首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
CUGBP Elav-like family member 1 (CELF1), an RNA-binding protein (RBP), plays important roles in the pathogenesis of diseases such as myotonic dystrophy, liver fibrosis and cancers. However, targeting CELF1 is still a challenge, as RBPs are considered largely undruggable. Here, we discovered that compound 27 disrupted CELF1-RNA binding via structure-based virtual screening and biochemical assays. Compound 27 binds directly to CELF1 and competes with RNA for binding to CELF1. Compound 27 promotes IFN-γ secretion and suppresses TGF-β1-induced hepatic stellate cell (HSC) activation by inhibiting CELF1-mediated IFN-γ mRNA decay. In vivo, compound 27 attenuates CCl4-induced murine liver fibrosis. Furthermore, the structure-activity relationship analysis was performed and compound 841, a derivative of compound 27, was identified as a selective CELF1 inhibitor. In conclusion, targeting CELF1 RNA-binding activity with small molecules was achieved, which provides a novel strategy for treating liver fibrosis and other CELF1-mediated diseases.  相似文献   

2.
3.
Quantitative analysis of CUG-BP1 binding to RNA repeats   总被引:2,自引:0,他引:2  
CUG-binding protein 1 (CUG-BP1) is a member of the CUG-BP1 and ETR-3-like factors (CELF) family of RNA-binding proteins, and is involved in myotonic dystrophy type 1 (DM1). Several mRNA targets of CUG-BP1 have been identified, including the insulin receptor, muscle chloride channel, and cardiac troponin T. On the other hand, CUG-BP1 has only a weak affinity for CUG repeats. We conducted quantitative-binding assays to assess CUG-BP1 affinities for several repeat RNAs by surface plasmon resonance (SPR). Although we detected interactions between CUG-BP1 and CUG repeats, other UG-rich sequences actually showed stronger interactions. Binding constants of CUG-BP1 for RNAs indicated that the affinity for UG repeats was far stronger than for CUG repeats. We also found that N-terminal deletion mutant of CUG-BP1 has UG repeat-binding activity in a yeast three-hybrid system, although C-terminal deletion mutant does not. Our data indicates that CUG-BP1 specifically recognized UG repeats, probably through cooperative binding of RNA recognition motifs at both ends of the protein. This is the first report of a binding constant for CUG-BP1 calculated in vitro.  相似文献   

4.
Emerging studies support that RNA-binding proteins(RBPs)play critical roles in human biology and pathogenesis.RBPs are essential players in RNA processing and metabolism,including pre-mRNA splicing,polyadenylation,transport,surveillance,mRNA localization,mRNA stability control,translational control and editing of various types of RNAs.Aberrant expression of and mutations in RBP genes affect various steps of RNA processing,altering target gene function.RBPs have been associated with various diseases,including neurological diseases.Here,we mainly focus on selected RNA-binding proteins including Nova-1/Nova-2,HuR/HuB/HuC/HuD,TDP-43,Fus,Rbfox1/Rbfox2,QKI and FMRP,discussing their function and roles in human diseases.  相似文献   

5.
MicroRNAs (miRNAs) are genes involved in normal development and cancer. They inhibit gene expression by associating with 3'-Untranslated regions (3' UTRs) of messenger RNAs (mRNAs), and are thought to regulate a large proportion of protein coding genes. However, it is becoming apparent that miRNA activity is not necessarily always determined by its expression in the cell. MiRNA activity can be affected by RNA-binding proteins (RBPs). For example, the RNA-binding protein HuR associates with the 3'UTR of the CAT1 mRNA after stress, counteracting the effect of miR-122. Second, we found that the expression of an RNA-binding protein called Dead end (Dnd1) prohibits the function of several miRNAs by blocking the accessibility of target mRNAs. Dnd1 function is essential for proper development of primordial germ cells (PGCs) in zebrafish and mammals, indicating a crucial role for RBP/miRNA interplay on 3'UTRs of mRNAs in developmental decisions. In this perspective we discuss the interplay between RBPs and miRNAs in the context of germ cells and review current observations implicating RBPs in miRNA function.  相似文献   

6.
7.
8.
RNA-binding proteins (RBPs) regulate the expression of large cohorts of RNA species to produce programmatic changes in cellular phenotypes. To describe the function of RBPs within a cell, it is key to identify their mRNA-binding partners. This is often done by crosslinking nucleic acids to RBPs, followed by chemical release of the nucleic acid fragments for analysis. However, this methodology is lengthy, which involves complex processing with attendant sample losses, thus large amounts of starting materials and prone to artifacts. To evaluate potential alternative technologies, we tested “exclusion-based” purification of immunoprecipitates (IFAST or SLIDE) and report here that these methods can efficiently, rapidly, and specifically isolate RBP–RNA complexes. The analysis requires less than 1% of the starting material required for techniques that include crosslinking. Depending on the antibody used, 50% to 100% starting protein can be retrieved, facilitating the assay of endogenous levels of RBPs; the isolated ribonucleoproteins are subsequently analyzed using standard techniques, to provide a comprehensive portrait of RBP complexes. Using exclusion-based techniques, we show that the mRNA-binding partners for RBP IGF2BP1 in cultured mammary epithelial cells are enriched in mRNAs important for detoxifying superoxides (specifically glutathione peroxidase [GPX]-1 and GPX-2) and mRNAs encoding mitochondrial proteins. We show that these interactions are functionally significant, as loss of function of IGF2BP1 leads to destabilization of GPX mRNAs and reduces mitochondrial membrane potential and oxygen consumption. We speculate that this underlies a consistent requirement for IGF2BP1 for the expression of clonogenic activity in vitro.  相似文献   

9.
10.
1. The primary structures of two variants of rainbow trout (Oncorhynchus mykiss) plasma retinol-binding protein (RBP) were determined and found to be approximately 60% identical with those of both human and Xenopus laevis RBPs. The comparable sequence similarities that we have found agree with the estimate of similar divergence times between bony fishes and mammals and between bony fishes and amphibians. The two piscine RBP variants differ by six amino acid substitutions at positions that are not crucial for the interaction with retinol, on the basis of the human RBP three-dimensional structure [Cowan, S. W., Newcomer, M. E. & Jones, T. A. (1990) Proteins Struct. Func. Genet. 8, 44-61]. 2. Models were developed for the three-dimensional structures of rainbow trout and X. laevis RBPs, based on that of human RBP. The overall three-dimensional structure appears to be very well preserved for RBPs isolated from vertebrate species for which the divergence time is 350-400 million years. At variance with an almost absolute conservation for the residues that participate in the formation of the retinol binding site in mammalian RBPs, several amino acid replacements are found for this part of the RBP molecule when the comparison is extended to piscine and amphibian RBPs. However, the only allowed amino acid replacements are either conservative or more than 0.4 nm distant from retinol. Besides the retinol binding site, a few regions at the protein surface appear to be rather conserved during phylogenetic development of vertebrates and, therefore, might be involved in molecular interactions.  相似文献   

11.
12.
Gene expression is controlled through a complex interplay among mRNAs, non-coding RNAs and RNA-binding proteins (RBPs), which all assemble along with other RNA-associated factors in dynamic and functional ribonucleoprotein complexes (RNPs). To date, our understanding of RBPs is largely limited to proteins with known or predicted RNA-binding domains. However, various methods have been recently developed to capture an RNA of interest and comprehensively identify its associated RBPs. In this review, we discuss the RNA-affinity purification methods followed by mass spectrometry analysis (AP-MS); RBP screening within protein libraries and computational methods that can be used to study the RNA-binding proteome (RBPome).  相似文献   

13.
14.
RNA-binding proteins (RBPs) are key regulators of gene expression. RBP dysregulation is reported to play essential roles in tumorigenesis. However, the role of RBPs in urothelial carcinoma of the bladder (UCB) is only starting to be unveiled. Here, we comprehensively assessed the mRNA expression landscape of 104 RBPs from two independent UCB cohorts, Sun Yat-sen University Cancer Center (SYSUCC) and The Cancer Genome Atlas (TCGA). Fragile X-related gene 1 (FXR1) was identified as a novel cancer driver gene in UCB. FXR1 overexpression was found to be related to the poor survival rate in the SYSUCC and TCGA cohorts. Functionally, FXR1 promotes UCB proliferation and tumorigenesis. Mechanistically, FXR1 serves as a platform to recruit CFIm25 and CFIm68, forming a novel 3′ processing machinery that functions in sequence-specific poly(A) site recognition. FXR1 affects the 3′ processing of Tumor necrosis factor receptor-associated factor 1 (TRAF1) mRNA, which leads to nuclear stabilization. The novel regulatory relationship between FXR1 and TRAF1 can enhance cell proliferation and suppress apoptosis. Our data collectively highlight the novel regulatory role of FXR1 in TRAF1 3′ processing as an important determinant of UCB oncogenesis. Our study provides new insight into RBP function and provides a potential therapeutic target for UCB.Subject terms: Bladder cancer, Oncogenes  相似文献   

15.
16.
17.
The expression and function of the skeletal muscle chloride channel CLCN1/ClC-1 is regulated by alternative splicing. Inclusion of the CLCN1 exon 7A is aberrantly elevated in myotonic dystrophy (DM), a genetic disorder caused by the expansion of a CTG or CCTG repeat. Increased exon 7A inclusion leads to a reduction in CLCN1 function, which can be causative of myotonia. Two RNA-binding protein families—muscleblind-like (MBNL) and CUG-BP and ETR-3-like factor (CELF) proteins—are thought to mediate the splicing misregulation in DM. Here, we have identified multiple factors that regulate the alternative splicing of a mouse Clcn1 minigene. The inclusion of exon 7A was repressed by MBNL proteins while promoted by an expanded CUG repeat or CELF4, but not by CUG-BP. Mutation analyses suggested that exon 7A and its flanking region mediate the effect of MBNL1, whereas another distinct region in intron 6 mediates that of CELF4. An exonic splicing enhancer essential for the inclusion of exon 7A was identified at the 5′ end of this exon, which might be inhibited by MBNL1. Collectively, these results provide a mechanistic model for the regulation of Clcn1 splicing, and reveal novel regulatory properties of MBNL and CELF proteins.  相似文献   

18.
19.
During Xenopus early development, gene expression is regulated mainly at the translational level by the length of the poly(A) tail of mRNAs. The Eg family and c-mos maternal mRNAs are deadenylated rapidly and translationally repressed after fertilization. Here, we characterize a short sequence element (EDEN) responsible for the rapid deadenylation of Eg5 mRNA. Determining the core EDEN sequence permitted us to localize the c-mos EDEN sequence. The c-mos EDEN confered a rapid deadenylation to a reporter gene. The EDEN-specific RNA-binding protein (EDEN-BP) was purified and a cDNA obtained. EDEN-BP is highly homologous to a human protein possibly involved in myotonic dystrophy. Immunodepleting EDEN-BP from an egg extract totally abolished the EDEN-mediated deadenylation activity, but did not affect the default deadenylation activity. Therefore, EDEN-BP constitutes the first trans-acting factor for which an essential role in the specificity of mRNA deadenylation has been directly demonstrated.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号