首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Greater airway responsiveness in healthy juveniles is considered a factor in the higher asthma prevalence at a young age compared with adults. We have developed a guinea pig maturational model that utilizes tracheal strips from 1-week-, 3-week-, and 3-month-old guinea pigs to study the role of airway smooth muscle (ASM) in juvenile airway hyperresponsiveness. Because a reduced ability of ASM to spontaneously relax may contribute to airway hyperresponsiveness by maintaining bronchospasm and thus high airway resistance, we have employed this model to study ASM spontaneous relaxation during electrical field stimulation (EFS). Since relaxation during EFS had been neither described nor quantified during maturation, we developed new indices that allowed an appropriate comparison of the relaxing response from strips of different age animals. Using these indices we found that, whereas strips from adult animals relax to a level of tension similar to that found in the absence of stimulation, this ability to spontaneously relax is essentially absent in trachealis from infant animals. These results confirmed that maturation of ASM relaxation may play a role in juvenile airway hyperresponsiveness and that our maturational model is suitable to study the mechanisms regulating spontaneous relaxation in physiological conditions. We investigated the role of prostanoids in ASM relaxation and showed that cyclooxygenase inhibition increases relaxation in infant ASM to levels similar to adults. These results suggest that prostanoids regulate the ability of ASM to spontaneously relax, i.e., they reduce relaxation. We have produced preliminary data suggesting a maturational change in the level of prostanoids. Moreover, the possible action of acetylcholinesterase on maturation of ASM relaxation is discussed here on the basis of a preliminary study. We suggest that impairment of ASM relaxation likely contributes to increased airway responsiveness.  相似文献   

2.
The sodium-calcium exchanger (NCX) is discussed as one of the key proteins involved in heart failure. However, the causal role and the extent to which NCX contributes to contractile dysfunction during heart failure are poorly understood. NCX overexpression was induced by infection with an adenovirus coding for NCX, which coexpressed green fluorescence protein (GFP) (AdNCX) by ex vivo gene transfer to nonfailing and failing rabbit cardiomyocytes. Myocardial gene transfer in rabbits in vivo was achieved by adenoviral delivery via aortic cross-clamping. Peak cell shortening of cardiomyocytes was determined photo-optically. Hemodynamic parameters in vivo were determined by echocardiography (fractional shortening) and tip catheter [maximal first derivative of left ventricular (LV) pressure (dP/dt(max)); maximal negative derivative of LV pressure (-dP/dt(max))]. Peak cell shortening was depressed after NCX gene delivery in isolated nonfailing and in failing cardiomyocytes. In nonfailing rabbits in vivo, basal systolic contractility (fractional shortening and dP/dt(max)) and maximum rate of LV relaxation (-dP/dt(max)) in vivo were largely unaffected after NCX overexpression. However, during heart failure, long-term NCX overexpression over 2 wk significantly improved fractional shortening and dP/dt(max) compared with AdGFP-infected rabbits, both without inotropic stimulation and after beta-adrenergic stimulation with isoproterenol. -dP/dt(max) was also improved after NCX overexpression in the failing rabbits group. These results indicate that short-term effects of NCX overexpression impair contractility of isolated failing and nonfailing rabbit cardiomyocytes. NCX overexpression over 2 wk in vivo does not seem to affect myocardial contractility in nonfailing rabbits. Interestingly, in vivo overexpression of NCX decreased the progression of systolic and diastolic contractile dysfunction and improved beta-adrenoceptor-mediated contractile reserve in heart failure in rabbits in vivo.  相似文献   

3.
Airway hyperresponsiveness (AHR) is a characteristic feature of asthma. It has been proposed that an increase in the shortening velocity of airway smooth muscle (ASM) could contribute to AHR. To address this possibility, we tested whether an increase in the isotonic shortening velocity of ASM is associated with an increase in the rate and total amount of shortening when ASM is subjected to an oscillating load, as occurs during breathing. Experiments were performed in vitro using 27 rat tracheal ASM strips supramaximally stimulated with methacholine. Isotonic velocity at 20% isometric force (Fiso) was measured, and then the load on the muscle was varied sinusoidally (0.33 ± 0.25 Fiso, 1.2 Hz) for 20 min, while muscle length was measured. A large amplitude oscillation was applied every 4 min to simulate a deep breath. We found that: 1) ASM strips with a higher isotonic velocity shortened more quickly during the force oscillations, both initially (P < 0.001) and after the simulated deep breaths (P = 0.002); 2) ASM strips with a higher isotonic velocity exhibited a greater total shortening during the force oscillation protocol (P < 0.005); and 3) the effect of an increase in isotonic velocity was at least comparable in magnitude to the effect of a proportional increase in ASM force-generating capacity. A cross-bridge model showed that an increase in the total amount of shortening with increased isotonic velocity could be explained by a change in either the cycling rate of phosphorylated cross bridges or the rate of myosin light chain phosphorylation. We conclude that, if asthma involves an increase in ASM velocity, this could be an important factor in the associated AHR.  相似文献   

4.
The airway smooth muscle (ASM) layer within the airway wall modulates airway diameter and distensibility. Even in the relaxed state, the ASM layer possesses finite stiffness and limits the extent of airway distension by the radial force generated by parenchymal tethers and transmural pressure. Airway stiffness has often been attributed to passive elements, such as the extracellular matrix in the lamina reticularis, adventitia, and the smooth muscle layer that cannot be rapidly modulated by drug intervention such as ASM relaxation by β-agonists. In this study, we describe a calcium-sensitive component of ASM stiffness mediated through the Rho-kinase signaling pathway. The stiffness of ovine tracheal smooth muscle was assessed in the relaxed state under the following conditions: 1) in physiological saline solution (Krebs solution) with normal calcium concentration; 2) in calcium-free Krebs with 2 mM EGTA; 3) in Krebs with calcium entry blocker (SKF-96365); 4) in Krebs with myosin light chain kinase inhibitor (ML-7); and 5) in Krebs with Rho-kinase inhibitor (Y-27632). It was found that a substantial portion of the passive stiffness could be abolished when intracellular calcium was removed; this calcium-sensitive stiffness appeared to stem from intracellular source and was not sensitive to ML-7 inhibition of myosin light chain phosphorylation, but was sensitive to Y-27632 inhibition of Rho kinase. The results suggest that airway stiffness can be readily modulated by targeting the calcium-sensitive component of the passive stiffness within the muscle layer.  相似文献   

5.
It has been shown that mechanical stretches imposed on airway smooth muscle (ASM) by deep inspiration reduce the subsequent contractile response of the ASM. This passive maneuver of lengthening and retraction of the muscle is beneficial in normal subjects to counteract bronchospasm. However, it is detrimental to hyperresponsive airways because it triggers further bronchoconstriction. Although the exact mechanisms for this contrary response by normal and hyperresponsive airways are unclear, it has been suggested that the phenomenon is related to changes in ASM adaptability to mechanical oscillation. Healthy immature airways of both human and animal exhibit hyperresponsiveness, but whether the adaptative properties of hyperresponsive airway differ from normal is still unknown. In this article, we review the phenomenon of ASM adaptation to mechanical oscillation and its relevance and implication to airway hyperresponsiveness. We demonstrate that the age-specific expression of ASM adaptation is prominent using an established maturational animal model developed in our laboratory. Our data on immature ASM showed potentiated contractile force shortly after a length oscillation compared with the maximum force generated before oscillation. Several potential mechanisms such as myogenic response, changes in actin polymerization, or changes in the quantity of the cytoskeletal regulatory proteins plectin and vimentin, which may underlie this age-specific force potentiation, are discussed. We suggest a working model of the structure of smooth muscle associated with force transmission, which may help to elucidate the mechanisms responsible for the age-specific expression of smooth muscle adaptation. It is important to study the maturational profile of ASM adaptation as it could contribute to juvenile hyperresponsiveness.  相似文献   

6.
In vitro and in situ studies have proposed a potentiation of submaximal force production after myosin light chain 2 (P-light chain) phosphorylation in mammalian striated muscle. The purpose of this study was to ascertain the relationship between the augmentation in left ventricular pressure development and cardiac myosin P-light chain phosphorylation at different times during and after submaximal treadmill exercise involving adult female Sprague-Dawley rats. In vivo hemodynamic measurements were monitored with an indwelling high-fidelity solid-state pressure transducer. Exercise heart rate, peak left ventricular (LV) pressure, and rate of LV pressure development/relaxation (LV +/- dP/dt) were significantly elevated compared with a normal sedentary group (P less than 0.001). Peak LV pressure remained significantly elevated throughout 20 min of postexercise recovery (P less than 0.01), and heart rate, LV end-diastolic pressure, and LV +/- dP/dt returned rapidly to preexercise values. Corresponding to these in vivo hemodynamic changes, increased levels of P-light chain phosphorylation were observed during both exercise (16%, P less than 0.01) and subsequent recovery periods (14%, P less than 0.02) compared with the NC group. A quasi-temporal relationship was observed between postexercise peak LV pressure potentiation and P-light chain phosphorylation. These results demonstrate that cardiac myosin P-light chain phosphorylation is associated, in part, with the augmentation of peak LV pressure observed during both exercise and recovery.  相似文献   

7.
Among the various cardiac contractility parameters, left ventricular (LV) ejection fraction (EF) and maximum dP/dt (dP/dt(max)) are the simplest and most used. However, these parameters are often reported together, and it is not clear if they are complementary or redundant. We sought to compare the discriminative value of EF and dP/dt(max) in assessing systolic dysfunction after myocardial infarction (MI) in swine. A total of 220 measurements were obtained. All measurements included LV volumes and EF analysis by left ventriculography, invasive ventricular pressure tracings, and echocardiography. Baseline measurements were performed in 132 pigs, and 88 measurements were obtained at different time points after MI creation. Receiver operator characteristic (ROC) curves to distinguish the presence or absence of an MI revealed a good predictive value for EF [area under the curve (AUC): 0.998] but not by dP/dt(max) (AUC: 0.69, P < 0.001 vs. EF). Dividing dP/dt(max) by LV end-diastolic pressure and heart rate (HR) significantly increased the AUC to 0.87 (P < 0.001 vs. dP/dt(max) and P < 0.001 vs. EF). In na?ve pigs, the coefficient of variation of dP/dt(max) was twice than that of EF (22.5% vs. 9.5%, respectively). Furthermore, in n = 19 pigs, dP/dt(max) increased after MI. However, echocardiographic strain analysis of 23 pigs with EF ranging only from 36% to 40% after MI revealed significant correlations between dP/dt(max) and strain parameters in the noninfarcted area (circumferential strain: r = 0.42, P = 0.05; radial strain: r = 0.71, P < 0.001). In conclusion, EF is a more accurate measure of systolic dysfunction than dP/dt(max) in a swine model of MI. Despite the variability of dP/dt(max) both in na?ve pigs and after MI, it may sensitively reflect the small changes of myocardial contractility.  相似文献   

8.
Dog hearts were prepared in situ so that heart rate (HR), left ventricular end diastolic pressure (LVEDP) and mean aortic pressure (MAP) could be controlled separately during computation of left ventricular dP/dt max and external stroke work (SW). Progressive increases in HR consistently raised dP/dt max over a wide range, and consistently lowered SW except at low rates. Progressive increases in LVEDP or MAP consistently raised both dP/dt max and SW. Infusion of noradrenaline consistently raided both dP/dt max and SW, except at very high HR when only dP/dt max was consistently raised. Our results lead us to question the validity of equating changes in pre-ejection measurements with changes in performance of the heart as a pump under abnormal conditions and in the assessment of inotropic agents.  相似文献   

9.
Adenosine A(2a)-receptor activation enhances shortening of isolated cardiomyocytes. In the present study the effect of A(2a)-receptor activation on the contractile performance of isolated rat hearts was investigated by recording left ventricular pressure (LVP) and the maximal rate of LVP development (+dP/dt(max)). With constant-pressure perfusion, adenosine caused concentration-dependent increases in LVP and +dP/dt(max), with detectable increases of 4.1 and 4.8% at 10(-6) M and maximal increases of 12.0 and 11.1% at 10(-4) M, respectively. The contractile responses were prevented by the A(2a)-receptor antagonists chlorostyryl-caffeine and aminofuryltriazolotriazinyl-aminoethylphenol (ZM-241385) but were not affected by the beta(1)-adrenergic antagonist atenolol. The adenosine A(1)-receptor antagonist dipropylcyclopentylxanthine and pertussis toxin potentiated the positive inotropic effects of adenosine. The A(2a)-receptor agonists ethylcarboxamidoadenosine and dimethoxyphenyl-methylphenylethyl-adenosine also enhanced contractility. With constant-flow perfusion, 10(-5) M adenosine increased LVP and +dP/dt(max) by 5.5 and 6.0%, respectively. In the presence of the coronary vasodilator hydralazine, adenosine increased LVP and +dP/dt(max) by 7.5 and 7.4%, respectively. Dipropylcyclopentylxanthine potentiated the adenosine contractile responses with constant-flow perfusion in the absence and presence of hydralazine. These increases in contractile performance were also antagonized by chlorostyryl-caffeine and ZM-241385. The results indicate that adenosine increases contractile performance via activation of A(2a) receptors in the intact heart independent of beta(1)-adrenergic receptor activation or changes in coronary flow.  相似文献   

10.
Stiffness changes in cultured airway smooth muscle cells   总被引:7,自引:0,他引:7  
Airwaysmooth muscle (ASM) cells in culture stiffen when exposed tocontractile agonists. Such cell stiffening may reflect activation ofthe contractile apparatus as well as polymerization of cytoskeletalbiopolymers. Here we have assessed the relative contribution of thesemechanisms in cultured ASM cells stimulated with serotonin(5-hydroxytryptamine; 5-HT) in the presence or absence of drugs thatinhibit either myosin-based contraction or polymerization offilamentous (F) actin. Magnetic twisting cytometry was used to measurecell stiffness, and associated changes in structural organization ofactin cytoskeleton were evaluated by confocal microscopy. We found that5-HT increased cell stiffness in a dose-dependent fashion and alsoelicited rapid formation of F-actin as marked by increased intensity ofFITC-phalloidin staining in these cells. A calmodulin antagonist (W-7),a myosin light chain kinase inhibitor (ML-7) and a myosin ATPaseinhibitor (BDM) each ablated the stiffening response but not theF-actin polymerization induced by 5-HT. Agents that inhibited theformation of F-actin (cytochalasin D, latrunculin A, C3 exoenzyme, andY-27632) attenuated both baseline stiffness and the extent of cellstiffening in response to 5-HT. Together, these data suggest thatagonist-evoked stiffening of cultured ASM cells requires actinpolymerization as well as myosin activation and that neitheractin polymerization nor myosin activation by itself is sufficient toaccount for the cell stiffening response.

  相似文献   

11.
Myocardial depression in sepsis is frequently encountered clinically and contributes to morbidity and mortality. Increased plasma levels of endothelin-1 (ET-1) have been described in septic shock, and previous reports have shown beneficial effects on cardiovascular performance and survival in septic models using ET receptor antagonists. The aim of the current study was to investigate specific cardiac effects of ET receptor antagonism in endotoxicosis. Sixteen domestic pigs were anesthetized and subjected to endotoxin for 5 h. Eight of these pigs were given tezosentan (dual ET receptor antagonist) after 3 h. Cardiac effects were evaluated using the left ventricular (LV) pressure-volume relationship. Endotoxin was not associated with any effects on parameters of LV contractile function [end-systolic elastance (Ees), preload recruitable stroke work (PRSW), power(max)/end-diastolic volume (PWR(max)/EDV) and dP/dt(max)/end-diastolic volume (dP/dt(max)/EDV)] but with impairments in isovolumic relaxation (time constant for pressure decay, tau) and mechanical efficiency. Tezosentan administration decreased Ees, PWR(max)/EDV, and dP/dt(max)/EDV, while improving tau and LV stiffness. Thus, dual ET receptor antagonism was associated with a decline in contractile function but, in contrast, improved diastolic function. Positive hemodynamic effects from ET receptor antagonism in acute endotoxemia may be due to changes in cardiac load and enhanced diastolic function rather than improved contractile function.  相似文献   

12.
Factors known to influence left ventricular contractility include preload, afterload, circulating catecholamine concentration, efferent sympathetic discharge, and heart rate. Heart rate influences have been primarily determined in the dog, whereas the influence of heart rate in smaller mammals has not been determined. Eight pentobarbital-anesthetized rabbits were instrumented to measure electrocardiogram, heart rate, left ventricular pressure, end-diastolic pressure, dP/dt, and mean and pulsatile aortic pressures. Systematic bradycardia was induced by stimulating the peripheral end of the sectioned right vagus nerve. Between 293 and 235 beats/min, there was no change in (dP/dt)max as heart rate was decreased. Below this range there was a direct relationship between (dP/dt)max and heart rate. Preload remained unchanged down to 132 beats/min. There was a small but significant decrease in afterload (0.09 mmHg X beat-1 X min-1; 1 mmHg = 133.32 Pa) throughout the decrease in heart rate. Infusion of propranolol (2.0 mg/kg) produced no marked change in the heart rate - (dP/dt)max relationship, although both resting heart rate and (dP/dt)max were reduced. This study demonstrates that (dP/dt)max is not influenced by changes in heart rate above 235 beats/min in the pentobarbital-anesthetized rabbit. These results differ from findings in other animals, and demonstrate that species and heart rate ranges must be considered when drawing conclusions regarding (dP/dt)max as a reliable index of contractility.  相似文献   

13.
To help elucidate the mechanisms underlying asthmatic bronchospasm, the goal of our research has been to determine whether airway smooth muscle (ASM) hyperreactivity was the responsible factor. We reported that in a canine model of asthma, the shortening capacity (DeltaLmax) and velocity (Vo) of in vitro sensitized muscle were significantly increased. This increase was of sufficient magnitude to account for 75% narrowing of the in vivo airway, but maximal isometric force was unchanged. This last feature has been reported by others. Under lightly loaded conditions, ASM completes 75% of its isotonic shortening within the first 2 s. Furthermore, 90% of the increased shortening of ragweed pollen-sensitized ASM (SASM), compared with control (CASM), is complete within the first 2 s. The study of shortening beyond this period will apparently not yield much useful information, and studies of isotonic shortening should be focused on this interval. Although both CASM and SASM showed plasticity and adaptation with respect to isometric force, neither muscle type showed a difference in the force developed in these phases. During isotonic shortening, no evidence of plasticity was seen, but the equilibrated SASM showed increased DeltaLmax and Vo of shortening. Molecular mechanisms of changes in Vo could result from changes in the kinetics of the myosin heavy chain ATPase. Motility assay, however, showed no changes between CASM and SASM in the ability of the purified myosin molecule (SF1) to translocate a marker actin filament. On the other hand, we found that the state of activation of the ATPase by phosphorylation of smooth muscle myosin light chain (molecular mass 20,000 Da) was greater in the SASM. This would account for the increased Vo. Investigating the signalling pathway, we found that whereas [Ca2+]i increased in both isometric and isotonic contraction, there was no significant difference between CASM and SASM. The content and activity of calmodulin were also not different between the 2 muscles. Nevertheless, we did find that content and total activity of smooth muscle myosin light chain kinase (smMLCK) and the abundance of its message were greater; this would explain the increased MLC20 phosphorylation. The binding affinity between Ca2+ and calmodulin and between 4 Ca2+ calmodulin and smMLCK remains to be studied. We conclude that SASM shows increased isotonic shortening capacity and velocity. It also shows increased content and total activity of smMLCK, which is consistent with the increased shortening. Plasticity produced by oscillation is not seen in the shortening muscle, although it is seen with respect to force development. It did not modulate the behaviour of the sensitized muscle.  相似文献   

14.
Temporary sequential biventricular pacing (BiVP) is a promising treatment for postoperative cardiac dysfunction, but the mechanism for improvement in right ventricular (RV) dysfunction is not understood. In the present study, cardiac output (CO) was optimized by sequential BiVP in six anesthetized, open-chest pigs during control and acute RV pressure overload (RVPO). Ventricular contractility was assessed by the maximum rate of increase of ventricular pressure (dP/dt(max)). Mechanical interventricular synchrony was measured by the area of the normalized RV-left ventricular (LV) pressure diagram (A(PP)). Positive A(PP) indicates RV pressure preceding LV pressure, whereas zero indicates complete synchrony. In the control state, CO was maximized with nearly simultaneous stimulation of the RV and LV, which increased RV (P = 0.006) and LV dP/dt(max) (P = 0.002). During RVPO, CO was maximized with RV-first pacing, which increased RV dP/dt(max) (P = 0.007), but did not affect LV dP/dt(max), and decreased the left-to-right, end-diastolic pressure gradient (P = 0.023). Percent increase of RV dP/dt(max) was greater than LV dP/dt(max) (P = 0.014). There were no increases in end-diastolic pressure to account for increases in dP/dt(max). In control and RVPO, RV dP/dt(max) was linearly related to A(PP) (r = 0.779, P < 0.001). The relation of CO to A(PP) was curvilinear, with a peak in CO with positive A(PP) in the control state (P = 0.004) and with A(PP) approaching zero during RVPO (P = 0.001). These observations imply that, in our model, BiVP optimization improves CO by augmenting RV contractility. This is mediated by changes in mechanical interventricular synchrony. Afterload increases during RVPO exaggerate this effect, making CO critically dependent on simultaneous pressure generation in the RV and LV, with support of RV contractility by transmission of LV pressure across the interventricular septum.  相似文献   

15.
Although airway remodeling and inflammation in asthma can amplify the constriction response of a single airway, their influence on the structural changes in the whole airway network is unknown. We present a morphometric model of the human lung that incorporates cross-sectional wall areas corresponding to the adventitia, airway smooth muscle (ASM), and mucosa for healthy and mildly and severely asthmatic airways and the influence of parenchymal tethering. A heterogeneous ASM percent shortening stimulus is imposed, causing distinct constriction patterns for healthy and asthmatic airways. We calculate lung resistance and elastance from 0.1 to 5 Hz. We show that, for a given ASM stimulus, the distribution of wall area in asthmatic subjects will amplify not only the mean but the heterogeneity of constriction in the lung periphery. Moreover, heterogeneous ASM shortening that would produce only mild changes in the healthy lung can cause hyperresponsive changes in lung resistance and elastance at typical breathing rates in the asthmatic lung, even with relatively small increases in airway resistance. This condition arises when airway closures occur randomly in the lung periphery. We suggest that heterogeneity is a crucial determinant of hyperresponsiveness in asthma and that acute asthma is more a consequence of extensive airway wall inflammation and remodeling, predisposing the lung to produce an acute pattern of heterogeneous constriction.  相似文献   

16.
Reactive oxygen species (ROS) increase the contractile response of airway smooth muscle (ASM). Heme oxygenase (HO) catabolizes heme to the powerful antioxidant bilirubin. Because HO is expressed in the airways, we investigated its effects on ASM contractility and ROS production in guinea pig trachea. HO expression was higher in the epithelium than in tracheal smooth muscle. Incubation of tracheal rings (TR) with the HO inhibitor tin protoporphyrin (SnPP IX) or the HO substrate hemin increased and decreased, respectively, ASM contractile response to carbamylcholine. The effect of hemin was reversed by SnPP and mimicked by the antioxidants superoxide dismutase (SOD) and catalase. Hemin significantly reduced the effect of carbamylcholine in rings treated with the guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ), compared with ODQ-treated rings without hemin incubation, suggesting that the CO-guanosine 3',5'-cyclic monophosphate pathway was not involved in the control of tracheal reactivity. SnPP and hemin increased and decreased ROS production by TR by 18 and 38%, respectively. Bilirubin (100 pM) significantly decreased TR contractility and ROS production. Hemin, bilirubin, and SOD/catalase decreased phosphorylation of the contractile protein myosin light chain, whereas SnPP significantly augmented it. These data suggest that modulation of the redox status by HO and, moreover, by bilirubin modulates ASM contractility by modulating levels of phosphorylated myosin light chain.  相似文献   

17.
A deep inspiration (DI) temporarily relaxes agonist-constricted airways in normal subjects, but in asthma airways are refractory and may rapidly renarrow, possibly due to changes in the structure and function of airway smooth muscle (ASM). Chronic largely uniaxial cyclic strain of ASM cells in culture causes several structural and functional changes in ASM similar to that in asthma, including increases in contractility, MLCK content, shortening velocity, and shortening capacity. However, changes in recovery from acute stretch similar to a DI have not been measured. We have therefore measured the response and recovery to large stretches of cells modified by chronic stretching and investigated the role of MLCK. Chronic, 10% uniaxial cyclic stretch, with or without a strain gradient, was administered for up to 11 days to cultured cells grown on Silastic membranes. Single cells were then removed from the membrane and subjected to 1 Hz oscillatory stretches up to 10% of the in situ cell length. These oscillations reduced stiffness by 66% in all groups (P < 0.05). Chronically strained cells recovered stiffness three times more rapidly than unstrained cells, while the strain gradient had no effect. The stiffness recovery in unstrained cells was completely inhibited by the MLCK inhibitor ML-7, but recovery in strained cells exhibiting increased MLCK was slightly inhibited. These data suggest that chronic strain leads to enhanced recovery from acute stretch, which may be attributable to the strain-induced increases in MLCK. This may also explain in part the more rapid renarrowing of activated airways following DI in asthma.  相似文献   

18.
Although there are several excellent indexes of myocardial contractility, they require accurate measurement of pressure via left ventricular (LV) catheterization. Here we validate a novel noninvasive contractility index that is dependent only on lumen and wall volume of the LV chamber in patients with normal and compromised LV ejection fraction (LVEF). By analysis of the myocardial chamber as a thick-walled sphere, LV contractility index can be expressed as maximum rate of change of pressure-normalized stress (d sigma*/dt(max), where sigma* = sigma/P and sigma and P are circumferential stress and pressure, respectively). To validate this parameter, d sigma*/dt(max) was determined from contrast cine-ventriculography-assessed LV cavity and myocardial volumes and compared with LVEF, dP/dt(max), maximum active elastance (E(a,max)), and single-beat end-systolic elastance [E(es(SB))] in 30 patients undergoing clinically indicated LV catheterization. Patients with different tertiles of LVEF exhibit statistically significant differences in d sigma*/dt(max). There was a significant correlation between d sigma*/dt(max) and dP/dt(max) (d sigma*/dt(max) = 0.0075 dP/dt(max) - 4.70, r=0.88, P<0.01), E(a,max) (d sigma*/dt(max) = 1.20E(a,max) + 1.40, r=0.89, P<0.01), and E(es(SB)) [d sigma*/dt(max)=1.60 E(es(SB)) + 1.20, r=0.88, P<0.01]. In 30 additional individuals, we determined sensitivity of the parameter to changes in preload (intravenous saline infusion, n = 10 subjects), afterload (sublingual glyceryl trinitrate, n = 10 subjects), and increased contractility (intravenous dobutamine, n=10 patients). We confirmed that the index is not dependent on load but is sensitive to changes in contractility. In conclusion, d sigma*/dt(max) is equivalent to dP/dt(max), E(a,max), and E(es(SB)) as an index of myocardial contractility and appears to be load independent. In contrast to other measures of contractility, d sigma*/dt(max) can be assessed with noninvasive cardiac imaging and, thereby, should have more routine clinical applicability.  相似文献   

19.
Although environmental tobacco smoke (ETS) exposure has been reported to acutely increase arterial stiffness in humans, understanding of the underlying mechanisms is unclear and few studies have measured these effects in experimental animals. One potential mechanism for the increased arterial stiffness is reduced nitric oxide (NO) bioactivity as a result of oxidative stress. Thus, the objective of this study was to determine whether acute changes in arterial stiffness could be detected using arterial pulse wave dP/dt in blood pressure telemetry implanted rats and to investigate the role of NO in regulating dP/dt. Intravenous injection of acetylcholine (0.91 ng/kg) decreased and norepinephrine (0.02 mg/kg) increased dP/dt compared to saline vehicle (0.5 mL/kg). Injection of the NO synthase inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME; 30 mg/kg) decreased plasma nitrate/nitrite (NOx), but transiently increased dP/dt. ETS at low and high doses had no effect on dP/dt, but increased plasma NOx levels at high ETS exposure and increased plasma nitrotyrosine levels in both ETS groups. In conclusion, acute changes in NO production via acetylcholine or L-NAME alter the arterial pulse wave dP/dt consistently with the predicted changes in arterial stiffness. Although acute ETS appears to biologically inactivate NO, a concomitant increase in NO production at high ETS exposure may explain why dP/dt was not acutely altered by ETS in the current study.  相似文献   

20.
Whether contractility of bronchial smooth muscle cells (BSMC) from asthmatic subjects is significantly altered has never been validated. We tested the hypothesis that such BSMC show increased contractility. Cells were isolated from endobronchial biopsies. BSMC shortening was measured under an inverted microscope. Statistically significant increases in maximum shortening capacity (Delta L max) and velocity (Vo) were found in asthmatic BSMC compared with normal cells. Mean Delta L max in asthmatic BSMC was 39.05 +/- 1.99% (SE) of resting cell length compared with 28.6 +/- 1.1% in normal cells; mean Vo was 7.2 +/- 0.8% of resting cell length/s in asthmatic cells and 5.23 +/- 0.46% in normal cells. To investigate the mechanism of the increased contractility, we measured mRNA abundance of smooth muscle types of myosin light chain kinase (smMLCK) and myosin heavy chain. RT-PCR data revealed that smMLCK mRNA was higher in asthmatic BSMC (0.106 +/- 0.021 arbitrary densitometric units, n = 7) than in control cells (0.04 +/- 0.008, n = 11; P < 0.05). Messages for myosin heavy chain isoforms showed no difference. Increased kinase message content is an index of the mechanism for the increased velocity and capacity of shortening we report.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号