首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The conformational changes around the thioester-bond region of human or bovine alpha 2M (alpha 2-macroglobulin) on reaction with methylamine or trypsin were studied with the probe AEDANS [N-(acetylaminoethyl)-8-naphthylamine-1-sulphonic acid], bound to the liberated thiol groups. The binding affected the fluorescence emission and lifetime of the probe in a manner indicating that the thioester-bond region is partially buried in all forms of the inhibitor. In human alpha 2M these effects were greater for the trypsin-treated than for the methylamine-treated inhibitor, which both have undergone similar, major, conformational changes. This difference may thus be due to a close proximity of the thioester region to the bound proteinase. Reaction of trypsin with thiol-labelled methylamine-treated bovine alpha 2M, which retains a near-native conformation and inhibitory activity, indicated that the major conformational change accompanying the binding of proteinases involves transfer of the thioester-bond region to a more polar environment without increasing the exposure of this region at the surface of the protein. Labelling of the transglutaminase cross-linking site of human alpha 2M with dansylcadaverine [N-(5-aminopentyl)-5-dimethylaminonaphthalene-1-sulphonamide] suggested that this site is in moderately hydrophobic surroundings. Reaction of the labelled inhibitor with methylamine or trypsin produced fluorescence changes consistent with further burial of the cross-linking site. These changes were more pronounced for trypsin-treated than for methylamine-treated alpha 2M, presumably an effect of the cleavage of the adjacent 'bait' region. Solvent perturbation of the u.v. absorption and iodide quenching of the tryptophan fluorescence of human alpha 2M showed that one or two tryptophan residues in each alpha 2M monomer are buried on reaction with methylamine or trypsin, with no discernible change in the exposure of tyrosine residues. Together, these results indicate an extensive conformational change of alpha 2M on reaction with amines or proteinases and are consistent with several aspects of a recently proposed model of alpha 2M structure [Feldman, Gonias & Pizzo (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 5700-5704].  相似文献   

2.
Human alpha 2-macroglobulin can be reversibly dissociated by Cd2+ at low ionic strength in half-molecules which retain their ability to bind tightly plasmin and chymotrypsin. The steady state kinetic parameters of these proteinases towards chromogenic substrates when bound to half-molecules are not greatly different from those determined for these enzymes linked to whole alpha 2M molecules. Cd2+ can also induce the dissociation of plasmin- and chymotrypsin - alpha 2M complexes into proteinase-alpha 2M half-molecule conjugates. These results, taken with the fact that monomeric units of alpha 2M cannot bind these proteinases, strongly suggest that each active site of alpha 2M consists in a specific arrangement of two monomeric units linked by disulfide bridges.  相似文献   

3.
alpha(2)-Macroglobulin (alpha(2)M) is a proteinase inhibitor that functions by a trapping mechanism which has been exploited such that the receptor-recognized, activated form (alpha(2)M( *)) can be employed to target antigens to antigen-presenting cells. Another potential use of alpha(2)M( *) is as a drug delivery system. In this study we demonstrate that guanosine triphosphate, labeled with Texas red (GTP-TR) formed complexes with alpha(2)M( *) following activation by proteolytic or non-proteolytic reactions. Optimal incorporation occurred with 20 microM GTP-TR, pH 8.0 for 5h at 50 degrees C. NaCl concentration (100 or 200 mM) had little effect on incorporation at this pH or temperature, but was significant at sub-optimum temperature and pH values. Maximum incorporation was 1.2 mol GTP-TR/mol alpha(2)M( *). PAGE showed that 70-90% of the GTP-TR is bound in a SDS/2-mercaptoethanol resistant manner. Guanosine, adenosine, and imidazole competed with GTP-TR to form complexes with alpha(2)M( *).  相似文献   

4.
Abstract

Quercetin is a widely used bioflavonoid found in onions, grapes, berries and citrus fruits. Under certain conditions, quercetin acts as a pro-oxidant thereby generating reactive oxygen species and promoting the oxidation of molecules. Our study investigates the effect of quercetin on the structure and function of alpha-2-macroglobulin (α2M) by employing various biophysical techniques and trypsin inhibitory assay. α2M is the major antiproteinase present in the plasma of vertebrates. Results of activity assay indicated that α2M loses its 56% of inhibitory activity on treatment with quercetin in the presence of light. UV spectroscopy reveals hyper chromaticity in absorption spectra of protein on interaction with quercetin suggesting structural change. The intrinsic fluorescence studies showed quenching of α2M spectra in the presence of quercetin, and the mode of quenching was found to be static in nature. Synchronous fluorescence indicated the alteration in the microenvironment of tryptophan residues. CD and FTIR spectroscopy confirms concentration-dependent alterations in secondary structure of α2M instigated by quercetin. The magnitude of binding constant, enthalpy change, entropy change and free energy change during the interaction process was determined by isothermal titration calorimetry. Hydrogen bonding and hydrophobic interaction were the main intermolecular forces involved during the process. This study identifies and signifies the damage induced by quercetin to α2M due to its pro-oxidant action.

Communicated by Ramaswamy H. Sarma  相似文献   

5.
Human alpha 2-macroglobulin (alpha 2M) exists in two well defined, highly distinct conformations and in less well described intermediate conformations. In this study, previously characterized reactions were used to partially or completely transform the conformation of alpha 2M. Electron micrographs of each preparation were subjected to image analysis. Ternary alpha 2M-trypsin (2 mol of trypsin/mol of alpha 2M) was analyzed as a control for the fully transformed state. Correspondence analysis (CORAN) and hierarchical ascendant classification (HAC) generated five image clusters from 330 aligned alpha 2M-trypsin complexes. Average images of each cluster resembled the letter "H" with four nearly equivalent lateral arms. Abnormally shaped lateral arms were not demonstrated by HAC, using a variety of factor sets. In a native polyacrylamide gel electrophoresis system, alpha 2M-thrombin migrated in a diffuse band partially behind alpha 2M-trypsin, suggesting conformational heterogeneity. CORAN and HAC of 733 alpha 2M-thrombin complexes identified two neighboring clusters, the average images of which showed an H-like structure in which one arm was replaced by a globular stain-excluding body. The two alpha 2M-thrombin clusters included 125 images (17.1% of image population). The complete absence of atypical lateral arm structure in the alpha 2M-trypsin clusters suggests that this variation is not the result of orientation or staining artifact. Native alpha 2M was reacted with cis-dichlorodiammineplatinum(II) and then with trypsin to form alpha 2M-Pt-trypsin, a preparation that includes partially transformed alpha 2M structures. CORAN and HAC of 580 alpha 2M-Pt-trypsin complexes generated five clusters, the average images of which showed atypical lateral arm structure equivalent to that demonstrated with alpha 2M-thrombin. The five alpha 2M-Pt-trypsin clusters accounted for 15.2% of the image population. These studies suggest that alpha 2M conformational change intermediates demonstrate common structural characteristics, permitting an elucidation of the steps involved in this complex transformation.  相似文献   

6.
Bovine alpha2-globulin contains a protein which increases the activity of bovine alpha-chymotrypsin against synthetic substrates. The active protein fraction migrates slowly on polyacrylamide gel electrophoresis, so it was named slow alpha2-globulin (Salpha2). The fraction was isolated from bovine serum and purified. Its sedimentation constant S20 was 18.5 S. It was thus identified with the alpha2-macroglobulin (alpha2M). By kinetic studies, the dissociation constant of the alpha-chymotrypsin-alpha2 M complex was calculated to be of the order of 10(-7) l/mol. The purified alpha2 M was shown to bind alpha-chymotrypsin at a definite rate. If the binding ratio was assumed to be 1:2, the molecular weight was calculated to be about 8 X 10(5).  相似文献   

7.
High resolution electron microscopy reveals that fully active alpha 2-macroglobulin (α2M) from fresh human plasma presents a very characteristic tetrameric structure. This native conformation of the α2M molecule is described here for the first time, along with its various orientations in negatively stained preparations. Although the native form is sensitive to inactivation, glutaraldehyde fixation is not necessary for its observation except when ammonium salts are used. The tetrameric structure of α2M undergoes a drastic conformational change when the protein is treated either with trypsin, thrombin or methylamine, as evidenced by the appearance of the typical)+(structure already described in the literature. The various aspects of this second conformation correspond to different orientations of the molecules in the stain film, and depend upon the nature of the support.  相似文献   

8.
The reaction of bovine pancreatic trypsin with human plasma alpha(2)-macroglobulin (alpha(2)M) was studied at 25 degrees C, using equimolar mixtures of E and I in 50 mM potassium phosphate buffer, pH 7. The conformational change in alpha(2)M was monitored through the increase in protein fluorescence at 320 nm (exc lambda, 280 nm). At [alpha(2)M](0) =[E](0) =11.5-200 nM, the fluorescence change data fit the integrated second-order rate equation, (F(infinity) -F(0) )/(F(infinity) -F(t) )=1+k(i,obsd) [alpha(2)M](0) t, indicating that cleavage of the bait region in alpha(2)M was the rate-determining step. The apparent rate constant (k(i,obsd)) was found to be inversely related to reactant concentration. The kinetic behavior of the system was compatible with a model involving reversible, nonbait region binding of E to alpha(2)M, competitively limiting the concentration of E available for bait region cleavage. The intrinsic value of k(i) was (1.7+/-0.24) x 10(7) M(-1) s(-1).K(p), the inhibitory constant associated with peripheral binding, was estimated to be in the submicromolar range. The results of the present study point to a potential problem in interpreting kinetic data relating to protease-induced structural changes in macromolecular substrates. If there is nonproductive binding, as in the case of trypsin and alpha(2)M, and the reactions are monitored under pseudo first-order conditions ([S](0) >[E](0) ), an intrinsically second-order process (such as the rate-limiting bait region cleavage in alpha(2)M) may become kinetically indistinguishable from an intrinsically first-order process (e.g. rate-limiting conformational change). Hence an excess of one component over the other should be avoided in kinetic studies addressing such systems.  相似文献   

9.
In the molecular interplay between pathogenic microorganisms and their host, proteolytic mechanisms are believed to play a crucial role. Here we find that the important human pathogen Streptococcus pyogenes (group A Streptococcus) expresses a surface protein with high affinity (Ka = 2.0 x 10(8) M-1) for alpha2-macroglobulin (alpha2M), the dominating proteinase inhibitor of human plasma. The immunoglobulin-binding protein G of group C and G streptococci also contains an alpha2M-binding domain and a gene encoding protein GRAB (protein G-related alpha2M-binding protein) was identified in the S. pyogenes Genome Sequencing data base. The grab gene is present in most S. pyogenes strains and is well conserved. Protein GRAB has typical features of a surface-attached protein of Gram-positive bacteria. It also contains a region homologous to parts of the alpha2M-binding domain of protein G and a variable number of a unique 28-amino acid-long repeat. Using Escherichia coli-produced protein GRAB and synthetic GRAB peptides, the alpha2M-binding region was mapped to the NH2-terminal part of protein GRAB, which is the region with homology to protein G. An isogenic S. pyogenes mutant lacking surface-associated protein GRAB showed no alpha2M binding activity and was attenuated in virulence when injected intraperitoneally in mice. Finally, alpha2M bound to the bacterial surface via protein GRAB was found to entrap and inhibit the activity of both S. pyogenes and host proteinases, thereby protecting important virulence determinants from proteolytic degradation. This regulation of proteolytic activity at the bacterial surface should affect the host-microbe relation during S. pyogenes infections.  相似文献   

10.
Limited proteolysis of human alpha 2-macroglobulin (alpha 2M) by a novel bacterial proteinase resulted in the isolation of a soluble 20-kDa domain. The isolated fragment contained the receptor recognition site, expressed on alpha 2M complexes, as it competed effectively with alpha 2M-trypsin for binding to the receptor on skin fibroblasts. The fragment also reacted with two monoclonal antibodies which define epitopes that are part of the receptor recognition site. Characterization of the 20-kDa domain showed it to contain an intact disulfide bridge, while its susceptibility to N-glycanase and reaction with concanavalin A indicated the presence of N-linked carbohydrate. The NH2-terminal sequence (Glu-Glu-Phe-Pro-Phe-Ala-Leu-Gly-Val-Glu-Thr-Leu-Pro-Glu-Thr-Cys-Asp-Glu -Pro) proved this fragment to constitute the COOH terminus of human alpha 2M. Proteolysis occurred at Lys1313-Glu which together with the observation that tosyllysine chloromethyl ketone was an effective inhibitor of the bacterial proteinase, would indicate the latter to hydrolyze preferentially peptide bonds carboxyl-terminal to lysine residues.  相似文献   

11.
The kinetics of the reaction of trypsin with alpha 2M were examined under pseudo-first-order conditions with excess inhibitor. Initial studies indicated that the fluorescent dye TNS is a suitable probe for monitoring the reaction over a wide concentration range of reactants. Titration experiments showed that the conformational changes associated with the binding of trypsin to alpha 2M result in an increased affinity of the inhibitor for TNS. Two distinct phases were observed when this dye was used to monitor the progress of the reaction. Approximately half of the fluorescence signal was generated during a rapid phase, with the remainder generated during a second, slower phase. The observed pseudo-first-order rate constant of the first phase varied linearly with the concentration of alpha 2M up to the highest concentration of inhibitor used, whereas the rate constant of the second phase was independent of alpha 2M concentration. The data fit a mechanism in which the association of trypsin with alpha 2M occurs in two consecutive, essentially irreversible steps, both leading to alterations in TNS fluorescence. The initial association occurs with a second-order rate constant of (1.0 +/- 0.1) X 10(7) M-1 s-1 and is followed by a slower, intramolecular conformational rearrangement of the initial complex with a rate constant of 1.4 +/- 0.2 s-1. The data are consistent with a previously proposed model for the reaction of proteinases with alpha 2M [Larsson et al. (1989) Biochemistry 28, 7636-7643].2+ this model, once an initial 1:1 alpha 2M-proteinase  相似文献   

12.
Identification of alpha 2-macroglobulin as a carrier protein for IL-6   总被引:8,自引:0,他引:8  
In this report we demonstrate that alpha 2-macroglobulin (alpha 2M) is a carrier protein for IL-6. IL-6 was found to bind plasma proteins and an immunoblot analysis revealed that the complex between IL-6 and plasma proteins contains alpha 2M. Furthermore, purified alpha 2M bound IL-6. alpha 2M did not inhibit IL-6 activity or its binding to homologous receptor. IL-6 bound to alpha 2M retained its biologic activity and became resistant to treatment with proteases, although free IL-6 was easily degraded. These findings indicate that alpha 2M plays an important role as a carrier protein for IL-6 in serum and makes IL-6 produced at the local inflammatory site available to lymphocytes, hepatocytes, and hematopoietic stem cells, resulting in the induction of the coordinate systemic host defense reactions, such as immune response, acute phase reaction, and hematopoiesis.  相似文献   

13.
The structure of human alpha 2-macroglobulin (alpha 2M) after reaction with cis-dichlorodiammineplatinum (II) (cis-DDP) was studied by electron microscopy. The cis-DDP stabilized a novel conformation of the native inhibitor resembling a doughnut surrounded by two, three, of four well defined spherules. When only two spherules were present, these structures were usually oriented on opposite sides of the doughnut. The protein region joining a spherule to the central structure did not include sufficient mass to exclude stain and was, therefore, invisible. Other images showed spherules that were partially superimposed on the doughnut. A comparison of many molecules suggested great flexibility of the peripheral spherules relative to the central structure. The cis-DDP prevented complete conformational change when the alpha 2M was reacted with trypsin. The products of this reaction included apparent conformational intermediates. These intermediates most closely resembled either native alpha 2M or the well established "H" structure of alpha 2M-proteinase, depending on the initial conditions used to modify the alpha 2 M with cis-DDP. When cis-DDP-treated alpha 2M was reacted with trypsin, purified by chromatography and subsequently treated with diethyldithiocarbamate, complete conformational change was observed. Based on an analysis of the alpha 2M structural intermediates obtained using the chemical modification procedures described here, a new model of alpha 2M conformational change was developed. We postulate that conformational change initially involves contraction of the peripheral spherules towards the central doughnut. These spherules then unfold and elongate in the perpendicular direction to form the lateral walls of the proteinase transformed alpha 2M H structure.  相似文献   

14.
The interaction of thrombin with alpha 2-macroglobulin (alpha 2M) was characterized by monitoring conformational changes and measuring the increase of free sulfhydryl groups during the reaction. Under experimental conditions where [thrombin] greater than [alpha 2M], the conformational change, measured by increases in the fluorescence of 6-(p-toluidino)-2-naphthalenesulfonate, and thiol group appearance displayed biphasic kinetics. The initial rapid phase results in the formation of a stable complex, the appearance of two sulfhydryl groups, the cleavage of approximately half of the Mr 180 000 subunits, and a conformational change that is not as extensive as that which occurs with trypsin. The slower phase is associated with the appearance of two additional sulfhydryl groups, increased cleavage of the Mr 180 000 subunit, and additional conformational changes. The available evidence suggests that the slow phase results from hydrolysis of the Mr 180 000 subunit(s) due to proteolysis of the alpha 2M-thrombin complex by free thrombin. Experiments with 125I-thrombin document the binding of 1 mol of thrombin/mol of alpha 2M that is not dissociated upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the complex. At higher ratios of thrombin to alpha 2M, a second mole of thrombin will reversibly associate with the 1:1 alpha 2M-thrombin complex. Under conditions where [thrombin] less than [alpha 2M], biphasic kinetics were not observed, and the conformational change, sulfhydryl appearance, and hydrolysis of the Mr 180 000 subunit were found to follow second-order kinetics.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
alpha 2-Macroglobulin binds to insoluble trypsin bound on agarose beads inducing a reduction of proteolytic activity of the enzyme towards large substrates such as azocasein. When trypsin was bound on other matrices like sheep red blood cells or latex beads, the inhibition of proteolytic activity by alpha 2-macroglobulin was complete. These results show that alpha 2-macroglobulin inhibits similarly both soluble and insoluble proteinases.  相似文献   

16.
We have reported previously that serum and alpha 2-macroglobulin (alpha 2M) induce Ca2+-activated hyperpolarizations in the membrane potential of a clonal rat osteosarcoma cell line (ROS 17/2) (Dixon and Aubin, J. Cell, Physiol., 132:215-225, 1987). In this report, we describe morphological changes that accompany these hyperpolarizations. Both cell surface blebbing (zeiosis) and transient hyperpolarizations were induced by application of 10% fetal bovine serum (FBS) or alpha 2M; neither was induced by serum-free medium, a suspension of latex beads, or purified bovine serum albumin. Following a brief application of FBS or alpha 2M at time 0, electrical activity typically occurred between 7-40 s and was always followed by blebbing activity that began at 30 s and persisted for 3-5 min. In contrast, continuous exposure to FBS resulted in the persistence of both blebbing activity and transient hyperpolarizations for periods of at least several hours. Scanning electron microscopy (SEM) revealed that the blebs appeared concomitantly with the disappearance of microvilli and the appearance of surface pits that measured 100-300 nm in diameter. Coated pits and vesicles, similar in size to the pits observed by SEM, were observed using transmission electron microscopy (TEM). By TEM, blebs were found to contain few organelles other than centrally located free ribosomes. Fluorescence microscopy of nitrobenzooxadizole-phallacidin-labeled cells indicated that blebs contained filamentous actin and that microfilament bundles remained primarily on the substratum side of blebbed cells. We propose that blebbing results from a dynamic local reorganization of microfilaments initiated by ligand-induced transient increases in intracellular Ca2+.  相似文献   

17.
18.
Binding and degradation of alpha 2-macroglobulin by cultured fibroblasts   总被引:1,自引:0,他引:1  
We studied the interactions of alpha 2-macroglobulin, a major protease inhibitor of plasma and of serum-containing culture medium, with cultured fibroblasts. Iodinated human alpha 2-macroglobulin bound specifically to washed cell layers of cultured human fibroblasts. At 0--4 degrees C, binding was saturated at a concentration of 10--20 micrograms/ml. At 37 degrees C, radiolabel appeared in the medium in a form soluble in 10% trichloroacetic acid. Sodium dodecyl sulfate polyacrylamide gel electrophoresis indicated that ingested iodinated alpha 2-macroglobulin transiently forms a complex with a trypsin-like protease. Indirect immunofluorescence demonstrated alpha 2-macroglobulin in vacuoles of fibroblasts grown in 10% human serum or incubated with purified alpha 2-macroglobulin. Fibroblasts transformed by SV-40 (VA-13 cells) bound and degraded less 125I-labeled alpha 2-macroglobulin than non-transformed fibroblasts and had fewer vacuoles containing alpha 2-macroglobulin. These observations indicate that cultured fibroblasts bind, take up by endocytosis, and degrade alpha 2-macroglobulin. Binding and endocytosis of alpha 2-macroglobulin by a cell may be a means of modulating proteases in the microenvironment of the cell and during endocytosis.  相似文献   

19.
The unique steric type of inhibition of endopeptidases by human alpha 2-macroglobulin (alpha 2-M) and the inactivation of the latter by methylamine were examined in relation to the internal thioesters in alpha 2M. The present results confirm our previous findings that disruption of the internal thioesters, is not in itself sufficient to cause the conformational change of alpha 2M typical of alpha 2-M-proteinase complexes; the electrophoretically slow form of alpha 2M with [14C]methylamine incorporated was isolated. Moreover, this group is stabilized by derivatization of the exposed cysteine thiol groups. Cyanylation with 2,4-dinitrophenyl thiocyanate during the methylamine reaction was the most effective procedure, yielding essentially only slow-form alpha 2M. Other thiol-specific reagents were less effective. When allowed to react with trypsin the cyanylated derivative (slow-form alpha 2M with thioesters broken) produced anomalous complexes; only half the expected amount of trypsin was bound, whereas the complexes were fully inhibited by soya-bean trypsin inhibitor and were proteolytically active. Despite this, the anomalous complexes were recognized by two highly specific probes: the fibroblast alpha 2M-complex receptor and the monoclonal antibody (F2B2) directed against the receptor-recognition site on alpha 2M complexes. The results show that the internal thioesters in alpha 2M are necessary for the conformational change producing sterically inhibited endoproteinase complexes, but do not participate as such in receptor-mediated endocytosis of these complexes.  相似文献   

20.
The purpose of this investigation was to characterize the reaction of alpha 2-antiplasmin (alpha 2AP) and alpha 2-macroglobulin (alpha 2M) with human plasmin bound to rat C6 glioma cells and human umbilical vein endothelial cells (HUVECs). Binding of plasmin (0.1 microM) to C6 cells at 4 degrees C did not cause cell detachment, decrease viability or change cell morphology. The KD and Bmax for the binding of diisopropyl phosphoryl plasmin (DIP-plasmin) to C6 cells were 0.9 microM and 2.6 x 10(6) sites/cell. The dissociation rate constants (koff) for 125I-plasmin were 9.7 x 10(-4) and 4.0 x 10(-4) s-1 at 4 degrees C in the presence and absence of 0.3 microM DIP-plasmin, respectively. Similar constants were determined for 125I-plasminogen and 125I-DIP-plasmin. Neither alpha 2AP nor alpha 2M affected the dissociation of DIP-plasmin. C6 cell-associated 125I-plasmin reacted slowly with alpha 2AP; however, the inhibition rate constants exceeded the koff. alpha 2AP-plasmin complex formed after the plasmin dissociated into solution (reaction pathway 1) and by direct reaction of alpha 2AP with cell-associated enzyme (reaction pathway 2). High concentrations of alpha 2AP favored pathway 2. C6 cell-associated plasmin was also protected from inhibition by alpha 2M. While the same pathways were probably involved in this reaction, alpha 2M was less effective than alpha 2AP as an inhibitor of nondissociated plasmin (pathway 2). When C6 cell-bound plasmin reacted with alpha 2AP, alpha 2AP-plasmin complex was recovered primarily in the medium, suggesting dissociation of complexes formed on the cell surface. Plasmin-receptor dissociation and inhibition experiments were performed at 22 degrees and 37 degrees C, confirming the conclusions of the 4 degrees C studies. Comparable results were also obtained using HUVEC cultures. These studies demonstrate that cell-associated plasmin is protected from inhibition by alpha 2M as well as alpha 2AP. At least two reaction pathways may be demonstrated for the inhibition of plasmin that is initially receptor-bound; however, neither pathway is highly effective, accounting for the "plasmin-protective" activity of the cell surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号