首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In 96 patients with congenital adrenal hyperplasia (CAH) and 50 healthy donors from northwestern Russia the distribution of the HLA-DQA1 alleles and the mutation spectrum and frequency at the CYP21B gene were examined. In the patients with nonclassical (NC) CAH, the distribution of the HLA-DQA1 polymorphic alleles was similar to that in the population sample. In the patients with the salt-wasting form of the disease a statistically significant decrease of the *0401 or *501 major allele frequency was observed. The prevalence of certain HLA-DQA1 genotypes, namely, HLA5, HLA3, and HLA4, was observed in the patients with the NC, salt-wasting (SW), and simple virilizing CAH, respectively. Each clinical group was characterized by a specific spectrum of clinically valuable mutations. An association between the CYP21B mutations most frequently found in case of SW and SV CAH (delB, I2splice, and I172N) and certain HLA-DQA1 alleles was demonstrated. The necessity of more precise clinical diagnostics of the NC CAH cases along with detailed examination of this group for determination of the major mutations typical of the NC CAH cases from northwestern Russia is discussed.  相似文献   

2.

Context

Molecular diagnosis of congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency (21OHD) has not been straightforward.

Objective

To conduct a comprehensive genetic analysis by Multiplex Ligation dependent Probe Amplification (MLPA) and evaluate its reliability for the molecular CAH-21OHD diagnosis.

Patients and methods

We studied 99 patients from 90 families with salt-wasting (SW; n = 32), simple-virilizing (SV; n = 29), and non-classical (NC; n = 29) CAH-21OHD. Molecular analysis was sequentially performed by detecting the most frequent point mutations by allele-specific oligonucleotide polymerase chain reaction (ASO-PCR), large rearrangements by MLPA, and rare mutations by direct sequencing. Parental segregation was evaluated.

Results

ASO-PCR detected microconversions in 164 alleles (91.1%). MLPA identified CYP21A1P large conversions to CYP21A2 in 7 of the remaining 16 (43.7%), 30-kb deletions including the 3′-end of CYP21A1P, C4B, and the 5′-end of CYP21A2 in 3 of the 16 (18.7%), and a complete CYP21A2 deletion in one (6.3%). Five alleles (2.7%) required direct sequencing; three mutations located in the CYP21A2 gene and two derived from CYP21A1P were found. No parental segregation was observed in patients with the c.329_336del and/or the CL6 cluster mutations. These cases were not diagnosed by ASO-PCR, but MLPA detected deletions in the promoter region of the CYP21A2 gene, explaining the genotype/phenotype dissociation.

Conclusion

Using the proposed algorithm, all alleles were elucidated. False-positive results in MLPA occurred when mutations or polymorphisms were located close to the probe-binding regions. These difficulties were overcome by the association of MLPA with ASO-PCR and paternal segregation. Using these approaches, we can successfully use MLPA in a cost-effective laboratory routine for the molecular diagnosis of CAH-21OHD.  相似文献   

3.
Steroid 21-hydroxylase deficiency is the leading cause of impaired cortisol synthesis in congenital adrenal hyperplasia (CAH), with the nonclassic form (NC) comprising approximately 1% of the Caucasian population. The structure of the CYP21 gene was studied in 13 unrelated NC-CAH patients, three affected siblings, and 55 blood donors using polymerase chain reaction. In addition to the Leu-281 and Leu-30 mutations previously associated with NC-CAH, the finding of a Pro-453 to Ser mutation in exon-10 of CYP21 in the NC-CAH patients is reported. Ser-453 was found in 46.2% of unrelated NC-CAH patients, but only 7.7% and 3.6% of salt-wasting CAH patients and blood donors, respectively. In contrast to the Leu-281 and Leu-30 mutations, Ser-453 has not been previously detected in the CYP21 pseudogene (CYP21P) and, therefore, has not likely arisen by gene conversion.  相似文献   

4.
Disorders of the CYP21 gene, which is located within the major histocompatibility complex on the short arm of chromosome 6, are the leading causes of congenital adrenal hyperplasia (CAH). The coding gene and a highly homologous pseudogene are tandemly arranged with the two genes for the fourth component of complement (C4A and C4B). To analyse the prevalence rates of mutations of the CYP21 genes and the segregation of the CYP21 genes with their corresponding human leucocyte antigen (HLA)-haplotypes, 21 families with one or two children with the severe form of 21-hydroxylase deficiency were studied. Mutations of the CYP21 gene on their corresponding HLA-haplotype were detected by hybridisation of polymerase chain reaction (PCR)-amplified genomic DNA with sequence-specific oligonucleotides and solid phase direct sequencing. Our study has shown the following. (1) A single basepair mutation (AG or CG) within the second intron is the most frequent mutation leading to impaired 21-hydroxylase activity. This mutation is only detected in HLA-haplotypes associated with the salt-wasting form of CAH. (2) A large deletion of part or all of the CYP21 gene is associated with the HLA-haplotype A3, BW47, C6, DR7, DR53, DQ2 but is also observed in other HLA-haplotypes and can be detected by a simple rapid PCR restriction fragment length polymorphism method. (3) Two alleles of the coding CYP21 gene differing in a leucine codon within the first exon, (formerly described as a mutation associated with 21-hydroxylase deficiency) have been found with an equal distribution in patients with 21-hydroxylase deficiency, non-disease HLA-haplotypes and the local healthy controls.  相似文献   

5.
Summary Defects in the enzyme, steroid 21-hydroxylase, result in congenital adrenal hyperplasia (CAH), a common autosomal recessive disorder of cortisol biosynthesis. The gene encoding this protein (CYP21B) and a closely linked pseudogene (CYP21A) have been mapped in the HLA complex on chromosome 6p, adjacent to the complement genes C4B and C4A, about 80 kb from the factor B gene. Molecular analyses of patients with CAH have shown that the cause of the defect may be either a deletion, a point mutation or a conversion of the active gene. Linkage of the disease to HLA has previously been studied by several groups. We have analyzed DNAs from patients with classical and non-classical CAH and from their family members, by probing with CYP21, C4 and BF cDNAs. In 70% of the CAH haplotypes studied, the defective CYP21B gene was indistinguishable from its structurally intact corresponding gene in Southern blot analysis, and presumably bore point mutations. In the remaining chromosomes, evidence for gene conversions, deletions and various deleterious mutations of the CYP21B gene is given. Moreover, our linkage studies show that a polymorphic TaqI cleavage site in the factor B gene, recently described by us, may be a new and useful genetic marker, because we found this TaqI restriction site only in unaffected haplotypes carrying functional CYP21B genes and, therefore, in negative association with the defective CYP21B gene.  相似文献   

6.
The spectrum of mutations in the steroid 21-hydroxylase gene (CYP21B) and the frequency of 11 mutations among 66 patients with different forms of congenital adrenal hyperplasia (CAH) were analyzed by means of PCR amplification. Each of the CAH forms was characterized by specific spectrum of diagnostically important mutations. The salt-losing (SL) form of the disease was most frequently associated with gene deletion (39%) and the 668-13C-G mutation in the second intron (23.5%), whereas the majority of simple virilizing (SV) CAH cases were associated with the 1172N mutation in exon 4 (22%), gene deletion (16.5%), and the 668-13C-G mutation (16.5%). Mutations in the steroid 21-hydroxylase gene were detected in 70% of the chromosomes from the patients with the SL and SV forms of CAH, and only in 1.3% of the chromosomes from the patients with the nonclassic (NC) form. A total of 78 mutant chromosomes from the NC CAH patients were examined, and only one case of a gene deletion in the heterozygous state was revealed. In the individuals examined, the V281L and P30L mutations described in the NC CAH patients from other populations were not detected. This result can be explained either by the fact that NC CAH cases in Russia are associated with other major mutations, or by difficult clinical diagnosis questionable CAH cases.  相似文献   

7.
Congenital Adrenal Hyperplasia (CAH) is one of the most widespread severe autosomal recessive hereditary diseases. CAH is caused by the impaired biosynthesis of the key human hormones cortisol and aldosterone and is accompanied by the excess synthesis of androgens. Over 90% of CAH cases are caused by a deficiency of the steroid 21-hydrohylase (P450c21). The degree of damage in this enzyme is responsible for the severity of the clinical manifestation of CAH from potentially lethal to mild symptoms. Various mutations of the gene encoding this enzyme are the main source of the reduced activity of the steroid-21-hydrolase. The location of the highly homological pseudogene CYP21P in close proximity to the functional gene impedes the DNA diagnostics of CAH. To detect the eight most frequent CYP21 gene mutations associated with CAH, we developed a new real-time PCR-based system of DNA diagnostics using new allele-specific primers and TaqMan probes for the analyzed mutations. The method was primarily tested on artificial DNA templates, where the analyzed mutations were introduced by site-directed mutagenesis. Then, it was tested on DNA samples from 43 patients with clinical and biochemical manifestations of CAH; seven patients were used as a control. Two mutant alleles were detected in two different individuals: the nonsense Q318X and the missense V281L mutations.  相似文献   

8.
Deleterious mutations in the CYP21 (steroid 21-hydroxylase) gene cause congenital adrenal hyperplasia (CAH). These mutations usually result from recombinations between CYP21 and an adjacent pseudogene, CYP21P, including deletions and transfers of deleterious mutations from CYP21P to CYP21 (gene conversions). Additional rare mutations that are not gene conversions account for 5-10% of 21-hydroxylase deficiency alleles. Recently, four novel CYP21 point mutations leading to amino acid changes were identified in a population of 57 Spanish families with CAH. A nonsense mutation, K74X, was also identified. The enzymatic activities of 21-hydroxylase mutants G90V, G178A, G291C, and R354H were examined in transiently transfected CHOP cells using progesterone and 17alpha-hydroxyprogesterone as substrates. The G90V, G291C, and R354H mutations effectively eliminated 21-hydroxylase activity. However, the G178A mutant retained significant activity when 17alpha-hydroxyprogesterone was the substrate. These results correlate well with the identification of G90V, G291C, and R354H in patients with severe "salt-wasting" disease and G178A in a patient with the milder simple virilizing form.  相似文献   

9.

Background

Congenital adrenal hyperplasia (CAH) is a group of autosomal recessive disorders caused by defects in the steroid 21 hydroxylase gene (CYP21A2). We studied the spectrum of mutations in CYP21A2 gene in a multi-ethnic population in Pakistan to explore the genetics of CAH.

Methods

A cross sectional study was conducted for the identification of mutations CYP21A2 and their phenotypic associations in CAH using ARMS-PCR assay.

Results

Overall, 29 patients were analyzed for nine different mutations. The group consisted of two major forms of CAH including 17 salt wasters and 12 simple virilizers. There were 14 phenotypic males and 15 females representing all the major ethnic groups of Pakistan. Parental consanguinity was reported in 65% cases and was equally distributed in the major ethnic groups. Among 58 chromosomes analyzed, mutations were identified in 45 (78.6%) chromosomes. The most frequent mutation was I2 splice (27%) followed by Ile173Asn (26%), Arg 357 Trp (19%), Gln319stop, 16% and Leu308InsT (12%), whereas Val282Leu was not observed in this study. Homozygosity was seen in 44% and heterozygosity in 34% cases. I2 splice mutation was found to be associated with SW in the homozygous. The Ile173Asn mutation was identified in both SW and SV forms. Moreover, Arg357Trp manifested SW in compound heterozygous state.

Conclusion

Our study showed that CAH exists in our population with ethnic difference in the prevalence of mutations examined.  相似文献   

10.
AIM: To evaluate height, bone growth, areal bone mineral density (aBMD), volumetric bone mineral density (vBMD) and markers of bone turnover in a group of patients affected by congenital adrenal hyperplasia (CAH). PATIENTS: There were 50 patients (23 males, 27 females), aged 1-28 years, affected by CAH due to 21-hydroxylase deficiency: 27 with the salt-wasting (SW); 14 with the simple virilizing (SV), and 9 with the nonclassical (NC) forms. METHODS: Bone morphometry was evaluated with the metacarpal index (MI) and lumbar aBMD and vBMD (L2-L4) by dual energy X-ray absorptiometry. Serum osteocalcin was used as a marker of bone formation, while urinary cross-linked N-telopeptides of type-I collagen and free deoxypyridinoline levels were evaluated as indexes of bone resorption. RESULTS: The height standard deviation score (SDS) was -0.41 +/- 1.4 in SW patients, -0.01 +/- 1.9 in SV patients, and -0.01 +/- 2.3 in NC patients. There was no significant difference among groups and against zero. The MI SDS was also not different between groups and against zero. aBMD was significantly lower in the pubertal patients compared with normal values, but only when patients with the SW and SV forms were considered together (p < 0.05). vBMD was significantly reduced in all patients with the classical form. Bone markers were not different in patients and controls. CONCLUSION: Our study shows that normal height can be attained in CAH patients; however, an impairment in bone growth and mineralization may be found in adolescents and young adults affected by the classical form.  相似文献   

11.
Congenital adrenal hyperplasia (CAH) is a group of autosomal recessively inherited disorders characterized by impaired production of adrenal steroids. Approximately 95% of all CAH are caused by mutations of the CYP21A2 that encodes 21-hydroxylase. In this study, mutation analyses of CYP21A2 were performed in 48 CAH patients from 45 Turkish families with the clinical diagnosis of 21-hydroxylase deficiency (21OHD). While in 39 (86.7%) of 21OHD patients, disease causing CYP21A2 mutations were identified in both alleles, in two 21OHD patients CYP21A2 mutations were identified only in one allele. In four patients, mutation was not detected at all. In total, seventeen known and one novel, disease causing CYP21A2 mutations were observed. Among identified mutations, previously described c.293-13C/A>G, large rearrangements and p.Q319X mutations were the most common mutations accounting for 33.3%, 14.4% and 12.2% of all evaluated chromosomes, respectively. In six families (13.3%) a novel founder mutation, c.2T>C (p.M1?), inactivating the translation initiation codon was found. This mutation is not present in pseudogene CYP21A1P and causes the classical form of the disease in six patients. In addition, depending on the nature of the rearrangements CYP21A1P/CYP21A2 chimeras were further classified as CHc/d, and CH-1c was shown to be the most prominent chimera in our study group. In conclusion, with this study we identified a novel founder CYP21A2 mutation and suggest a further classification for CYP21A1P/CYP21A2 chimeras depending on the combination of junction site position and whether it is occurred as a result of deletion or conversion. Absence of disease causing mutation of CYP21A2 in ten of screened ninety chromosomes suggests the contribution of regulatory elements in occurrences of CAH due to the 21OHD.  相似文献   

12.
Steroid 21-hydroxylase deficiency is the leading cause of impaired cortisol synthesis in congenital adrenal hyperplasia (CAH). We have studied the structure of the CYP21B gene in 30 unrelated CAH patients using the polymerase chain reaction (PCR) to differentiate the active CYP21B gene from its highly related CYP21A pseudogene. The PCR approach obviates the need to distinguish the CYP21A and CYP21B genes by restriction endonuclease digestion and electrophoresis before analysis with labeled probes. Furthermore, direct nucleotide sequence analysis of CYP21B genes is demonstrated on the PCR-amplified DNA. Gene deletion of CYP21B, gene conversion of the entire CYP21B gene to CYP21A, frame shift mutations in exon 3, an intron 2 mutation that causes abnormal RNA splicing, and a mutation leading to a stop codon in exon 8 appear to be the major abnormalities of the CYP21B gene in our patients. These mutations appear to account for 21-hydroxylase deficiency in 22 of 26 of our salt-wasting CAH patients.  相似文献   

13.
Steroid 21 -hydroxylase deficiency is the major cause of congenital adrenal hyperplasia. Genotyping for deletions and nine point mutations in the CYP21 gene has been performed in 38 Spanish patients and their relatives by Southern blot analysis and allele-specific oligonucleotide hybridization. Three clinical variants were included in this study, viz., salt-wasting (SW, 21 patients), simple virilizer (SV, two patients), and late-onset (LO, 15 patients) forms. Twenty-three patient genotypes (16 SW, two SV, and five LO) were fully characterized. In both alleles, all but one of these severe forms (SW and SV) presented mutations that abolished or severely affected enzymatic activity. Patients with LO forms showed mutations that moderately impaired enzymatic activity in both alleles, or severe mutations in only one chromosome. Of 46 chromosomes from severe forms, 41 were characterized in this study (89%). The most frequent mutation was an aberrant splicing site (655 A or C to G) in intron 2, in 30% of these chromosomes. Deletions were found in 20%, and large gene conversions in 13% of these alleles. This screening allowed the characterization of 18 out of 30 LO chromosomes, the most frequent mutation being Val281Leu (37%). Severe mutations were found, in heterozygosis, in one third of LO patients.  相似文献   

14.
To characterize mutations in the CYP21B gene that are responsible for congenital adrenal hyperplasia (CAH), DNA samples from 91 French patients have been studied by allelic-specific oligonucleotide hybridization and Southern blot analysis. Seven sites mostly found in the CYP21A pseudogene and deletions of the functional CYP21B gene have been screened. Gene conversions involving small DNA segments accounted for 57% of the tested mutations and probably cause 74% of the mutations responsible for the disease. Complete deletion of the CYP21B gene accounted for 18% of the CAH mutations in the whole sample and for 21% in the classical form of the disease. Three mutations were found associated with specific clinical forms of the disease: a G-C substitution in the seventh exon was associated with the late-onset form of the disease, and both an 8-bp depletion in the third exon and complete deletion of CYP21B were associated with the salt-wasting form.  相似文献   

15.
Molecular defects in the gene encoding steroid 21-hydroxylase (CYP21) result in impairment of adrenal steroid synthesis in patients affected with autosomal-recessive congenital adrenal hyperplasias (CAH). In this study, we report on the molecular screening of six point mutations, large deletions, gene conversion events and duplications in 25 unrelated Lebanese families affected by CAH due to steroid 21-hydroxylase. The methods used (PCR-digestion and southern blot) allowed the detection of 96% of the disease chromosomes. In classical forms, the most frequent mutation was the splice site mutation in intron 2 accounting for 39% of the disease alleles. Gene conversion events accounted for 14% of the alleles, but no large deletions were found. In nonclassical forms, the V281L mutation in exon 7 represent 86% of the tested alleles. Genotype-phenotype correlations were as expected: Delta 8nt, Q318X and gene conversion correspond to SW forms, whereas the intron 2 splice site mutation may give either SW or SV forms; the V281L mutation was responsible for nonclassical forms. The spectrum of mutations underlines the genetic diversity of the Lebanese population. No correlation could be drawn out between mutations and some specific religious communities, except for the Delta 8nt mutation, which is present only in the Christian Maronite group. Molecular study of the CYP21 gene might constitute a good support for clinicians, especially in consanguineous families, for whom we could provide genetic counselling.  相似文献   

16.
Polymorphisms of the tuberculosis (TB) susceptibility genes SLC11A1, VDR, IL12B, IL1B, and IL1RN were studied, for the first time in Russia, in Tuvinians from the Tyva Republic and ethnic Russians from Tomsk. Compared with Russians, Tuvinians had significantly higher frequencies of potentially pathological alleles SLC11A1*543N (0.139 vs. 0.043, P = 4.6 · 10?5), IL12B*1188C (0.378 vs. 0.174, P = 1.1 · 10?8), VDR*b (0.825 vs. 0.532, P = 3.2 · 10?16), IL1B*(+3953A1) (0.865 vs. 0.806, P = 0.035), and IL1RN*A1 (0.849 vs. 0.786, P = 0.030). However, none of the alleles was associated with TB in Tuvinians. Compared with healthy subjects, Russian patients with TB had higher frequencies of alleles IL1RN*A2 (0.258 vs. 0.186, P = 0.024), SLC11A1*274T (0.251 vs. 0.164, P = 0.009), IL12B*1188C (0.240 vs. 0.174, P = 0.044), and IL1B*(+3953A2) (0.259 vs. 0.194, P = 0.044). The structure of linkage disequilibrium in pairs of alleles differed between Tuvinians and Russians. In total, the results suggest ethnic specificity of the distribution and pathogenetic significance of the alleles of the TB susceptibility genes.  相似文献   

17.
HLA-B is the most polymorphic of the major histocompatibility complex classical class I loci. This polymorphism is mainly in exons 2 and 3, which code for the molecule’s α1 and α2 domains and include the antigenic peptide binding site. Recent studies have indicated that not only exons but also the intron 2 region may be involved in the generation of certain HLA-B alleles such as B * 3906 and B * 1522. To study the degree of intron 2 participation and the mechanisms that generate polymorphism at the HLA-B locus, intron 1 and 2 sequences from the HLA-B35, -B5, -B16 and -B15 groups of alleles were obtained. A group-specific intronic polymorphism was found: namely, B * 5301 shows intron 1 and 2 sequences identical to those found in all B35 alleles studied. On the other hand, B * 5101 and B * 52012 show the same intron 1 and 2 sequences and their intron 1 is the same as that found in the B35 group. This suggests that B5 and B35 groups of alleles may have arisen from a common ancestor. All known B16 alleles show the same introns 1 and 2, with the exception of B * 39061 and B * 39062, and all B15 alleles also bear the same introns 1 and 2, with the exception of B * 1522. Variability at intron 1 is more restricted than at intron 2, and the use of intron 1 for HLA-B allele phylogenetic analysis is better for grouping alleles of a postulated common origin. In conclusion, there is a remarkable conservation of intronic sequences within related HLA-B alleles, which probably reflects a common origin and perhaps a selective force avoiding DNA changes. Intronic sequences are also potentially useful to design DNA typing strategies. Received: 11 March 1997 / Revised: 29 May 1997  相似文献   

18.
Summary The finding of two duplicated C4A haplotypes in a normal French family led to a detailed study of their C4 polymorphism. The father had an extremely rare A*6A*11, B* QO haplotype inherited by all of his children and the mother had the more common A*3A*2, B*QO haplotype. Two HLA identical daughters only have four C4A alleles. The father's A11 allotype expresses Ch: 1 (Chido) rather than Rg:1 (Rodgers) and represents a new Ch phenotype Ch: 1,-2,-3,-4,-5,-6. In order to clarify the genetic background in this unusual family, DNA studies of restriction fragment length polymorphisms (RFLPs) were undertake. The father's rare haplotype, which expresses two C4A allotypes, results from a long and a short C4 gene normally associated with the A*6, B*1 that also exhibits the BglII RFLP. As it travels in an extended MHC haplotype HLA A2, B57 (17), C2*C, BF*S, DR7 that is most frequently associated with A*6, B*1, we postulate that the short C4B has been converted in the chain region to a C4A gene which produces a C4A protein. This report of a short C4A gene is the first example in the complex polymorphism of C4.  相似文献   

19.
In North America and European Caucasoids with systemic lupus erythematosus (SLE) there is an increased frequency of aC4A, CYP21A gene deletion, largely associated with theHLA-B8,DR3,C4A * QO extended haplotype. There have been no consistent HLA associations reported for SLE in blacks, although an increased frequency of serologically determinedC4A null alleles has been reported in two studies. We studied 79 black American SLE patients and 68 black controls by restriction fragment length polymorphism analysis to dermine if aC4A gene deletion was a genetic risk factor for SLE. Moreover, the nature of the deletion and any HLA phenotypic associations were sought. Nineteen of 79 (24%) patients compared to 5 of 68 (7.4%) controls had a phenotypicC4A,CYP21A gene deletion (P=.005; RR=4). A homozygous deletion in four patients gave a genotypic frequency of 23/158 (14.5%) SLE patients vs 5/136 (3.7%) controls (P=.001; RR=4.5). The deletion was associated with HLA-DR2 (P=.03) and HLA-DR3 (P=.03). Moreover, all subjects with the deletion had HLA-DR2 or DR3 (P=7.7×10−6). HLA-B44 was also associated with the deletion (P=.02), and eight of the nine HLA-B44 positives also carried HLA-DR2. HLA-B8 approached significance (P=.08) and was always accompanied by HLA-DR3. Finally, this black population demonstrated a uniqueC4B gene size polymorphism with 80% C4B “short” as compared to the 40% C4B “short” frequency reported in whites. We conclude that a largeC4A,CYP21A gene deletion, particularly associated with theHLA-B44,-DR2, and-DR3 alleles, is the strongest genetic risk factor thus far identified for SLE susceptibility in black Americans. Furthermore, the unique preponderance of theC4B “short” gene form may be a factor in the actual formation of the deletion.  相似文献   

20.
Women with congenital adrenal hyperplasia (CAH) (N= 31) and their unaffected sisters or female cousins (N= 15) participated in a study of psychosexual development. All participants were ≥18 years of age (mean age, 25 years; range, 18–40). Comparisons were also made between the CAH women with the salt-wasting (SW) form of the disorder and those with simple virilization (SV). A psychosexual assessment protocol examined six variables: (1) sex assignment at birth (probands only); (2) recalled sex-typed behavior during childhood; (3) gender identity and gender role identification in adulthood; (4) relationship status; (5) sexual orientation in fantasy; and (6) sexual orientation in behavior. Salt-wasting status and sex assignment at birth were also ascertained for the CAH women who either refused to participate in the study (N= 10) or could not be traced (N= 13). Compared to the controls, the women with CAH recalled more cross-gender role behavior and less comfort with their sense of “femininity” during childhood. The two groups did not differ in degree of gender dysphoria in adulthood, although the probands showed more cross-gender role identification. Three of the nonparticipant probands were living, as adults, in the male social role (2 reared from birth as boys and 1 who changed from the female to the male social role during adolescence). The CAH women and the controls did not differ in relationship status (married/cohabiting vs. single). The CAH women had lower rates of exclusive heterosexual fantasy and fewer sexual experiences with men than the controls; however, the CAH women did not have more sexual experiences with women than the controls. Comparisons between the SW and SV revealed several differences: the SW were less likely to be assigned to the female sex at birth, recalled more cross-gender role behavior during childhood, were less likely to be married or cohabiting, and had lower rates of sexual experiences with men. The results were discussed in relation to the effects of prenatal androgens on psychosexual differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号