochalasin B binding assay was used to quantitate glucose transporter binding sites in plasma membranes, high-density microsomes and low-density microsomes prepared from basal and insulin-stimulated cells. Incubation with insulin for 30 min increased the number of glucose transporters in the high-density microsomes by around 33% but had no effect on the number of glucose transporters in the plasma membrane or low-density microsomes. Prolonged incubation with insulin (2 h), however, resulted in a small but significant redistribution of glucose transporters to the low-density microsomes. Preincubation of cells with cycloheximide blocked this insulin-induced increase in glucose transporter number, suggesting that this effect of insulin was due to the synthesis of new glucose transport proteins. Specific labeling of glucose transporters was achieved by photoincorporation of [3H]cytochalasin B. Labeled membranes from all fractions contained a single D-glucose inhibitable peak, migrating with a molecular size of 55 kDa on SDS-polyacrylamide gel electrophoresis. Isoelectric focusing of the 55 kDa protein revealed one major peak of D-glucose inhibitable radioactivity focusing at pH 6.0 in all fractions.  相似文献   

16.
BACKGROUND: Adipose and muscle tissues express an insulin-sensitive glucose transporter (GLUT4). This transporter has been shown to translocate from intracellular stores to the plasma membrane following insulin stimulation. The molecular mechanisms signalling this event and the details of the translocation pathway remain unknown. In type II diabetes, the cellular transport of glucose in response to insulin is impaired, partly explaining why blood-glucose levels in patients are not lowered by insulin as in normal individuals. MATERIALS AND METHODS: Isolated rat epididymal adipocytes were stimulated with insulin and subjected to subcellular fractionation and to measurement of glucose uptake. A caveolae-rich fraction was isolated from the plasma membranes after detergent solubilization and ultracentrifugal floatation in a sucrose gradient. Presence of GLUT4 and caveolin was determined by immunoblotting after SDS-PAGE. RESULTS: In freshly isolated adipocytes, insulin induced a rapid translocation of GLUT4 to the plasma membrane fraction, which was followed by a slower transition of the transporter into a detergent resistant caveolae-rich region of the plasma membrane. The insulin-stimulated appearance of transporters in the caveolae-rich fraction occurred in parallel with enhanced glucose uptake by cells. Treatment with isoproterenol plus adenosine deaminase rapidly inhibited insulin-stimulated glucose transport by 40%, and at the same time GLUT4 disappeared from the caveolae-rich fraction and from plasma membranes as a whole. CONCLUSIONS: Insulin stimulates glucose uptake in adipocytes by rapidly translocating GLUT4 from intracellular stores to the plasma membrane. This is followed by a slower transition of GLUT4 to the caveolae-rich regions of the plasma membrane, where glucose transport appears to take place. These results have implications for an understanding of the defect in glucose transport involved in type II diabetes.  相似文献   

17.
2-Deoxyglucose uptake (3 min) and 3-O-methylglucose transport (2 s) was measured in rat adipocytes preincubated with 5 microM epinephrine plus adenosine deaminase as described by Green (Green, A. (1983) FEBS Lett. 152, 261-264). 2-Deoxyglucose uptake was about 95% depressed in insulin-treated, but not in 'basal', cells preincubated with epinephrine plus adenosine deaminase for 60 min in broad agreement with Green's report. However, this depression was caused by a decrease in sugar phosphorylation rather than transport. In similarly incubated cells, transport of 3-O-methylglucose, a sugar analogue not phosphorylated in the adipocytes, was not affected by catecholamine plus adenosine deaminase. However, a decrease in transport of about 60% was observed both in the absence and the presence of insulin when the albumin concentration was high enough and the cell concentration low enough to prevent accumulation of free fatty acids in the medium. In addition, the insulin sensitivity with regard to hexose transport was markedly reduced. Transport was approximately doubled in cells incubated with 5 microM epinephrine in the absence of adenosine deaminase. Thus, epinephrine at a high concentration stimulates hexose transport in the absence of adenosine deaminase (presence of adenosine) whereas it inhibits both basal and insulin-stimulated transport in the presence of adenosine deaminase (absence of adenosine).  相似文献   

18.
Insulin stimulates glucose uptake in fat and muscle cells via the translocation of the GLUT4 glucose transporter from intracellular storage vesicles to the cell surface. The signaling pathways linking the insulin receptor to GLUT4 translocation in adipocytes involve activation of the Rho family GTPases TC10alpha and beta. We report here the identification of TCGAP, a potential effector for Rho family GTPases. TCGAP consists of N-terminal PX and SH3 domains, a central Rho GAP domain and multiple proline-rich regions in the C-terminus. TCGAP specifically interacts with cdc42 and TC10beta through its GAP domain. Although it has GAP activity in vitro, TCGAP is not active as a GAP in intact cells. TCGAP translocates to the plasma membrane in response to insulin in adipocytes. The N-terminal PX domain interacts specifically with phos phatidylinositol-(4,5)-bisphosphate. Overexpression of the full-length and C-terminal fragments of TCGAP inhibits insulin-stimulated glucose uptake and GLUT4 translocation. Thus, TCGAP may act as a downstream effector of TC10 in the regulation of insulin-stimulated glucose transport.  相似文献   

19.
The question of a long term regulatory role of insulin on adipocyte glucose transporter content was addressed using the differentiating or fully mature 3T3-F442A adipocytes. Glucose transport was measured in intact cells. Glucose transporter content in plasma membranes and low density microsomes (LDM) was assessed by cytochalasin B binding and Western analysis. In insulin- versus spontaneously differentiated adipocytes, glucose transport and glucose transporters content of plasma membranes and LDM were increased 5-, 4-, and 2-fold, respectively. Insulin deprivation for 24 h induced a redistribution of glucose transporters in those cells which then displayed 2-fold higher glucose transport and glucose transporter content in plasma membranes than spontaneously differentiated cells and 3-fold more glucose transporters in LDM. When fully insulin-differentiated adipocytes were insulin-deprived for 4 days, there was a marked decrease in glucose transporters in both membrane fractions that was fully reversible by reexposing the cells to insulin for 4 days. Glucose uptake changes were closely proportionate to changes in glucose transporter content of plasma membranes as assessed by an antiserum to the C-terminal peptide of the erythrocyte/HepG2/brain-type glucose transporter. When Western blots were immunoblotted with 1F8 monoclonal antibody, specific for glucose transporter in insulin responsive tissues, an abundant immunoreactive protein was detected in both plasma membranes and LDM but the amount of this glucose transporter did not change with insulin exposure in any membrane fractions. In conclusion, insulin plays a long term regulatory role on cultured adipocyte glucose transporter content through a selective effect on the erythrocyte/HepG2/brain-type glucose transporter.  相似文献   

20.
Antisera from rabbits injected with rat adipocyte plasma membranes or intrinsic proteins from such membranes, obtained by a dimethylmaleic anhydride extraction step, mimicked the action of insulin on both glucose transport and lipolysis in intact adipocytes. Biological activity in both types of antisera was mediated by immunoglobulin binding to one or more intrinsic proteins of the adipocyte plasma membrane since fat cells were unresponsive to all antisera absorbed with dimethylmaleic anhydride-extracted membranes. Acid treatment of immunoprecipitates released antibodies which activated glucose uptake and reacted with solubilized adipocyte membranes on immunodiffusion plates. The biologically active immunoglobulin preparations failed to form immunoprecipitin lines when tested against membranes from brain, liver, lung, muscle, kidney, and spleen. Insulin-sensitive glucose uptake in rat soleus muscle did not respond to the antisera. The antibodies activated hexose uptake into fat cells and reacted with solubilized adipocyte membranes on immunodiffusion plates when rat or mouse adipocytes were studied, but not when monkey fat cells were used. The anti-membrane antibody preparations readily activated hexose uptake in trypsinized fat cells which had lost the capacity to bind or respond to insulin. These data are consistent with the concept previously proposed (Pillion, D.J., and Czech, M.P. (1978) J. Biol. Chem. 253, 3761-3764) that the anti-membrane immunoglobulins do not interact with the insulin binding site of the insulin receptor. Monovalent Fab fragments of the biologically active antisera, prepared by papain digestion of the native anti-membrane immunoglobulins, were ineffective in enhancing glucose uptake in adipocytes. However, biological activity of the anti-membrane Fab fragments was restored by the addition of goat anti-rabbit Fab antisera to cells treated with the Fab fraction. Anti-rabbit Fab antisera alone or in combination with Fab fragments prepared from control rabbit sera exhibited no biological activity. These results demonstrate that the ability of anti-membrane antisera to mimic the biological activity of insulin on isolated fat cells is critically dependent on immunoglobulin binding to one or more intrinsic plasma membrane proteins and the multivalent nature of immunoglobulin structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号