首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adoptive immunotherapy for treatment of cancers and infectious diseases is often hampered by a high degree of variability in the final T cell product and in the limited in vivo function and survival of ex vivo expanded antigen-specific cytotoxic T cells (CTL). This has stimulated interest in development of standardized artificial antigen presenting cells (aAPC) to reliably expand antigen specific CTL. However, for successful immunotherapy the aAPC ex vivo generated CTL must have anti-tumor activity in vivo. Here, we demonstrate that HLA-Ig based aAPC stimulated tumor-specific CTL from human peripheral blood T lymphocytes showed robust expansion and functional activity in a human/SCID mouse melanoma model. HLA-Ig based aAPC expanded CTL were detected in the peripheral blood up to 15 days after transfer. Non-invasive bioluminescence imaging of tumor bearing mice demonstrated antigen dependent localization of transferred CTL to the tumor site. Moreover, adoptive transfer of HLA-Ig based aAPC generated CTL inhibited the tumor growth both in prevention and treatment modes of therapy and was comparable to that achieved by dendritic cell expanded CTL. Thus, our data demonstrate potential therapeutic in vivo activity of HLA-Ig based aAPC expanded CTL to control tumor growth.  相似文献   

2.
Human tumor specific cytotoxic T lymphocytes (CTL) were expanded on formalin-fixed autologous target tumor cells derived from glioblastoma multiforme. Growth response of the CTL restimulated with the fixed target cells was larger than those with live target cells. The results suggest that formalin-fixed tumor cells will be stable sources of tumor antigen for efficient autologous CTL expansion and be useful for adoptive immunotherapy of tumors. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
Adoptive immunotherapy holds promise as a treatment for cancer and infectious diseases, but its development has been impeded by the lack of reproducible methods for generating therapeutic numbers of antigen-specific CD8(+) cytotoxic T lymphocytes (CTLs). As a result, there are only limited reports of expansion of antigen-specific CTLs to the levels required for clinical therapy. To address this issue, artificial antigen-presenting cells (aAPCs) were made by coupling a soluble human leukocyte antigen-immunoglobulin fusion protein (HLA-Ig) and CD28-specific antibody to beads. HLA-Ig-based aAPCs were used to induce and expand CTLs specific for cytomegalovirus (CMV) or melanoma. aAPC-induced cultures showed robust antigen-specific CTL expansion over successive rounds of stimulation, resulting in the generation of clinically relevant antigen-specific CTLs that recognized endogenous antigen-major histocompatibility complex complexes presented on melanoma cells. These studies show the value of HLA-Ig-based aAPCs for reproducible expansion of disease-specific CTLs for clinical approaches to adoptive immunotherapy.  相似文献   

4.
Bone marrow-derived mesenchymal stem cells (BMD-MSCs) are of great interest for tissue engineering, but require expansion before they can be used for therapeutic applications. We compared three different culture techniques for their potential for large scale expansion of rat BMD-MSCs, i.e. monolayer cultures, stirred suspension cultures and pour-off cultures, and found that pour-off cultures supported the biggest expansion in BMD-MSCs as measured by the fibroblastic-colony forming unit assay (CFU-f). BMD-MSCs expanded in stirred suspension cultures stopped proliferating altogether and, although monolayer cultures allowed for expansion of BMD-MSCs, they favoured a differentiated phenotype over uncommitted MSCs. Only BMD-MSCs expanded in pour-off cultures were able to differentiate into both osteoblastic and adipocytic lineages and maintain CFU-f numbers. These data suggest that pour-off cultures are a viable method of BMD-MSC expansion.  相似文献   

5.
BACKGROUND: Recipients of allogeneic stem cell transplants (SCT) are at risk of human CMV infection during their immunocompromised period. The increasing number of reports of CMV isolates resistant to ganciclovir after transplantation has led us to attempt to develop alternative strategies for preventing or treating CMV infection. This study describes a system for generating sufficient numbers of CMV-specific cytotoxic T lymphocytes (CTL) for adoptive immunotherapy after SCT. METHODS: CMV-specific CTL were isolated from a single blood draw of a CMV-seropositive donor using PE-labeled HLA-A*0201/pp65(495-503) tetramers and anti-PE magnetic beads. A mixture of a tetramer-positive population and CD4(+) T lymphocytes was expanded to sufficient numbers for clinical application with IL-2 and immobilized anti-CD3 stimulation. RESULT: Starting from 50 mL of blood, we generated >10(7)/m(2) tetramer-positive CTL within 2 weeks. Flow cytometric analysis of expanded lymphocytes showed that purity of CMV peptide-specific CTL was >75%. Upon stimulation of HLA-A*0201-restricted CMV peptide, expanded CD8 T lymphocytes produced intracellular IFN-gamma. Purified CTL exhibited cytotoxic activity against CMV peptide-pulsed T2 cells and CMV-infected HLA-A*0201-positive fibroblasts, but not against HLA mismatched or uninfected target cells. Alloreactivity could be excluded in MLC. DISCUSSION: This simple, rapid culture system can be useful for adoptive immunotherapy after allogeneic SCT. We are now trying to adapt our laboratory scale study to a clinical scale study under good manufacturing practices (GMP) conditions.  相似文献   

6.
Human embryonic stem cells (hESCs) represent an important resource for novel cell-based regenerative medical therapies. hESCs are known to differentiate into mature cells of defined lineages through the formation of embryoid bodies (EBs) which are amenable to suspension culture for several weeks. However, EBs derived from hESCs in standard static cultures are typically non-homogeneous, leading to inefficient cellular development. Here, we systematically compare the formation, growth, and differentiation capabilities of hESC-derived EBs in stirred and static suspension cultures. A 15-fold expansion in total number of EB-derived cells cultured for 21 days in a stirred flask was observed, compared to a fourfold expansion in static (non-stirred) cultures. Additionally, stirred vessel mediated cultures have a more homogeneous EB morphology and size. Importantly, the EBs cultivated in spinner flasks retained comparable ability to produce hematopoietic progenitor cells as those grown in static culture. These results demonstrate the decoupling between EB cultivation method and EB-derived cells' ability to form hematopoietic progenitors, and will allow for improved production of scalable quantities of hematopoietic cells or other differentiated cell lineages from hESCs in a controlled environment.  相似文献   

7.
To establish an efficient cell-culture system for adoptive immunotherapy, we attempted to use lipopolysacharide (LPS)-activated B cells (LPS blasts) as costimulatory-signal-providing cells in the in vitro induction of antitumor effector cells. Both normal and tumor-draining lymph node cells were efficiently activated by both anti-CD3 monoclonal antibody (mAb) and LPS blasts, and subsequently expanded by a low dose of interleukin-2 (IL-2; anti-CD3 mAb and LPS blasts/IL-2). The expanded cells were predominantly CD8+ T cells and showed a low level of tumor-specific cytotoxic T lymphocyte (CTL) activity. The adoptive transfer of B16-melanoma-draining lymph node cells expanded by anti-CD3 mAb and LPS blasts/IL-2 showed significant antitumor effect against the established metastases of B16 in combination with intraperitoneal injections of IL-2. This treatment cured all B16-bearing mice. In addition, these mice also showed tumorspecific protective immunity against B16 at the rechallenge. Considering that activated B cells express several kinds of costimulatory molecules, these findings thus indicate an efficacy of costimulation that is derived from activated B cells for the in vitro induction of tumor-specific CTL, in co-operation with anti-CD3 mAb. The culture system presented here may thus be therapeutically useful, providing potent effectors for adoptive immunotherapy against various types of cancer.  相似文献   

8.
Cellular therapies are emerging as a standard approach for the treatment of several diseases. However, realizing the promise of cellular therapies across the full range of treatable disorders will require large-scale, controlled, reproducible culture methods. Bioreactor systems offer the scale-up and monitoring needed, but standard stirred bioreactor cultures do not allow for the real-time regulation of key nutrients in the medium. In this study, β-TC6 insulinoma cells were aggregated and cultured for 3 weeks as a model of manufacturing a mammalian cell product. Cell expansion rates and medium nutrient levels were compared in static, stirred suspension bioreactors (SSB), and continuously fed (CF) SSB. While SSB cultures facilitated increased culture volumes, no increase in cell yields were observed, partly due to limitations in key nutrients, which were consumed by the cultures between feedings, such as glucose. Even when glucose levels were increased to prevent depletion between feedings, dramatic fluctuations in glucose levels were observed. Continuous feeding eliminated fluctuations and improved cell expansion when compared with both static and SSB culture methods. Further improvements in growth rates were observed after adjusting the feed rate based on calculated nutrient depletion, which maintained physiological glucose levels for the duration of the expansion. Adjusting the feed rate in a continuous medium replacement system can maintain the consistent nutrient levels required for the large-scale application of many cell products. Continuously fed bioreactor systems combined with nutrient regulation can be used to improve the yield and reproducibility of mammalian cells for biological products and cellular therapies and will facilitate the translation of cell culture from the research lab to clinical applications.  相似文献   

9.
CTL with optimal effector function play critical roles in mediating protection against various intracellular infections and cancer. However, individuals may exhibit suppressive immune microenvironment and, in contrast to activating CTL, their autologous antigen presenting cells may tend to tolerize or anergize antigen specific CTL. As a result, although still in the experimental phase, CTL-based adoptive immunotherapy has evolved to become a promising treatment for various diseases such as cancer and virus infections. In initial experiments ex vivo expanded CMV (cytomegalovirus) specific CTL have been used for treatment of CMV infection in immunocompromised allogeneic bone marrow transplant patients. While it is common to have life-threatening CMV viremia in these patients, none of the patients receiving expanded CTL develop CMV related illness, implying the anti-CMV immunity is established by the adoptively transferred CTL1. Promising results have also been observed for melanoma and may be extended to other types of cancer2. While there are many ways to ex vivo stimulate and expand human CTL, current approaches are restricted by the cost and technical limitations. For example, the current gold standard is based on the use of autologous DC. This requires each patient to donate a significant number of leukocytes and is also very expensive and laborious. Moreover, detailed in vitro characterization of DC expanded CTL has revealed that these have only suboptimal effector function 3. Here we present a highly efficient aAPC based system for ex vivo expansion of human CMV specific CTL for adoptive immunotherapy (Figure 1). The aAPC were made by coupling cell sized magnetic beads with human HLA-A2-Ig dimer and anti-CD28mAb4. Once aAPC are made, they can be loaded with various peptides of interest, and remain functional for months. In this report, aAPC were loaded with a dominant peptide from CMV, pp65 (NLVPMVATV). After culturing purified human CD8+ CTL from a healthy donor with aAPC for one week, CMV specific CTL can be increased dramatically in specificity up to 98% (Figure 2) and amplified more than 10,000 fold. If more CMV-specific CTL are required, further expansion can be easily achieved by repetitive stimulation with aAPC. Phenotypic and functional characterization shows these expanded cells have an effector-memory phenotype and make significant amounts of both TNFα and IFNγ (Figure 3).  相似文献   

10.
Large numbers of cells will be required for successful embryonic stem cell (ESC)-based cellular therapies or drug discovery, thus raising the need to develop scaled-up bioprocesses for production of ESCs and their derived progeny. Traditionally, ESCs have been propagated in adherent cultures in static flasks on fibroblasts layers in serum-containing medium. Direct translation of two-dimensional flatbed cultures to large-scale production of the quantities of cells required for therapy simply by increasing the number of dishes or flasks is not practical or economical. Here, we describe successful scaled-up production of ESCs on microcarriers in a stirred culture system in a serum-free medium. Cells expanded on CultiSpher S, Cytodex 3, and Collagen microcarriers showed superior cell-fold expansions of 439, 193, and 68, respectively, without excessive agglomeration, compared with 27 in static culture. In addition, the ESCs maintained their pluripotency after long-term culture (28 days) in serum-free medium. This is the first time mESCs have been cultured on microcarriers without prior exposure to serum and/or fibroblasts, while also eliminating the excessive agglomeration plaguing earlier studies. These protocols provide an economical, practical, serum-free means for expanding ESCs in a stirred suspension bioprocess.  相似文献   

11.
Summary Mafosfamide (Mafo) is an analog of cyclophosphamide that does not require hepatic activation and therefore has in vitro activity. The present study was conducted to determine the effects of in vitro treatment with Mafo on the generation and growth of cytotoxic T lymphocytes (CTL) from tumor-bearing host mice (TBH). In contrast to early (day-11) TBH splenocytes, splenocytes from late (days 18–20) P815 TBH mice suppress the in vitro generation of CTL. Treatment of late TBH splenocytes in vitro with 5–15 µM Mafo resulted in a reduced ability of these cells to suppress in vitro CTL generation. Treatment of late TBH splenocytes with 10 µM Mafo also inhibited their ability to suppress adoptive immunotherapy of intradermal tumors with immune splenocytes. These doses of Mafo were selectively toxic to the suppressive effects of late TBH splenocytes, since treatment of early TBH splenocytes with 1–10 µM Mafo did not significantly inhibit CTL generation. Spleen cells from early (days 10–12) TBH mice, carried in long-term in vitro sensitization cultures in the presence of tumor cells and 20 U/ml human recombinant interleukin-2, did not increase in cell number over time. However, when pretreated with 3 µM Mafo, this population of tumor-sensitized lymphocytes demonstrated 450-fold growth over 6 weeks as compared to the static cell numbers for the untreated controls. High levels of tumor-specific cytolytic activity were maintained in these expanded cells. These results suggest that Mafo pretreatment markedly and selectively inhibits suppressor cells that limit long-term expansion of splenic CTL in culture and inhibit adoptive immunotherapy of solid tumors.This work was supported by grants CA 42443, CA 48075 and T32-CA 09210 from the National Cancer Institute, Department of Health and Human Services, in part by PHS AI-25044, an American Cancer Society Clinical Oncology Career Development Award (H. D. B.) and by a Medical Scholar's Award from the A. D. Williams Foundation (T. H. I.)  相似文献   

12.
We have investigated the efficacy and immunologic characteristics of immune effector cells generated from cultures containing large numbers of viable tumor cells and interleukin 2 (IL 2) in the adoptive immunotherapy of experimentally induced pulmonary metastases from the newly developed, weakly immunogenic MCA 105 sarcoma in mice. The current culture conditions allowed increases of either normal or MCA 105 immune spleen cells up to 94-fold in 15 days. The in vitro expanded normal and MCA 105 immune cells displayed nonspecific in vitro cytotoxicity against several syngeneic tumor targets. However, therapeutically effective cells could only be obtained from cultures initiated with MCA 105 immune spleen cells. Immunotherapy with expanded immune effector cells could lead to the reduction of established 3 day pulmonary metastases, prolongation of survival, and cure of tumor in the majority of animals. The generation and proliferation of therapeutic effector cells in vitro depended on the presence in cultures of specific tumor stimulator cells as well as the presence of IL 2. Although immunotherapy with either fresh noncultured or secondarily in vitro-sensitized (IVS) MCA 105 immune spleen cells was immunologically specific, the efficacy of the adoptive cellular therapy with cultured but not fresh immune cells could be improved by the administration to tumor-bearing hosts of exogenous IL 2. In addition to numerical expansion, the IVS immune cells, on a per cell basis, afforded an eightfold to 10-fold increase in therapeutic efficacy when compared with fresh noncultured MCA 105 immune cells. Our results indicate that the current culture procedure induced in vitro antigenic stimulation and expansion of tumor-specific immune effector cells that was otherwise not possible by conventional mixed lymphocyte-tumor cultures.  相似文献   

13.
Potent and readily accessible APC are critical for development of immunotherapy protocols to treat viral disease and cancer. We have shown that B lymphoblastoid cell lines (BLCL) that stably express CMV phosphoprotein 65 (BLCLpp65), as a result of retroviral transduction, can be used to generate ex vivo CTL cultures that possess cytotoxicity against CMV and EBV. In this report, we demonstrate that the EBV-specific cytotoxicity in the BLCLpp65-primed culture had a spectrum of EBV-Ag recognition similar to that of the BLCL-primed counterpart, suggesting that retroviral transduction and expression of the CMV Ag would not compromise the Ag-presenting capacity of BLCL. In addition, BLCLpp65 appeared to present multiple natural pp65 epitopes, because pp65-specific CTL, which recognized different CMV clinical isolates, were generated in BLCLpp65-primed cultures from individuals with various HLA backgrounds. Consistent with a polyclonal expansion of virus-specific CTL, T cell lines established from the BLCLpp65-primed CTL cultures expressed different TCR-Vbeta Although most of the virus-specific T cell isolates were CD8+, EBV-specific CD4+ lines were also established from BLCLpp65-primed cultures. Western blot analysis revealed that the CD8+ lines, but not the CD4+ line, expressed granzyme B, consistent with features of classic CTL. Thus, our results suggested that BLCL stably expressing a foreign Ag might be used as a practical APC to elicit CD8+ T cell responses.  相似文献   

14.
Cytotoxic T lymphocytes (CTL) specific for autologous human melanoma have been successfully generated in vitro from tumor bearing lymph nodes without any stimulation by the autologous tumor. Tumor-involved lymph node cells (LNC) were cultured in serum free medium (AIM-V) containing 1,000 U/ml of recombinant interleukin-2. The best expansion and specific cytotoxicity of CTL were achieved in 4 to 6 weeks of culture. The predominant populations in cultured LNC-derived CTL were CD2+, CD3+, CD4-, CD8+, CD56-, and HLA-DR+ T cells. These data suggested that tumor-involved LNC may provide an alternative source for the generation of tumor-specific CTL in adoptive immunotherapy.  相似文献   

15.
Natural killer (NK) cell-based adoptive immunotherapy is a promising treatment approach for many cancers. However, development of protocols that provide large numbers of functional NK cells produced under GMP conditions are required to facilitate clinical studies. In this study, we translated our cytokine-based culture protocol for ex vivo expansion of NK cells from umbilical cord blood (UCB) hematopoietic stem cells into a fully closed, large-scale, cell culture bioprocess. We optimized enrichment of CD34(+) cells from cryopreserved UCB units using the CliniMACS system followed by efficient expansion for 14 days in gas-permeable cell culture bags. Thereafter, expanded CD34(+) UCB cells could be reproducibly amplified and differentiated into CD56(+)CD3(-) NK cell products using bioreactors with a mean expansion of more than 2,000 fold and a purity of >90%. Moreover, expansion in the bioreactor yielded a clinically relevant dose of NK cells (mean: 2×10(9) NK cells), which display high expression of activating NK receptors and cytolytic activity against K562. Finally, we established a versatile closed washing procedure resulting in optimal reduction of medium, serum and cytokines used in the cell culture process without changes in phenotype and cytotoxic activity. These results demonstrate that large numbers of UCB stem cell-derived NK cell products for adoptive immunotherapy can be produced in closed, large-scale bioreactors for the use in clinical trials.  相似文献   

16.
Ryu JH  Oh DJ  Choi CY  Kim BS 《Biotechnology letters》2003,25(16):1363-1367
A novel method was developed for suspension culture of anchorage-dependent animal cells using biodegradable polymer nanospheres. The addition of poly(lactic-co-glycolic acid) nanospheres (907 nm average diam.) to the culture of human embryonic kidney 293 cells in stirred suspension bioreactors promoted the aggregate formation and cell growth (4.4-fold versus 2.2-fold growth for 7 d), compared to culture without nanospheres. This method may be useful for the culture of various types of anchorage-dependent animal cells in large-scale suspension bioreactors.  相似文献   

17.
Umbilical cord blood (CB) is increasingly used for allogeneic hematopoietic stem cell transplantation. To determine whether viral antigen-specific cytotoxic T-lymphocytes (CTL) could be generated from the predominantly naive T-cell populations in CB, CB-derived mononuclear cells were stimulated with autologous Epstein-Barr virus (EBV) transformed B-lymphoblastoid cell lines over several weeks in the presence of recombinant human interleukin-2 (IL-2). By 28 days of culture, T-lymphocytes from all six CB that had been treated with IL-2 displayed EBV-specific cytotoxicity. These cells were largely CD4(+), with complete inhibition of cytotoxicity by anti-CD3 and variable inhibition by anti-HLA DR monoclonal antibodies. The EBV-specific effectors were cloned by limiting dilution, and most of the CTL clones were CD4(+). The cytotoxicity of the CB-derived CD4(+) CTL clones was inhibited by EGTA but not by anti-Fas ligand mAb, suggesting that this cytotoxicity was mediated by perforin/granzyme B. These data indicate that virus-specific CTL can be cultivated and cloned from CB, a human T-cell source that may not have prior in vivo antigenic exposure or reactivity. This finding may have applications in adoptive immunotherapy to recipients of CB transplants.  相似文献   

18.
The MAGE-1 gene encodes a tumor-specific antigen, MZ2-E, which is recognized by cloned, specific cytolytic T cells (CTL) derived from the peripheral blood of a patient with melanoma. We have produced a MAGE-1-specific CTL line derived from the tumor-infiltrating lymphocytes (TIL) of a melanoma patient by weekly restimulation with autologous EBV-B cells pulsed with the synthetic HLA-A1-restricted MAGE-1 epitope nonapeptide EADPTGHSY. The 1277. A TIL line grew in long-term culture in low-dose interleukin-2 (IL-2) and IL-4, and exhibited antigen-specific, MHC-class-I-restricted lysis of HLA-A1-bearing MAGE-1+ cell lines. Cytolysis of target cells pulsed with the synthetic MAGE-1 decapeptide KEADPTGHSY was superior to that of cells pulsed with the immunodominant nonapeptide. Single amino-acid or even side-chain substitutions in the immunodominant nonamer abrogated cytolysis. 1277. A TIL specifically secreted tumor necrosis factor after co-incubation with HLA-A1-expressing MAGE-1+ cell lines or fresh tumor. These data suggest that tumor-antigen-specific, MHC-restricted CTL may be grown from TIL in the presence of synthetic epitope peptides and expanded for adoptive immunotherapy in melanoma patients.  相似文献   

19.
Peripheral blood lymphocytes (PBL) cultured in interleukin 2 (IL 2)-containing medium in conventional tissue culture develop the ability to lyse fresh tumor cells; such cells are referred to as lymphokine-activated killer (LAK) cells. LAK activity peaks by day 5 of culture and declines rapidly thereafter. We studied culture conditions and signals that allow for long-term culture and expansion of cells with LAK activity. By culturing cells at relatively low densities and regularly replenishing medium and recombinant IL 2 (r-IL 2), LAK function is significantly higher as compared with short-term cultures, and remains present for at least 21 days while cell numbers undergo an average 100-fold expansion. By activating these cultures with anti-CD3 (OKT3) monoclonal antibody and r-IL 2, an approximately 1000-fold expansion in the cell number is obtained with maintenance of comparable levels of LAK activity. The exogenous addition of beta interleukin 1 (beta-IL 1), interferon-beta (IFN-beta) or interferon-gamma (IFN-gamma) can augment the lytic activity of cell populations expanded by anti-CD3 plus r-IL 2. These approaches may enable the in vitro generation from individual donors of much greater numbers of LAK cells for adoptive immunotherapy than can now be obtained with the 3 to 5 day in vitro culture systems.  相似文献   

20.
The detection and monitoring of peptide-specific cytotoxic T lymphocyte (CTL) precursors is essential for successful peptide-based immunotherapy against cancers. In contrast to the development of effective methods of detecting antigen-specific CTL, such as ELISpot and HLA-class I tetramer assay, stimulation with peptide-pulsed antigen-presenting cells (APC) has for some time been conventionally employed to induce peptide-specific CTL from peripheral blood mononuclear cells (PBMC). This culture protocol, however, needs a substantial number of PBMC to test the reactivity against a panel of peptides. In the present study, we established a simple culture protocol which has no need of additional APC. Addition of a corresponding peptide every 3 days was found to induce not only Epstein-Barr virus (EBV)-specific CTL from healthy donors, but also tumor antigen-derived peptide-specific CTL from cancer patients. A 10-ml blood sample was almost sufficient to test the presence of CTL precursors against 20 different peptides in triplicate assays. Overall, this culture protocol can be useful in detecting and monitoring peptide-specific CTL precursors in the circulation in peptide-based immunotherapy against cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号